

This book covers Java 5/6.
Want to learn a newer version of

Java? Check out On Java 8 at
www.OnJava8.com

http://www.onjava8.com/

 Thinking
in

Java
Fourth Edition

Creative Commons Version

Bruce Eckel
President, MindView LLC

Comments from readers:
Thinking In Java should be read cover to cover by every Java programmer,

then kept close at hand for frequent reference. The exercises are challenging,

and the chapter on Collections is superb! Not only did this book help me to

pass the Sun Certified Java Programmer exam; it’s also the first book I turn

to whenever I have a Java question. Jim Pleger, Loudoun County

(Virginia) Government

Much better than any other Java book I’ve seen. Make that “by an order of

magnitude”... very complete, with excellent right-to-the-point examples and

intelligent, not dumbed-down, explanations ... In contrast to many other Java

books I found it to be unusually mature, consistent, intellectually honest,

well-written and precise. IMHO, an ideal book for studying Java. Anatoly

Vorobey, Technion University, Haifa, Israel

One of the absolutely best programming tutorials I’ve seen for any language.

Joakim Ziegler, FIX sysop

Thank you for your wonderful, wonderful book on Java. Dr. Gavin Pillay,

Registrar, King Edward VIII Hospital, South Africa

Thank you again for your awesome book. I was really floundering (being a

non-C programmer), but your book has brought me up to speed as fast as I

could read it. It’s really cool to be able to understand the underlying

principles and concepts from the start, rather than having to try to build that

conceptual model through trial and error. Hopefully I will be able to attend

your seminar in the not-too-distant future. Randall R. Hawley,

Automation Technician, Eli Lilly & Co.

The best computer book writing I have seen. Tom Holland

This is one of the best books I’ve read about a programming language… The

best book ever written on Java. Ravindra Pai, Oracle Corporation,

SUNOS product line

This is the best book on Java that I have ever found! You have done a great

job. Your depth is amazing. I will be purchasing the book when it is

published. I have been learning Java since October 96. I have read a few

books, and consider yours a “MUST READ.” These past few months we have

been focused on a product written entirely in Java. Your book has helped

solidify topics I was shaky on and has expanded my knowledge base. I have

even used some of your explanations as information in interviewing

contractors to help our team. I have found how much Java knowledge they

have by asking them about things I have learned from reading your book

(e.g., the difference between arrays and Vectors). Your book is great! Steve

Wilkinson, Senior Staff Specialist, MCI Telecommunications

Great book. Best book on Java I have seen so far. Jeff Sinclair, Software

Engineer, Kestral Computing

Thank you for Thinking in Java. It’s time someone went beyond mere

language description to a thoughtful, penetrating analytic tutorial that

doesn’t kowtow to The Manufacturers. I’ve read almost all the others—only

yours and Patrick Winston’s have found a place in my heart. I’m already

recommending it to customers. Thanks again. Richard Brooks, Java

Consultant, Sun Professional Services, Dallas

Bruce, your book is wonderful! Your explanations are clear and direct.

Through your fantastic book I have gained a tremendous amount of Java

knowledge. The exercises are also FANTASTIC and do an excellent job

reinforcing the ideas explained throughout the chapters. I look forward to

reading more books written by you. Thank you for the tremendous service

that you are providing by writing such great books. My code will be much

better after reading Thinking in Java. I thank you and I’m sure any

programmers who will have to maintain my code are also grateful to you.

Yvonne Watkins, Java Artisan, Discover Technologies, Inc.

Other books cover the WHAT of Java (describing the syntax and the libraries)

or the HOW of Java (practical programming examples). Thinking in Java is

the only book I know that explains the WHY of Java; why it was designed the

way it was, why it works the way it does, why it sometimes doesn’t work, why

it’s better than C++, why it’s not. Although it also does a good job of teaching

the what and how of the language, Thinking in Java is definitely the thinking

person’s choice in a Java book. Robert S. Stephenson

Thanks for writing a great book. The more I read it the better I like it. My

students like it, too. Chuck Iverson

I just want to commend you for your work on Thinking in Java. It is people

like you that dignify the future of the Internet and I just want to thank you for

your effort. It is very much appreciated. Patrick Barrell, Network Officer

Mamco, QAF Mfg. Inc.

I really, really appreciate your enthusiasm and your work. I download every

revision of your online books and am looking into languages and exploring

what I would never have dared (C#, C++, Python, and Ruby, as a side effect).

I have at least 15 other Java books (I needed 3 to make both JavaScript and

PHP viable!) and subscriptions to Dr. Dobbs, JavaPro, JDJ, JavaWorld, etc.,

as a result of my pursuit of Java (and Enterprise Java) and certification but I

still keep your book in higher esteem. It truly is a thinking man’s book. I

subscribe to your newsletter and hope to one day sit down and solve some of

the problems you extend for the solutions guides for you (I’ll buy the guides!)

in appreciation. But in the meantime, thanks a lot. Joshua Long,

www.starbuxman.com

Most of the Java books out there are fine for a start, and most just have

beginning stuff and a lot of the same examples. Yours is by far the best

advanced thinking book I’ve seen. Please publish it soon! ... I also bought

Thinking in C++ just because I was so impressed with Thinking in Java.

George Laframboise, LightWorx Technology Consulting, Inc.

I wrote to you earlier about my favorable impressions regarding your

Thinking in C++ (a book that stands prominently on my shelf here at work).

And today I’ve been able to delve into Java with your e-book in my virtual

hand, and I must say (in my best Chevy Chase from Modern Problems), “I

like it!” Very informative and explanatory, without reading like a dry

textbook. You cover the most important yet the least covered concepts of Java

development: the whys. Sean Brady

I develop in both Java and C++, and both of your books have been lifesavers

for me. If I am stumped about a particular concept, I know that I can count

on your books to a) explain the thought to me clearly and b) have solid

examples that pertain to what I am trying to accomplish. I have yet to find

another author that I continually whole-heartedly recommend to anyone who

is willing to listen. Josh Asbury, A^3 Software Consulting,

Cincinnati, Ohio

Your examples are clear and easy to understand. You took care of many

important details of Java that can’t be found easily in the weak Java

documentation. And you don’t waste the reader’s time with the basic facts a

programmer already knows. Kai Engert, Innovative Software,

Germany

I’m a great fan of your Thinking in C++ and have recommended it to

associates. As I go through the electronic version of your Java book, I’m

finding that you’ve retained the same high level of writing. Thank you! Peter

R. Neuwald

VERY well-written Java book...I think you’ve done a GREAT job on it. As the

leader of a Chicago-area Java special interest group, I’ve favorably mentioned

your book and Web site several times at our recent meetings. I would like to

use Thinking in Java as the basis for a part of each monthly SIG meeting, in

which we review and discuss each chapter in succession. Mark Ertes

By the way, printed TIJ2 in Russian is still selling great, and remains

bestseller. Learning Java became synonym of reading TIJ2, isn’t that nice?

Ivan Porty, translator and publisher of Thinking in Java 2nd

Edition in Russian

I really appreciate your work and your book is good. I recommend it here to

our users and Ph.D. students. Hugues Leroy // Irisa-Inria Rennes

France, Head of Scientific Computing and Industrial Tranfert

OK, I’ve only read about 40 pages of Thinking in Java, but I’ve already found

it to be the most clearly written and presented programming book I’ve come

across...and I’m a writer, myself, so I am probably a little critical. I have

Thinking in C++ on order and can’t wait to crack it—I’m fairly new to

programming and am hitting learning curves head-on everywhere. So this is

just a quick note to say thanks for your excellent work. I had begun to burn a

little low on enthusiasm from slogging through the mucky, murky prose of

most computer books—even ones that came with glowing recommendations.

I feel a whole lot better now. Glenn Becker, Educational Theatre

Association

Thank you for making your wonderful book available. I have found it

immensely useful in finally understanding what I experienced as confusing in

Java and C++. Reading your book has been very satisfying. Felix Bizaoui,

Twin Oaks Industries, Louisa, Va.

I must congratulate you on an excellent book. I decided to have a look at

Thinking in Java based on my experience with Thinking in C++, and I was

not disappointed. Jaco van der Merwe, Software Specialist,

DataFusion Systems Ltd, Stellenbosch, South Africa

This has to be one of the best Java books I’ve seen. E.F. Pritchard, Senior

Software Engineer, Cambridge Animation Systems Ltd., United

Kingdom

Your book makes all the other Java books I’ve read or flipped through seem

doubly useless and insulting. Brett Porter, Senior Programmer, Art &

Logic

I have been reading your book for a week or two and compared to the books I

have read earlier on Java, your book seems to have given me a great start. I

have recommended this book to a lot of my friends and they have rated it

excellent. Please accept my congratulations for coming out with an excellent

book. Rama Krishna Bhupathi, Software Engineer, TCSI

Corporation, San Jose

Just wanted to say what a “brilliant” piece of work your book is. I’ve been

using it as a major reference for in-house Java work. I find that the table of

contents is just right for quickly locating the section that is required. It’s also

nice to see a book that is not just a rehash of the API nor treats the

programmer like a dummy. Grant Sayer, Java Components Group

Leader, Ceedata Systems Pty Ltd, Australia

Wow! A readable, in-depth Java book. There are a lot of poor (and admittedly

a couple of good) Java books out there, but from what I’ve seen yours is

definitely one of the best. John Root, Web Developer, Department of

Social Security, London

I’ve just started Thinking in Java. I expect it to be very good because I really

liked Thinking in C++ (which I read as an experienced C++ programmer,

trying to stay ahead of the curve) … You are a wonderful author. Kevin K.

Lewis, Technologist, ObjectSpace, Inc.

I think it’s a great book. I learned all I know about Java from this book.

Thank you for making it available for free over the Internet. If you wouldn’t

have I’d know nothing about Java at all. But the best thing is that your book

isn’t a commercial brochure for Java. It also shows the bad sides of Java.

YOU have done a great job here. Frederik Fix, Belgium

I have been hooked to your books all the time. A couple of years ago, when I

wanted to start with C++, it was C++ Inside & Out which took me around the

fascinating world of C++. It helped me in getting better opportunities in life.

Now, in pursuit of more knowledge and when I wanted to learn Java, I

bumped into Thinking in Java—no doubts in my mind as to whether I need

some other book. Just fantastic. It is more like rediscovering myself as I get

along with the book. It is just a month since I started with Java, and heartfelt

thanks to you, I am understanding it better now. Anand Kumar S.,

Software Engineer, Computervision, India

Your book stands out as an excellent general introduction. Peter Robinson,

University of Cambridge Computer Laboratory

It’s by far the best material I have come across to help me learn Java and I

just want you to know how lucky I feel to have found it. THANKS! Chuck

Peterson, Product Leader, Internet Product Line, IVIS

International

The book is great. It’s the third book on Java I’ve started and I’m about two-

thirds of the way through it now. I plan to finish this one. I found out about it

because it is used in some internal classes at Lucent Technologies and a

friend told me the book was on the Net. Good work. Jerry Nowlin, MTS,

Lucent Technologies

Of the six or so Java books I’ve accumulated to date, your Thinking in Java is

by far the best and clearest. Michael Van Waas, Ph.D., President, TMR

Associates

I just want to say thanks for Thinking in Java. What a wonderful book you’ve

made here! Not to mention downloadable for free! As a student I find your

books invaluable (I have a copy of C++ Inside Out, another great book about

C++), because they not only teach me the how-to, but also the whys, which

are of course very important in building a strong foundation in languages

such as C++ or Java. I have quite a lot of friends here who love programming

just as I do, and I’ve told them about your books. They think it’s great!

Thanks again! By the way, I’m Indonesian and I live in Java. Ray Frederick

Djajadinata, Student at Trisakti University, Jakarta

The mere fact that you have made this work free over the Net puts me into

shock. I thought I’d let you know how much I appreciate and respect what

you’re doing. Shane LeBouthillier, Computer Engineering student,

University of Alberta, Canada

I have to tell you how much I look forward to reading your monthly column.

As a newbie to the world of object oriented programming, I appreciate the

time and thoughtfulness that you give to even the most elementary topic. I

have downloaded your book, but you can bet that I will purchase the hard

copy when it is published. Thanks for all of your help. Dan Cashmer, B. C.

Ziegler & Co.

Just want to congratulate you on a job well done. First I stumbled upon the

PDF version of Thinking in Java. Even before I finished reading it, I ran to

the store and found Thinking in C++. Now, I have been in the computer

business for over eight years, as a consultant, software engineer,

teacher/trainer, and recently as self-employed, so I’d like to think that I have

seen enough (not “have seen it all,” mind you, but enough). However, these

books cause my girlfriend to call me a ”geek.” Not that I have anything

against the concept—it is just that I thought this phase was well beyond me.

But I find myself truly enjoying both books, like no other computer book I

have touched or bought so far. Excellent writing style, very nice introduction

of every new topic, and lots of wisdom in the books. Well done. Simon

Goland, simonsez@smartt.com, Simon Says Consulting, Inc.

I must say that your Thinking in Java is great! That is exactly the kind of

documentation I was looking for. Especially the sections about good and poor

software design using Java. Dirk Duehr, Lexikon Verlag, Bertelsmann

AG, Germany

Thank you for writing two great books (Thinking in C++, Thinking in Java).

You have helped me immensely in my progression to object oriented

programming. Donald Lawson, DCL Enterprises

Thank you for taking the time to write a really helpful book on Java. If

teaching makes you understand something, by now you must be pretty

pleased with yourself. Dominic Turner, GEAC Support

It’s the best Java book I have ever read—and I read some. Jean-Yves

MENGANT, Chief Software Architect NAT-SYSTEM, Paris, France

Thinking in Java gives the best coverage and explanation. Very easy to read,

and I mean the code fragments as well. Ron Chan, Ph.D., Expert Choice,

Inc., Pittsburgh, Pa.

Your book is great. I have read lots of programming books and your book still

adds insights to programming in my mind. Ningjian Wang, Information

System Engineer, The Vanguard Group

Thinking in Java is an excellent and readable book. I recommend it to all my

students. Dr. Paul Gorman, Department of Computer Science,

University of Otago, Dunedin, New Zealand

With your book, I have now understood what object oriented programming

means. ... I believe that Java is much more straightforward and often even

easier than Perl. Torsten Römer, Orange Denmark

You make it possible for the proverbial free lunch to exist, not just a soup

kitchen type of lunch but a gourmet delight for those who appreciate good

software and books about it. Jose Suriol, Scylax Corporation

Thanks for the opportunity of watching this book grow into a masterpiece! IT

IS THE BEST book on the subject that I’ve read or browsed. Jeff

Lapchinsky, Programmer, Net Results Technologies

Your book is concise, accessible and a joy to read. Keith Ritchie, Java

Research & Development Team, KL Group Inc.

It truly is the best book I’ve read on Java! Daniel Eng

The best book I have seen on Java! Rich Hoffarth, Senior Architect,

West Group

Thank you for a wonderful book. I’m having a lot of fun going through the

chapters. Fred Trimble, Actium Corporation

You have mastered the art of slowly and successfully making us grasp the

details. You make learning VERY easy and satisfying. Thank you for a truly

wonderful tutorial. Rajesh Rau, Software Consultant

Thinking in Java rocks the free world! Miko O’Sullivan, President,

Idocs Inc.

About Thinking in C++:

Winner of the 1995 Software Development Magazine Jolt Award

for Best Book of the Year

“This book is a tremendous achievement. You owe it to yourself to
have a copy on your shelf. The chapter on iostreams is the most
comprehensive and understandable treatment of that subject I’ve seen
to date.”

Al Stevens
Contributing Editor, Doctor Dobbs Journal

“Eckel’s book is the only one to so clearly explain how to rethink
program construction for object orientation. That the book is also an
excellent tutorial on the ins and outs of C++ is an added bonus.”

Andrew Binstock
Editor, Unix Review

“Bruce continues to amaze me with his insight into C++, and Thinking
in C++ is his best collection of ideas yet. If you want clear answers to
difficult questions about C++, buy this outstanding book.”

Gary Entsminger
Author, The Tao of Objects

“Thinking in C++ patiently and methodically explores the issues of
when and how to use inlines, references, operator overloading,
inheritance, and dynamic objects, as well as advanced topics such as
the proper use of templates, exceptions and multiple inheritance. The
entire effort is woven in a fabric that includes Eckel’s own philosophy
of object and program design. A must for every C++ developer’s
bookshelf, Thinking in C++ is the one C++ book you must have if
you’re doing serious development with C++.”

Richard Hale Shaw
Contributing Editor, PC Magazine

Thinking
in

Java
Fourth Edition

Creative Commons Version

Bruce Eckel
President, MindView LLC

Upper Saddle River, NJ ● Boston ● Indianapolis ● San Francisco

New York ● Toronto ● Montreal ● London ● Munich ● Paris

Madrid ● Capetown ● Sydney ● Tokyo ● Singapore ● Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

Java is a trademark of Oracle. Windows 95, Windows NT, Windows 2000, and Windows XP are
trademarks of Microsoft Corporation. All other product names and company names mentioned
herein are the property of their respective owners.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include custom covers and/or content particular to your
business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.prenhallprofessional.com

Cover design and interior design by Daniel Will-Harris, www.Will-Harris.com

Library of Congress Cataloging-in-Publication Data:

Eckel, Bruce.
 Thinking in Java / Bruce Eckel.—4th ed.
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-13-187248-6 (pbk. : alk. paper)
 1. Java (Computer program language) I. Title.
 QA76.73.J38E25 2006
 005.13'3—dc22
 2005036339

Original copyright © 2006 by Bruce Eckel, President, MindView LLC
Creative Commons version released January 2018
Creative Commons license: Attribution-NonCommercial-NoDerivs 4.0
https://creativecommons.org/licenses/by-nc-nd/4.0/

Print publication by:

Pearson Education, Inc.
Rights and Contracts Department
One Lake Street
Upper Saddle River, NJ 07458
Fax: (201) 236-3290

ISBN 0-13-187248-6

Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.

First printing, January 2006

Dedication
For My Father

Overview
Creative Commons Version 1

Preface 3

Introduction 13

Introduction to Objects 21

Everything Is an Object 59

Operators 89

Controlling Execution 131

Initialization & Cleanup 151

Access Control 205

Reusing Classes 233

Polymorphism 273

Interfaces 307

Inner Classes 341

Holding Your Objects 385

Error Handling with Exceptions 439

Strings 499

Type Information 549

Generics 613

Arrays 743

Containers in Depth 787

I/O 897

Enumerated Types 1007

Annotations 1055

Concurrency 1105

Graphical User Interfaces 1299

A: Supplements 1431

B: Resources 1433

Index 1439

What’s Inside
Creative Commons Version 1

Preface 3

Java SE5 and SE6 4

Java SE6 ... 5
The 4th edition 5

Changes .. 6
Note on the cover design....... 7
Acknowledgements 8

Introduction 13

Prerequisites14
Learning Java14
Goals 15
Teaching from this book16
JDK HTML documentation . 17
Exercises 17
Foundations for Java 17
Source code 18

Coding standards 19

Introduction to Objects 21

The progress of abstraction 22
An object has an interface ... 24
An object provides services . 27
The hidden implementation 28
Reusing the implementation30
Inheritance 31

Is-a vs. is-like-a relationships 35
Interchangeable objects with

polymorphism 36
The singly rooted hierarchy .41
Containers 42

Parameterized types (generics) ... 43
Object creation & lifetime ... 44

Exception handling: dealing

with errors 47
Concurrent programming .. 48
Java and the Internet 49

What is the Web? 49
Client-side programming 51
Server-side programming 57

Summary 57

Everything Is an Object 59

You manipulate objects with

references59
You must create all the objects61

Where storage lives 61
Special case: primitive types 63
Arrays in Java 64

You never need to destroy an

object65

Scoping ... 65
Scope of objects 66

Creating new data types:

class 67

Fields and methods 68
Methods, arguments, and

return values 70

The argument list 71
Building a Java program 72

Name visibility 72
Using other components 73
The static keyword 74

Your first Java program 76

Compiling and running 78
Comments and embedded

documentation 79

Comment documentation 80
Syntax .. 81
Embedded HTML 82
Some example tags 82
Documentation example 85

Coding style 86
Summary 87
Exercises 87

Operators 89

Simpler print statements 89
Using Java operators 90
Precedence91
Assignment91

Aliasing during method calls 93
Mathematical operators 94

Unary minus and plus operators . 97
Auto increment and

decrement 97
Relational operators 99

Testing object equivalence 99
Logical operators 101

Short-circuiting 102
Literals 104

Exponential notation105
Bitwise operators107
Shift operators 108
Ternary if-else operator ... 112
String operator + and += . 114
Common pitfalls when using

operators 115
Casting operators 116

Truncation and rounding............ 117
Promotion 118

Java has no “sizeof” 118
A compendium of operators119
Summary 129

Controlling Execution 131

true and false 131

if-else................................ 131
Iteration 133

do-while 134
for ... 134
The comma operator 136

Foreach syntax................... 136
return 139
break and continue 140
The infamous “goto” 142
switch 147
Summary 150

Initialization & Cleanup 151

Guaranteed initialization with

the constructor 151
Method overloading 154

Distinguishing overloaded methods156
Overloading with primitives....... 157
Overloading on return values 161

Default constructors 162
The this keyword 163

Calling constructors from

constructors 166
The meaning of static 168

Cleanup: finalization and

garbage collection 169

What is finalize() for? 170
You must perform cleanup 171
The termination condition 172
How a garbage collector works .. 174

Member initialization 177

Specifying initialization 179
Constructor initialization .. 181

Order of initialization 181
static data initialization 182
Explicit static initialization 186
Non-static instance initialization187

Array initialization 189

Variable argument lists 194
Enumerated types 200

Summary 203

Access Control 205

package: the library unit . 206

Code organization 208
Creating unique package names 209
A custom tool library 213
Using imports to change behavior216
Package caveat 216

Java access specifiers 217

Package access 217
public: interface access 218
private: you can’t touch that! ... 220
protected: inheritance access ... 221

Interface and implementation224
Class access 225
Summary 229

Reusing Classes 233

Composition syntax 233
Inheritance syntax 237

Initializing the base class 240
Delegation 242
Combining composition and

inheritance 245

Guaranteeing proper cleanup 247
Name hiding 251

Choosing composition vs.

inheritance 252
protected 254
Upcasting 256

Why “upcasting”? 257
Composition vs. inheritance

revisited 257
The final keyword 258

final data 258
final methods 263
final classes 266
final caution 267

Initialization and class loading268

Initialization with inheritance... 268
Summary 270

Polymorphism 273

Upcasting revisited 274

Forgetting the object type 275
The twist 277

Method-call binding 277
Producing the right behavior 278
Extensibility282
Pitfall: “overriding” private

methods 286
Pitfall: fields and static methods286

Constructors and

polymorphism 289

Order of constructor calls 289
Inheritance and cleanup 291
Behavior of polymorphic methods

inside constructors 297
Covariant return types 299
Designing with inheritance300

Substitution vs. extension 302
Downcasting and runtime type

information 304
Summary 306

Interfaces 307

Abstract classes and methods307
Interfaces 312
Complete decoupling 316
“Multiple inheritance” in Java322
Extending an interface with

inheritance 325

Name collisions when combining

interfaces 326
Adapting to an interface 327
Fields in interfaces 331

Initializing fields in interfaces 331
Nesting interfaces 332
Interfaces and factories 335

Summary 339

Inner Classes 341

Creating inner classes341
The link to the outer class . 343
Using .this and .new 346
Inner classes and upcasting348
Inner classes in methods and

scopes 350
Anonymous inner classes . 352

Factory Method revisited 357
Nested classes 360

Classes inside interfaces 362
Reaching outward from a multiply

nested class 364
Why inner classes? 365

Closures & callbacks 368
Inner classes & control frameworks371

Inheriting from inner classes378
Can inner classes be

overridden? 379
Local inner classes 381
Inner-class identifiers 383
Summary 384

Holding Your Objects 385

Generics and type-safe

containers 386
Basic concepts 390
Adding groups of elements 392
Printing containers 394
List 397
Iterator 402

ListIterator.............................. 405
LinkedList 406
Stack 408
Set 411
Map 415
Queue 419

PriorityQueue 421

Collection vs. Iterator .. 423
Foreach and iterators 427

The Adapter Method idiom 430
Summary 433

Error Handling with
Exceptions 439

Concepts 440
Basic exceptions 441

Exception arguments.................. 442
Catching an exception 443

The try block 443
Exception handlers 444

Creating your own exceptions445

Exceptions and logging 448
The exception specification452
Catching any exception..... 454

The stack trace 456
Rethrowing an exception 457
Exception chaining 460

Standard Java exceptions . 464

Special case: RuntimeException465
Performing cleanup with

finally 467

What’s finally for? 468
Using finally during return..... 472
Pitfall: the lost exception 473

Exception restrictions........ 475
Constructors 479
Exception matching 485
Alternative approaches 486

History 488
Perspectives 489
Passing exceptions to the console492
Converting checked to unchecked

exceptions 493
Exception guidelines 496
Summary 497

Strings 499

Immutable Strings 499
Overloading ‘+’ vs.

StringBuilder 500
Unintended recursion 505
Operations on Strings 507
Formatting output 510

printf()510
System.out.format()510
The Formatter class 511
Format specifiers 512
Formatter conversions 514
String.format() 517

Regular expressions 519

Basics .. 520
Creating regular expressions 523
Quantifiers 525
Pattern and Matcher.............. 527
split() .. 536
Replace operations 537
reset() 540
Regular expressions and Java I/O540

Scanning input 542

Scanner delimiters 545
Scanning with regular expressions546

StringTokenizer 547
Summary 548

Type Information 549

The need for RTTI 549
The Class object 552

Class literals 558
Generic class references 561
New cast syntax 564

Checking before a cast 565

Using class literals 572
A dynamic instanceof 574
Counting recursively 576

Registered factories 578

instanceof vs. Class

equivalence 582
Reflection: runtime class

information....................... 584

A class method extractor 586
Dynamic proxies 589
Null Objects 594

Mock Objects & Stubs................ 602
Interfaces and type

information....................... 602
Summary 609

Generics 613

Comparison with C++ 614
Simple generics 615

A tuple library 617
A stack class 621
RandomList 622

Generic interfaces 623
Generic methods 627

Leveraging type argument inference629
Varargs and generic methods 631
A generic method to use with

Generators 632
A general-purpose Generator .. 633
Simplifying tuple use 635
A Set utility 637

Anonymous inner classes .. 641
Building complex models . 643
The mystery of erasure 646

The C++ approach 648
Migration compatibility 651
The problem with erasure 652
The action at the boundaries 654

Compensating for erasure 658

Creating instances of types 660
Arrays of generics 663

Bounds 669
Wildcards 673

How smart is the compiler? 676

Contravariance 678
Unbounded wildcards 682
Capture conversion 688

Issues 690

No primitives as type parameters690
Implementing parameterized

interfaces 692
Casting and warnings................. 693
Overloading 695
Base class hijacks an interface ... 696

Self-bounded types 697

Curiously recurring generics 697
Self-bounding 699
Argument covariance 702

Dynamic type safety 706
Exceptions......................... 707
Mixins 709

Mixins in C++ 710
Mixing with interfaces 711
Using the Decorator pattern 713
Mixins with dynamic proxies 715

Latent typing 717
Compensating for the lack of

latent typing 722

Reflection 722
Applying a method to a sequence724
When you don’t happen to have the

right interface 727
Simulating latent typing with

adapters 729
Using function objects as

strategies 733
Summary: Is casting really so

bad? 739

Further reading 742

Arrays 743

Why arrays are special 743
Arrays are first-class objects745
Returning an array 749

Multidimensional arrays ...750
Arrays and generics 755
Creating test data 758

Arrays.fill() 758
Data Generators 759
Creating arrays from Generators766

Arrays utilities 771

Copying an array771
Comparing arrays 773
Array element comparisons 774
Sorting an array 778
Searching a sorted array780

Summary 782

Containers in Depth 787

Full container taxonomy ... 787
Filling containers 789

A Generator solution 790
Map generators 792
Using Abstract classes 796

Collection functionality . 805
Optional operations 809

Unsupported operations 811
List functionality 813
Sets and storage order 817

SortedSet 821
Queues 823

Priority queues 824
Deques .. 825

Understanding Maps 827

Performance 829
SortedMap 833
LinkedHashMap834

Hashing and hash codes ... 835

Understanding hashCode()839
Hashing for speed843
Overriding hashCode() 847

Choosing an implementation854

A performance test framework .. 855
Choosing between Lists 859

Microbenchmarking dangers 867
Choosing between Sets.............. 868
Choosing between Maps 871

Utilities 875

Sorting and searching Lists 880
Making a Collection or Map

unmodifiable 881
Synchronizing a Collection or

Map ... 883
Holding references 885

The WeakHashMap 888
Java 1.0/1.1 containers 889

Vector & Enumeration 890
Hashtable 891
Stack ... 891
BitSet .. 893

Summary 896

I/O 897

The File class 897

A directory lister 898
Directory utilities 902
Checking for and creating

directories 908
Input and output 910

Types of InputStream 911
Types of OutputStream 913

Adding attributes and useful

interfaces........................... 914

Reading from an InputStream

with FilterInputStream 915
Writing to an OutputStream with

FilterOutputStream 917
Readers & Writers 918

Sources and sinks of data............ 919
Modifying stream behavior 920
Unchanged classes 921

Off by itself:

RandomAccessFile 922
Typical uses of I/O streams923

Buffered input file 923
Input from memory 924
Formatted memory input 925
Basic file output 926
Storing and recovering data 928
Reading and writing random-access

files ... 930
Piped streams 932

File reading & writing utilities932

Reading binary files 936
Standard I/O 937

Reading from standard input 937
Changing System.out to a

PrintWriter938
Redirecting standard I/O938

Process control 940
New I/O 942

Converting data 946
Fetching primitives..................... 949
View buffers 951
Data manipulation with buffers . 956
Buffer details 958
Memory-mapped files 962
File locking 966

Compression 969

Simple compression with GZIP .. 970
Multifile storage with Zip 971
Java ARchives (JARs) 974

Object serialization 976

Finding the class 980
Controlling serialization 982
Using persistence 992

XML 999
Preferences 1002
Summary 1004

Enumerated Types 1007

Basic enum features 1007

Using static imports with enums1009
Adding methods to an enum1010

Overriding enum methods 1011
enums in switch statements1012
The mystery of values() . 1013
Implements, not inherits . 1016
Random selection 1017
Using interfaces for

organization 1018
Using EnumSet instead of

flags 1024
Using EnumMap 1026
Constant-specific methods1028

Chain of Responsibility with

enums 1032
State machines with enums 1037

Multiple dispatching 1043

Dispatching with enums 1046
Using constant-specific methods1049
Dispatching with EnumMaps . 1051
Using a 2-D array 1052

Summary 1053

Annotations 1055

Basic syntax 1056

Defining annotations 1057
Meta-annotations 1059

Writing annotation processors1060

Annotation elements 1061
Default value constraints 1061
Generating external files 1062
Annotations don’t support

inheritance 1066
Implementing the processor1067

Using apt to process

annotations 1070
Using the Visitor pattern with

apt 1075
Annotation-based unit testing1079

Using @Unit with generics 1090
No “suites” necessary 1091
Implementing @Unit 1092

Removing test code 1100
Summary 1102

Concurrency 1105

The many faces of

concurrency 1107

Faster execution1107
Improving code design 1110

Basic threading 1112

Defining tasks 1112
The Thread class 1114
Using Executors 1116
Producing return values from tasks1120
Sleeping1122
Priority 1123
Yielding 1125
Daemon threads1126
Coding variations 1131
Terminology 1138
Joining a thread1139
Creating responsive user interfaces1141
Thread groups1142
Catching exceptions...................1143

Sharing resources 1146

Improperly accessing resources 1146
Resolving shared resource

contention 1149
Atomicity and volatility 1156
Atomic classes1163
Critical sections 1165
Synchronizing on other objects . 1171
Thread local storage 1173

Terminating tasks 1175

The ornamental garden 1175
Terminating when blocked........ 1179
Interruption 1181
Checking for an interrupt 1190

Cooperation between tasks1193

wait() and notifyAll() 1194
notify() vs. notifyAll() 1200

Producers and consumers........ 1204
Producer-consumers and queues1211
Using pipes for I/O between tasks1217

Deadlock 1219
New library components .. 1225

CountDownLatch1226
CyclicBarrier 1228
DelayQueue 1231
PriorityBlockingQueue 1235
The greenhouse controller with

ScheduledExecutor 1238
Semaphore1242
Exchanger1246

Simulation....................... 1249

Bank teller simulation1249
The restaurant simulation 1255
Distributing work 1260

Performance tuning 1266

Comparing mutex technologies 1267
Lock-free containers 1277
Optimistic locking 1286
ReadWriteLocks 1288

Active objects 1291
Summary 1296

Further reading 1298

Graphical User Interfaces
 1299

Applets 1302
Swing basics 1302

A display framework 1306
Making a button 1306
Capturing an event 1307
Text areas 1310
Controlling layout 1312

BorderLayout 1313
FlowLayout 1314
GridLayout 1315
GridBagLayout 1315
Absolute positioning 1316

BoxLayout1316
The best approach?....................1316

The Swing event model 1317

Event and listener types 1318
Tracking multiple events 1324

A selection of Swing

components 1328

Buttons 1328
Icons ... 1331
Tool tips 1333
Text fields 1333
Borders 1336
A mini-editor 1337
Check boxes 1338
Radio buttons 1340
Combo boxes (drop-down lists) 1341
List boxes 1342
Tabbed panes 1344
Message boxes 1345
Menus 1348
Pop-up menus 1354
Drawing 1356
Dialog boxes 1360
File dialogs 1364
HTML on Swing components .. 1366
Sliders and progress bars 1367
Selecting look & feel 1369

JNLP and Java Web Start . 1371
Concurrency & Swing 1377

Long-running tasks 1378
Visual threading 1386

Visual programming and

JavaBeans 1389

What is a JavaBean? 1390
Extracting BeanInfo with the

Introspector 1393
A more sophisticated Bean 1399
JavaBeans and synchronization1403
Packaging a Bean 1407

More complex Bean support 1409
More to Beans 1410

Creating SWT applications1410

Installing SWT 1411
Hello, SWT 1412
Eliminating redundant code 1415
Menus .. 1417
Tabbed panes, buttons, and events1419
Graphics 1423
Concurrency in SWT 1425
SWT vs. Swing? 1427

Summary 1428

A: Supplements 1431

Thinking in C: Foundations

for Java 1431
Hands-On Java eSeminar 1431
On Java 8 1431

B: Resources 1433

Software 1433
Books 1433

Analysis & design 1434
My own list of books 1436

Index 1439

Creative Commons
Version

In 2017, after two years of work following many years of requests for a new

Java book, I released On Java 8 (only as an eBook, available at

www.OnJava8.com). At the time, this was the most current version of Java.

Although it has since been superseded by Java 9, that version contains very

little that affects the topics covered in On Java 8.

Thinking in Java 4th edition covers a much earlier version of Java: version 5,

with a bit of version 6. These versions are still valuable for people

programming for Android, which is stuck at Java 6 (however, the Kotlin

Language provides a much more modern way to program Android; see

Kotlinlang.org), or if their organization is still using Java 5/6. For their

benefit, I decided to release the ebook for Thinking in Java 4th edition with a

Creative Commons license.

Note that the print version of Thinking in Java, 4th edition continues to be

available through Pearson/Prentice Hall, and can be ordered through your

local bookstore or online store.

If you are not programming Android (or otherwise constrained to Java 5/6), I

strongly recommend On Java 8 instead, as that newer version of Java has

numerous features that make the language much more pleasant to use. Also, I

think the book benefits from the years of experience I’ve had since publishing

Thinking in Java 4th edition.

The license is the “Creative Commons Attribution-NonCommercial-NoDerivs

4.0,” which you can find described here:

https://creativecommons.org/licenses/by-nc-nd/4.0/

In brief, you can freely use and share this ebook, but you cannot sell it or

otherwise make a profit from it, and you cannot make derivative works from

this book.

Before releasing this version, I tuned it up a little. This doesn’t include any

important content changes or updates, but primarily includes things like

http://www.onjava8.com/

2 Thinking in Java Bruce Eckel

changing references from Sun Microsystems to Oracle, removing references

to projects I never completed (Thinking in Patterns with Java, Thinking in

Enterprise Java), and removing random footnotes and commentary about

things that are no longer relevant—when I happened to spot them. Because it

is an outdated technology, I removed the section on Flex programming. I also

changed references from Mindview.net to MindViewLLC.com.

This book will have release numbers: R1, R2, etc., in the file name so you can

tell whether you have the most recent version. You can download the latest

version of this ebook through www.MindViewLLC.com.

http://www.mindviewllc.com/

Preface 3

Preface
I originally approached Java as “just another
programming language,” which in many senses it is.

But as time passed and I studied it more deeply, I began to see that the

fundamental intent of this language was different from other languages I had

seen up to that point.

Programming is about managing complexity: the complexity of the problem

you want to solve, laid upon the complexity of the machine in which it is

solved. Because of this complexity, most of our programming projects fail.

And yet, of all the programming languages of which I am aware, almost none

have gone all out and decided that their main design goal would be to

conquer the complexity of developing and maintaining programs.1 Of course,

many language design decisions were made with complexity in mind, but at

some point there were always other issues that were considered essential to

be added into the mix. Inevitably, those other issues are what cause

programmers to eventually “hit the wall” with that language. For example,

C++ had to be backwards-compatible with C (to allow easy migration for C

programmers), as well as efficient. Those are both very useful goals and

account for much of the success of C++, but they also expose extra complexity

that prevents some projects from being finished (certainly, you can blame

programmers and management, but if a language can help by catching your

mistakes, why shouldn’t it?). As another example, Visual BASIC (VB) was tied

to BASIC, which wasn’t really designed to be an extensible language, so all the

extensions piled upon VB have produced some truly unmaintainable syntax.

Perl is backwards-compatible with awk, sed, grep, and other Unix tools it was

meant to replace, and as a result it is often accused of producing “write-only

code” (that is, after a while you can’t read it). On the other hand, C++, VB,

Perl, and other languages like Smalltalk had some of their design efforts

focused on the issue of complexity and as a result are remarkably successful

in solving certain types of problems.

1 However, I believe that the Python language comes closest to doing exactly that. See
www.Python.org.

4 Thinking in Java Bruce Eckel

What has impressed me most as I have come to understand Java is that

somewhere in the mix of the original design objectives, it seems that there

was a goal of reducing complexity for the programmer. As if to say, “We care

about reducing the time and difficulty of producing robust code.” In the early

days, this goal resulted in code that didn’t run very fast (although this has

improved over time), but it has indeed produced amazing reductions in

development time—half or less of the time that it takes to create an equivalent

C++ program. This result alone can save incredible amounts of time and

money, but Java doesn’t stop there. It goes on to wrap many of the complex

tasks that have become important, such as multithreading and network

programming, in language features or libraries that can at times make those

tasks easy. And finally, it tackles some really big complexity problems: cross-

platform programs, dynamic code changes, and even security, each of which

can fit on your complexity spectrum anywhere from “impediment” to “show-

stopper.” So despite the performance problems that we’ve seen, the promise

of Java is tremendous: It can make us significantly more productive

programmers.

In all ways—creating the programs, working in teams, building user

interfaces to communicate with the user, running the programs on different

types of machines, and easily writing programs that communicate across the

Internet—Java increases the communication bandwidth between people.

I think that the results of the communication revolution may not be seen

from the effects of moving large quantities of bits around. We shall see the

true revolution because we will all communicate with each other more easily:

one-on-one, but also in groups and as a planet. I’ve heard it suggested that

the next revolution is the formation of a kind of global mind that results from

enough people and enough interconnectedness. Java may or may not be the

tool that foments that revolution, but at least the possibility has made me feel

like I’m doing something meaningful by attempting to teach the language.

Java SE5 and SE6
This edition of the book benefits greatly from the improvements made to the

Java language in what Sun originally called JDK 1.5, and then later changed

to JDK5 or J2SE5, then finally they dropped the outdated “2” and changed it

to Java SE5. Many of the Java SE5 language changes were designed to

improve the experience of the programmer. As you shall see, the Java

Preface 5

language designers did not completely succeed at this task, but in general

they made large steps in the right direction.

One of the important goals of this edition is to completely absorb the

improvements of Java SE5/6, and to introduce and use them throughout this

book. This means that this edition takes the somewhat bold step of being

“Java SE5/6-only,” and much of the code in the book will not compile with

earlier versions of Java; the build system will complain and stop if you try.

However, I think the benefits are worth the risk.

If you need to work with a more recent version of Java, please refer to my

book On Java 8, published in 2017 and available at www.OnJava8.com.

Java SE6
This book was a monumental, time-consuming project, and before it was

published, Java SE6 (code-named mustang) appeared in beta form. Although

there were a few minor changes in Java SE6 that improved some of the

examples in the book, for the most part the focus of Java SE6 did not affect

the content of this book; the features were primarily speed improvements and

library features that were outside the purview of this text.

The cover indicates that this book is for “Java SE5/6,” which means “written

for Java SE5 and the very significant changes that version introduced into the

language, but is equally applicable to Java SE6.”

The 4th edition
The satisfaction of doing a new edition of a book is in getting things “right,”

according to what I have learned since the last edition came out. Often these

insights are in the nature of the saying “A learning experience is what you get

when you don’t get what you want,” and my opportunity is to fix something

embarrassing or simply tedious. Just as often, creating the next edition

produces fascinating new ideas, and the embarrassment is far outweighed by

the delight of discovery and the ability to express ideas in a better form than

what I have previously achieved.

There is also the challenge that whispers in the back of my brain, that of

making the book something that owners of previous editions will want to buy.

This presses me to improve, rewrite and reorganize everything that I can, to

make the book a new and valuable experience for dedicated readers.

http://www.onjava8.com/

6 Thinking in Java Bruce Eckel

Changes
The CD-ROM that has traditionally been packaged as part of this book is not

part of this edition. The essential part of that CD, the Thinking in C

multimedia seminar (created for MindView by Chuck Allison), is now

available as a downloadable Flash presentation from

www.MindViewLLC.com. The goal of that seminar is to prepare those who

are not familiar enough with C syntax to understand the material presented

in this book. Although two of the chapters in this book give decent

introductory syntax coverage, they may not be enough for people without an

adequate background, and Thinking in C is intended to help those people get

to the necessary level.

The Concurrency chapter (formerly called “Multithreading”) has been

completely rewritten to match the major changes in the Java SE5

concurrency libraries, but it still gives you a basic foundation in the core ideas

of concurrency. Without that core, it’s hard to understand more complex

issues of threading. I spent many months working on this, immersed in that

netherworld called “concurrency,” and in the end the chapter is something

that not only provides a basic foundation but also ventures into more

advanced territory.

There is a new chapter on every significant new Java SE5 language feature,

and the other new features have been woven into modifications made to the

existing material. Because of my continuing study of design patterns, more

patterns have been introduced throughout the book as well.

The book has undergone significant reorganization. Much of this has come

from the teaching process together with a realization that, perhaps, my

perception of what a “chapter” was could stand some rethought. I have

tended towards an unconsidered belief that a topic had to be “big enough” to

justify being a chapter. But especially while teaching design patterns, I find

that seminar attendees do best if I introduce a single pattern and then we

immediately do an exercise, even if it means I only speak for a brief time (I

discovered that this pace was also more enjoyable for me as a teacher). So in

this version of the book I’ve tried to break chapters up by topic, and not worry

about the resulting length of the chapters. I think it has been an

improvement.

I have also come to realize the importance of code testing. Without a built-in

test framework with tests that are run every time you do a build of your

http://www.mindviewllc.com/

Preface 7

system, you have no way of knowing if your code is reliable or not. To

accomplish this in the book, I created a test framework to display and

validate the output of each program. (The framework was written in Python;

you can find it in the downloadable code for this book at

www.MindViewLLC.com.) Testing is one of the fundamental skills that all

programmers should have in their basic toolkit.

In addition, I’ve gone over every single example in the book and asked myself,

“Why did I do it this way?” In most cases I have done some modification and

improvement, both to make the examples more consistent within themselves

and also to demonstrate what I consider to be best practices in Java coding

(at least, within the limitations of an introductory text). Many of the existing

examples have had very significant redesign and reimplementation.

Examples that no longer made sense to me were removed, and new examples

have been added.

Readers have made many, many wonderful comments about the first three

editions of this book, which has naturally been very pleasant for me.

However, every now and then, someone will have complaints, and for some

reason one complaint that comes up periodically is “The book is too big.” In

my mind it is faint damnation indeed if “too many pages” is your only gripe.

(One is reminded of the Emperor of Austria’s complaint about Mozart’s work:

“Too many notes!” Not that I am in any way trying to compare myself to

Mozart.) In addition, I can only assume that such a complaint comes from

someone who is yet to be acquainted with the vastness of the Java language

itself and has not seen the rest of the books on the subject. Despite this, one

of the things I have attempted to do in this edition is trim out the portions

that have become obsolete, or at least nonessential. In general, I’ve tried to go

over everything, remove what is no longer necessary, include changes, and

improve everything I could.

For those of you who still can’t stand the size of the book, I do apologize.

Believe it or not, I have worked hard to keep the size down.

Note on the cover design
The cover of Thinking in Java is inspired by the American Arts & Crafts

Movement that began near the turn of the century and reached its zenith

between 1900 and 1920. It began in England as a reaction to both the

machine production of the Industrial Revolution and the highly ornamental

style of the Victorian era. Arts & Crafts emphasized spare design, the forms of

8 Thinking in Java Bruce Eckel

nature as seen in the art nouveau movement, hand-crafting, and the

importance of the individual craftsperson, and yet it did not eschew the use of

modern tools. There are many echoes with the situation we have today: the

turn of the century, the evolution from the raw beginnings of the computer

revolution to something more refined and meaningful, and the emphasis on

software craftsmanship rather than just manufacturing code.

I see Java in this same way: as an attempt to elevate the programmer away

from an operating system mechanic and toward being a “software craftsman.”

Both the author and the book/cover designer (who have been friends since

childhood) find inspiration in this movement, and both own furniture, lamps,

and other pieces that are either original or inspired by this period.

The other theme in this cover suggests a collection box that a naturalist might

use to display the insect specimens that he or she has preserved. These

insects are objects that are placed within the box objects. The box objects are

themselves placed within the “cover object,” which illustrates the

fundamental concept of aggregation in object-oriented programming. Of

course, a programmer cannot help but make the association with “bugs,” and

here the bugs have been captured and presumably killed in a specimen jar,

and finally confined within a small display box, as if to imply Java’s ability to

find, display, and subdue bugs (which is truly one of its most powerful

attributes).

In this edition, I created the watercolor painting that you see as the cover

background.

Acknowledgements
First, thanks to associates who have worked with me to give seminars,

provide consulting, and develop teaching projects: Dave Bartlett, Bill

Venners, Chuck Allison, Jeremy Meyer, and Jamie King. I appreciate your

patience as I continue to try to develop the best model for independent folks

like us to work together.

Recently, no doubt because of the Internet, I have become associated with a

surprisingly large number of people who assist me in my endeavors, usually

working from their own home offices. In the past, I would have had to pay for

a pretty big office space to accommodate all these folks, but because of the

Net, FedEx, and the telephone, I’m able to benefit from their help without the

Preface 9

extra costs. In my attempts to learn to “play well with others,” you have all

been very helpful, and I hope to continue learning how to make my own work

better through the efforts of others. Paula Steuer has been invaluable in

taking over my haphazard business practices and making them sane (thanks

for prodding me when I don’t want to do something, Paula). Jonathan

Wilcox, Esq., has sifted through my corporate structure and turned over every

possible rock that might hide scorpions, and frog-marched us through the

process of putting everything straight, legally. Thanks for your care and

persistence. Sharlynn Cobaugh has made herself an expert in sound

processing and an essential part of creating the multimedia training

experiences, as well as tackling other problems. Thanks for your perseverance

when faced with intractable computer problems. The folks at Amaio in

Prague have helped me out with several projects. Daniel Will-Harris was the

original work-by-Internet inspiration, and he is of course fundamental to all

my graphic design solutions.

Over the years, through his conferences and workshops, Gerald Weinberg has

become my unofficial coach and mentor, for which I thank him.

Ervin Varga was exceptionally helpful with technical corrections on the 4th

edition—although other people helped on various chapters and examples,

Ervin was my primary technical reviewer for the book, and he also took on

the task of rewriting the solution guide for the 4th edition. Ervin found errors

and made improvements to the book that were invaluable additions to this

text. His thoroughness and attention to detail are amazing, and he’s far and

away the best technical reader I’ve ever had. Thanks, Ervin.

My weblog on Bill Venners’ www.Artima.com has been a source of assistance

when I’ve needed to bounce ideas around. Thanks to the readers that have

helped me clarify concepts by submitting comments, including James

Watson, Howard Lovatt, Michael Barker, and others, in particular those who

helped with generics.

Thanks to Mark Welsh for his continuing assistance.

Evan Cofsky continues to be very supportive by knowing off the top of his

head all the arcane details of setting up and maintaining Linux-based Web

servers, and keeping the MindView server tuned and secure.

A special thanks to my new friend, coffee, who generated nearly boundless

enthusiasm for this project. Camp4 Coffee in Crested Butte, Colorado, has

10 Thinking in Java Bruce Eckel

become the standard hangout when people have come up to take MindView

seminars, and during seminar breaks it is the best catering I’ve ever had.

Thanks to my buddy Al Smith for creating it and making it such a great place,

and for being such an interesting and entertaining part of the Crested Butte

experience. And to all the Camp4 barristas who so cheerfully dole out

beverages.

Thanks to the folks at Prentice Hall for continuing to give me what I want,

putting up with all my special requirements, and for going out of their way to

make things run smoothly for me.

Certain tools have proved invaluable during my development process and I

am very grateful to the creators every time I use these. Cygwin

(www.cygwin.com) has solved innumerable problems for me that Windows

can’t/won’t and I become more attached to it each day (if I only had this 15

years ago when my brain was still hard-wired with Gnu Emacs). IBM’s

Eclipse (www.eclipse.org) is a truly wonderful contribution to the

development community, and I expect to see great things from it as it

continues to evolve (how did IBM become hip? I must have missed a memo).

JetBrains IntelliJ Idea continues to forge creative new paths in development

tools.

I began using Enterprise Architect from Sparxsystems on this book, and it

has rapidly become my UML tool of choice. Marco Hunsicker’s Jalopy code

formatter (www.triemax.com) came in handy on numerous occasions, and

Marco was very helpful in configuring it to my particular needs. I’ve also

found Slava Pestov’s JEdit and plug-ins to be helpful at times

(www.jedit.org) and it’s quite a reasonable beginner’s editor for seminars.

And of course, if I don’t say it enough everywhere else, I use Python

(www.Python.org) constantly to solve problems, the brainchild of my buddy

Guido Van Rossum and the gang of goofy geniuses with whom I spent a few

great days sprinting (Tim Peters, I’ve now framed that mouse you borrowed,

officially named the “TimBotMouse”). You guys need to find healthier places

to eat lunch. (Also, thanks to the entire Python community, an amazing

bunch of people.)

Lots of people sent in corrections and I am indebted to them all, but

particular thanks go to (for the 1st edition): Kevin Raulerson (found tons of

great bugs), Bob Resendes (simply incredible), John Pinto, Joe Dante, Joe

Sharp (all three were fabulous), David Combs (many grammar and

Preface 11

clarification corrections), Dr. Robert Stephenson, John Cook, Franklin Chen,

Zev Griner, David Karr, Leander A. Stroschein, Steve Clark, Charles A. Lee,

Austin Maher, Dennis P. Roth, Roque Oliveira, Douglas Dunn, Dejan Ristic,

Neil Galarneau, David B. Malkovsky, Steve Wilkinson, and a host of others.

Prof. Ir. Marc Meurrens put in a great deal of effort to publicize and make the

electronic version of the 1st edition of the book available in Europe.

Thanks to those who helped me rewrite the examples to use the Swing library

(for the 2nd edition), and for other assistance: Jon Shvarts, Thomas Kirsch,

Rahim Adatia, Rajesh Jain, Ravi Manthena, Banu Rajamani, Jens Brandt,

Nitin Shivaram, Malcolm Davis, and everyone who expressed support.

In the 4th edition, Chris Grindstaff was very helpful during the development

of the SWT section.

Every time I think I understand concurrent programming, another door

opens and I’ve got a new mountain to climb. Thanks to Brian Goetz for

helping me through the obstacles in the new version of the Concurrency

chapter, and for finding all the bugs (I hope!).

It’s not that much of a surprise to me that understanding Delphi helped me

understand Java, since there are many concepts and language design

decisions in common. My Delphi friends provided assistance by helping me

gain insight into that marvelous programming environment. They are Marco

Cantu (another Italian—perhaps being steeped in Latin gives one aptitude for

programming languages?), Neil Rubenking (who used to do the

yoga/vegetarian/Zen thing until he discovered computers), and of course

Zack Urlocker (the original Delphi product manager), a long-time pal whom

I’ve traveled the world with. We’re all indebted to the brilliance of Anders

Hejlsberg, who continues to toil away at C# (which, as you’ll learn in this

book, was a major inspiration for Java SE5).

My friend Richard Hale Shaw’s insights and support have been very helpful

(and Kim’s, too). Richard and I spent many months giving seminars together

and trying to work out the perfect learning experience for the attendees.

The book design, cover design, and cover photo were created by my friend

Daniel Will-Harris, noted author and designer (www.Will-Harris.com), who

used to play with rub-on letters in junior high school while he awaited the

invention of computers and desktop publishing, and complained of me

mumbling over my algebra problems. However, I produced the camera-ready

12 Thinking in Java Bruce Eckel

pages myself, so the typesetting errors are mine. Microsoft® Word XP for

Windows was used to write the book and to create camera-ready pages in

Adobe Acrobat; the book was created directly from the Acrobat PDF files. As

a tribute to the electronic age, I happened to be overseas when I produced the

final versions of the 1st and 2nd editions of the book—the 1st edition was sent

from Cape Town, South Africa, and the 2nd edition was posted from Prague.

The 3rd and 4th came from Crested Butte, Colorado. The body typeface is

Georgia and the headlines are in Verdana. The cover typeface is ITC Rennie

Mackintosh.

A special thanks to all my teachers and all my students (who are my teachers

as well).

Molly the cat often sat in my lap while I worked on this edition, and thus

offered her own kind of warm, furry support.

The supporting cast of friends includes, but is not limited to: Patty Gast

(Masseuse extraordinaire), Andrew Binstock, Steve Sinofsky, JD Hildebrandt,

Tom Keffer, Brian McElhinney, Brinkley Barr, Bill Gates at Midnight

Engineering Magazine, Larry Constantine and Lucy Lockwood, Gene Wang,

Dave Mayer, David Intersimone, Chris and Laura Strand, the Almquists, Brad

Jerbic, Marilyn Cvitanic, Mark Mabry, the Robbins families, the Moelter

families (and the McMillans), Michael Wilk, Dave Stoner, the Cranstons,

Larry Fogg, Mike Sequeira, Gary Entsminger, Kevin and Sonda Donovan, Joe

Lordi, Dave and Brenda Bartlett, Patti Gast, Blake, Annette & Jade, the

Rentschlers, the Sudeks, Dick, Patty, and Lee Eckel, Lynn and Todd, and

their families. And of course, Mom and Dad.

 13

Introduction
“He gave man speech, and speech created thought, Which
is the measure of the Universe”—Prometheus Unbound,
Shelley

Human beings ... are very much at the mercy of the particular language

which has become the medium of expression for their society. It is quite

an illusion to imagine that one adjusts to reality essentially without the

use of language and that language is merely an incidental means of

solving specific problems of communication and reflection. The fact of

the matter is that the “real world” is to a large extent unconsciously built

up on the language habits of the group.

The Status of Linguistics as a Science, 1929, Edward Sapir

Like any human language, Java provides a way to express concepts. If

successful, this medium of expression will be significantly easier and more

flexible than the alternatives as problems grow larger and more complex.

You can’t look at Java as just a collection of features—some of the features

make no sense in isolation. You can use the sum of the parts only if you are

thinking about design, not simply coding. And to understand Java in this

way, you must understand the problems with the language and with

programming in general. This book discusses programming problems, why

they are problems, and the approach Java has taken to solve them. Thus, the

set of features that I explain in each chapter are based on the way I see a

particular type of problem being solved with the language. In this way I hope

to move you, a little at a time, to the point where the Java mindset becomes

your native tongue.

Throughout, I’ll be taking the attitude that you want to build a model in your

head that allows you to develop a deep understanding of the language; if you

encounter a puzzle, you’ll feed it to your model and deduce the answer.

14 Thinking in Java Bruce Eckel

Prerequisites
This book assumes that you have some programming familiarity: You

understand that a program is a collection of statements, the idea of a

subroutine/function/macro, control statements such as “if” and looping

constructs such as “while,” etc. However, you might have learned this in

many places, such as programming with a macro language or working with a

tool like Perl. As long as you’ve programmed to the point where you feel

comfortable with the basic ideas of programming, you’ll be able to work

through this book. Of course, the book will be easier for C programmers and

more so for C++ programmers, but don’t count yourself out if you’re not

experienced with those languages—however, come willing to work hard. Also,

the Thinking in C multimedia seminar that you can download from

www.MindViewLLC.com will bring you up to speed in the fundamentals

necessary to learn Java. However, I will be introducing the concepts of object-

oriented programming (OOP) and Java’s basic control mechanisms.

Although references may be made to C and C++ language features, these are

not intended to be insider comments, but instead to help all programmers

put Java in perspective with those languages, from which, after all, Java is

descended. I will attempt to make these references simple and to explain

anything that I think a non-C/C++ programmer would not be familiar with.

Learning Java
At about the same time that my first book, Using C++ (Osborne/McGraw-

Hill, 1989), came out, I began teaching that language. Teaching programming

ideas has become my profession; I’ve seen nodding heads, blank faces, and

puzzled expressions in audiences all over the world since 1987. As I began

giving in-house training with smaller groups of people, I discovered

something during the exercises. Even those people who were smiling and

nodding were confused about many issues. I found out, by creating and

chairing the C++ track at the Software Development Conference for a number

of years (and later creating and chairing the Java track), that I and other

speakers tended to give the typical audience too many topics too quickly. So

eventually, through both variety in the audience level and the way that I

presented the material, I would end up losing some portion of the audience.

Maybe it’s asking too much, but because I am one of those people resistant to

traditional lecturing (and for most people, I believe, such resistance results

from boredom), I wanted to try to keep everyone up to speed.

Introduction 15

The feedback I got from each seminar helped me change and refocus the

material until I think it works well as a teaching medium. But this book isn’t

just seminar notes; I tried to pack as much information as I could within

these pages, and structured it to draw you through into the next subject. More

than anything, the book is designed to serve the solitary reader who is

struggling with a new programming language.

Goals
Like my previous book, Thinking in C++, this book was designed with one

thing in mind: the way people learn a language. When I think of a chapter in

the book, I think in terms of what makes a good lesson during a seminar.

Seminar audience feedback helped me understand the difficult parts that

needed illumination. In the areas where I got ambitious and included too

many features all at once, I came to know—through the process of presenting

the material—that if you include a lot of new features, you need to explain

them all, and this easily compounds the student’s confusion.

Each chapter tries to teach a single feature, or a small group of associated

features, without relying on concepts that haven’t been introduced yet. That

way you can digest each piece in the context of your current knowledge before

moving on.

My goals in this book are to:

1. Present the material one simple step at a time so that you can

easily digest each idea before moving on. Carefully sequence the

presentation of features so that you’re exposed to a topic before

you see it in use. Of course, this isn’t always possible; in those

situations, a brief introductory description is given.

2. Use examples that are as simple and short as possible. This

sometimes prevents me from tackling “real world” problems, but

I’ve found that beginners are usually happier when they can

understand every detail of an example rather than being

impressed by the scope of the problem it solves. Also, there’s a

severe limit to the amount of code that can be absorbed in a

classroom situation. For this I will no doubt receive criticism for

using “toy examples,” but I’m willing to accept that in favor of

producing something pedagogically useful.

16 Thinking in Java Bruce Eckel

3. Give you what I think is important for you to understand about the

language, rather than everything that I know. I believe there is an

information importance hierarchy, and that there are some facts

that 95 percent of programmers will never need to know—details

that just confuse people and increase their perception of the

complexity of the language. To take an example from C, if you

memorize the operator precedence table (I never did), you can

write clever code. But if you need to think about it, it will also

confuse the reader/maintainer of that code. So forget about

precedence, and use parentheses when things aren’t clear.

4. Keep each section focused enough so that the lecture time—and

the time between exercise periods—is small. Not only does this

keep the audience’s minds more active and involved during a

hands-on seminar, but it gives the reader a greater sense of

accomplishment.

5. Provide you with a solid foundation so that you can understand

the issues well enough to move on to more difficult coursework

and books.

Teaching from this book
The original edition of this book evolved from a one-week seminar which was,

when Java was in its infancy, enough time to cover the language. As Java

grew and continued to encompass more and more features and libraries, I

stubbornly tried to teach it all in one week. At one point, a customer asked me

to teach “just the fundamentals,” and in doing so I discovered that trying to

cram everything into a single week had become painful for both myself and

for seminarians. Java was no longer a “simple” language that could be taught

in a week.

That experience and realization drove much of the reorganization of this

book, which is now designed to support a two-week seminar or a two-term

college course. The introductory portion ends with the Error Handling with

Exceptions chapter, but you may also want to supplement this with an

introduction to JDBC, Servlets and JSPs. This provides a foundation course,

and is the core of the Hands-On Java eSeminar available at

www.MindViewLLC.com. The remainder of the book comprises an

intermediate-level course.

Introduction 17

Contact Prentice-Hall at www.prenhallprofessional.com for information

about professor support materials for this book.

JDK HTML documentation
The Java language and libraries from Oracle (a free download from

http://java.oracle.com) come with documentation in electronic form,

readable using a Web browser. Many books published on Java have

duplicated this documentation. So you either already have it or you can

download it, and unless necessary, this book will not repeat that

documentation, because it’s usually much faster if you find the class

descriptions with your Web browser than if you look them up in a book (and

the online documentation is probably more up-to-date). You’ll simply be

referred to “the JDK documentation.” This book will provide extra

descriptions of the classes only when it’s necessary to supplement that

documentation so you can understand a particular example.

Exercises
I’ve discovered that simple exercises are exceptionally useful to complete a

student’s understanding during a seminar, so you’ll find a set at the end of

each chapter.

Most exercises are designed to be easy enough that they can be finished in a

reasonable amount of time in a classroom situation while the instructor

observes, making sure that all the students are absorbing the material. Some

are more challenging, but none present major challenges.

Solutions to selected exercises can be found in the electronic document The

Thinking in Java Annotated Solution Guide, available for sale from

www.MindViewLLC.com.

Foundations for Java
Another bonus with this edition is the free multimedia seminar that you can

download from www.MindViewLLC.com. This is the Thinking in C seminar

that gives you an introduction to the C syntax, operators, and functions that

Java syntax is based upon. In previous editions of the book this was in the

Foundations for Java CD that was packaged with the book, but now the

seminar may be freely downloaded.

18 Thinking in Java Bruce Eckel

I originally commissioned Chuck Allison to create Thinking in C as a

standalone product, but decided to include it with the 2nd edition of Thinking

in C++ and 2nd and 3rd editions of Thinking in Java because of the consistent

experience of having people come to seminars without an adequate

background in basic C syntax. The thinking apparently goes “I’m a smart

programmer and I don’t want to learn C, but rather C++ or Java, so I’ll just

skip C and go directly to C++/Java.” After arriving at the seminar, it slowly

dawns on folks that the prerequisite of understanding C syntax is there for a

very good reason.

Technologies have changed, and it made more sense to rework Thinking in C

as a downloadable Flash presentation rather than including it as a CD. By

providing this seminar online, I can ensure that everyone can begin with

adequate preparation.

The Thinking in C seminar also allows the book to appeal to a wider

audience. Even though the Operators and Controlling Execution chapters do

cover the fundamental parts of Java that come from C, the multimedia

seminar is a gentler introduction, and assumes even less about the student’s

programming background than does the book.

Source code
All the source code for this book is freely available by visiting the Web site

www.MindViewLLC.com. To make sure that you get the most current

version, this is the official code distribution site. You may distribute the code

in classroom and other educational situations.

The primary goal of the copyright is to ensure that the source of the code is

properly cited, and to prevent you from republishing the code in print media

without permission. (As long as the source is cited, using examples from the

book in most media is generally not a problem.)

The code is published with the same Creative Commons license as this book:

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-

ND 4.0). The full text of the license can be found here:

https://creativecommons.org/licenses/by-nc-nd/4.0/, as well as in the

Github repository where the code is stored.

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction 19

You may use the code in your projects and in the classroom (including your

presentation materials) as long as the copyright notice that appears in each

source file is retained.

Coding standards
In the text of this book, identifiers (methods, variables, and class names) are

set in bold. Most keywords are also set in bold, except for those keywords

that are used so much that the bolding can become tedious, such as “class.”

I use a particular coding style for the examples in this book. As much as

possible, this follows the style that Sun itself uses in virtually all of the code

you will find at its site (search the internet for “Java coding conventions” and

select the Oracle link), and seems to be supported by most Java development

environments. If you’ve read my other works, you’ll also notice that Oracle’s

coding style coincides with mine—this pleases me, although I had nothing

(that I know of) to do with it. The subject of formatting style is good for hours

of hot debate, so I’ll just say I’m not trying to dictate correct style via my

examples; I have my own motivation for using the style that I do. Because

Java is a free-form programming language, you can continue to use whatever

style you’re comfortable with. One solution to the coding style issue is to use a

tool like Jalopy (www.triemax.com), which assisted me in developing this

book, to change formatting to that which suits you.

The code files printed in the book are tested with an automated system, and

should all work without compiler errors.

This book focuses on and is tested with Java SE5/6. My book On Java 8,

published in 2017, covers a more recent version of Java and is available at

www.MindViewLLC.com.

 21

Introduction
to Objects

“We cut nature up, organize it into concepts, and ascribe
significances as we do, largely because we are parties to an
agreement that holds throughout our speech community
and is codified in the patterns of our language … we
cannot talk at all except by subscribing to the organization
and classification of data which the agreement decrees.”
Benjamin Lee Whorf (1897-1941)

The genesis of the computer revolution was in a machine. The genesis of our

programming languages thus tends to look like that machine.

But computers are not so much machines as they are mind amplification

tools (“bicycles for the mind,” as Steve Jobs is fond of saying) and a different

kind of expressive medium. As a result, the tools are beginning to look less

like machines and more like parts of our minds, and also like other forms of

expression such as writing, painting, sculpture, animation, and filmmaking.

Object-oriented programming (OOP) is part of this movement toward using

the computer as an expressive medium.

This chapter will introduce you to the basic concepts of OOP, including an

overview of development methods. This chapter, and this book, assumes that

you have some programming experience, although not necessarily in C. If you

think you need more preparation in programming before tackling this book,

you should work through the Thinking in C multimedia seminar,

downloadable from www.MindViewLLC.com.

This chapter is background and supplementary material. Many people do not

feel comfortable wading into object-oriented programming without

understanding the big picture first. Thus, there are many concepts that are

introduced here to give you a solid overview of OOP. However, other people

may not get the big picture concepts until they’ve seen some of the mechanics

22 Thinking in Java Bruce Eckel

first; these people may become bogged down and lost without some code to

get their hands on. If you’re part of this latter group and are eager to get to

the specifics of the language, feel free to jump past this chapter—skipping it at

this point will not prevent you from writing programs or learning the

language. However, you will want to come back here eventually to fill in your

knowledge so you can understand why objects are important and how to

design with them.

The progress of abstraction
All programming languages provide abstractions. It can be argued that the

complexity of the problems you’re able to solve is directly related to the kind

and quality of abstraction. By “kind” I mean, “What is it that you are

abstracting?” Assembly language is a small abstraction of the underlying

machine. Many so-called “imperative” languages that followed (such as

FORTRAN, BASIC, and C) were abstractions of assembly language. These

languages are big improvements over assembly language, but their primary

abstraction still requires you to think in terms of the structure of the

computer rather than the structure of the problem you are trying to solve.

The programmer must establish the association between the machine model

(in the “solution space,” which is the place where you’re implementing that

solution, such as a computer) and the model of the problem that is actually

being solved (in the “problem space,” which is the place where the problem

exists, such as a business). The effort required to perform this mapping, and

the fact that it is extrinsic to the programming language, produces programs

that are difficult to write and expensive to maintain, and as a side effect

created the entire “programming methods” industry.

The alternative to modeling the machine is to model the problem you’re

trying to solve. Early languages such as LISP and APL chose particular views

of the world (“All problems are ultimately lists” or “All problems are

algorithmic,” respectively). Prolog casts all problems into chains of decisions.

Languages have been created for constraint-based programming and for

programming exclusively by manipulating graphical symbols. (The latter

proved to be too restrictive.) Each of these approaches may be a good solution

to the particular class of problem they’re designed to solve, but when you step

outside of that domain they become awkward.

The object-oriented approach goes a step further by providing tools for the

programmer to represent elements in the problem space. This representation

Introduction to Objects 23

is general enough that the programmer is not constrained to any particular

type of problem. We refer to the elements in the problem space and their

representations in the solution space as “objects.” (You will also need other

objects that don’t have problem-space analogs.) The idea is that the program

is allowed to adapt itself to the lingo of the problem by adding new types of

objects, so when you read the code describing the solution, you’re reading

words that also express the problem. This is a more flexible and powerful

language abstraction than what we’ve had before.1 Thus, OOP allows you to

describe the problem in terms of the problem, rather than in terms of the

computer where the solution will run. There’s still a connection back to the

computer: Each object looks quite a bit like a little computer—it has a state,

and it has operations that you can ask it to perform. However, this doesn’t

seem like such a bad analogy to objects in the real world—they all have

characteristics and behaviors.

Alan Kay summarized five basic characteristics of Smalltalk, the first

successful object-oriented language and one of the languages upon which

Java is based. These characteristics represent a pure approach to object-

oriented programming:

1. Everything is an object. Think of an object as a fancy

variable; it stores data, but you can “make requests” to that object,

asking it to perform operations on itself. In theory, you can take

any conceptual component in the problem you’re trying to solve

(dogs, buildings, services, etc.) and represent it as an object in

your program.

2. A program is a bunch of objects telling each other

what to do by sending messages. To make a request of an

object, you “send a message” to that object. More concretely, you

can think of a message as a request to call a method that belongs to

a particular object.

3. Each object has its own memory made up of other

objects. Put another way, you create a new kind of object by

1 Some language designers have decided that object-oriented programming by itself is not
adequate to easily solve all programming problems, and advocate the combination of
various approaches into multiparadigm programming languages. See Multiparadigm
Programming in Leda by Timothy Budd (Addison-Wesley, 1995).

24 Thinking in Java Bruce Eckel

making a package containing existing objects. Thus, you can build

complexity into a program while hiding it behind the simplicity of

objects.

4. Every object has a type. Using the parlance, each object is

an instance of a class, in which “class” is synonymous with “type.”

The most important distinguishing characteristic of a class is

“What messages can you send to it?”

5. All objects of a particular type can receive the same

messages. This is actually a loaded statement, as you will see

later. Because an object of type “circle” is also an object of type

“shape,” a circle is guaranteed to accept shape messages. This

means you can write code that talks to shapes and automatically

handle anything that fits the description of a shape. This

substitutability is one of the powerful concepts in OOP.

Booch offers an even more succinct description of an object:

An object has state, behavior and identity.

This means that an object can have internal data (which gives it state),

methods (to produce behavior), and each object can be uniquely

distinguished from every other object—to put this in a concrete sense, each

object has a unique address in memory.2

An object has an interface
Aristotle was probably the first to begin a careful study of the concept of type;

he spoke of “the class of fishes and the class of birds.” The idea that all

objects, while being unique, are also part of a class of objects that have

characteristics and behaviors in common was used directly in the first object-

oriented language, Simula-67, with its fundamental keyword class that

introduces a new type into a program.

Simula, as its name implies, was created for developing simulations such as

the classic “bank teller problem.” In this, you have numerous tellers,

2 This is actually a bit restrictive, since objects can conceivably exist in different machines
and address spaces, and they can also be stored on disk. In these cases, the identity of the
object must be determined by something other than memory address.

Introduction to Objects 25

customers, accounts, transactions, and units of money—a lot of “objects.”

Objects that are identical except for their state during a program’s execution

are grouped together into “classes of objects,” and that’s where the keyword

class came from. Creating abstract data types (classes) is a fundamental

concept in object-oriented programming. Abstract data types work almost

exactly like built-in types: You can create variables of a type (called objects or

instances in object-oriented parlance) and manipulate those variables (called

sending messages or requests; you send a message and the object figures out

what to do with it). The members (elements) of each class share some

commonality: Every account has a balance, every teller can accept a deposit,

etc. At the same time, each member has its own state: Each account has a

different balance, each teller has a name. Thus, the tellers, customers,

accounts, transactions, etc., can each be represented with a unique entity in

the computer program. This entity is the object, and each object belongs to a

particular class that defines its characteristics and behaviors.

So, although what we really do in object-oriented programming is create new

data types, virtually all object-oriented programming languages use the

“class” keyword. When you see the word “type” think “class” and vice versa.3

Since a class describes a set of objects that have identical characteristics (data

elements) and behaviors (functionality), a class is really a data type because a

floating point number, for example, also has a set of characteristics and

behaviors. The difference is that a programmer defines a class to fit a

problem rather than being forced to use an existing data type that was

designed to represent a unit of storage in a machine. You extend the

programming language by adding new data types specific to your needs. The

programming system welcomes the new classes and gives them all the care

and type checking that it gives to built-in types.

The object-oriented approach is not limited to building simulations. Whether

or not you agree that any program is a simulation of the system you’re

designing, the use of OOP techniques can easily reduce a large set of

problems to a simple solution.

Once a class is established, you can make as many objects of that class as you

like, and then manipulate those objects as if they are the elements that exist

3 Some people make a distinction, stating that type determines the interface while class is
a particular implementation of that interface.

26 Thinking in Java Bruce Eckel

in the problem you are trying to solve. Indeed, one of the challenges of object-

oriented programming is to create a one-to-one mapping between the

elements in the problem space and objects in the solution space.

But how do you get an object to do useful work for you? There needs to be a

way to make a request of the object so that it will do something, such as

complete a transaction, draw something on the screen, or turn on a switch.

And each object can satisfy only certain requests. The requests you can make

of an object are defined by its interface, and the type is what determines the

interface. A simple example might be a representation of a light bulb:

Light

 on()
 off()
 brighten()
 dim()

Type Name

Interface

Light lt = new Light();

lt.on();

The interface determines the requests that you can make for a particular

object. However, there must be code somewhere to satisfy that request. This,

along with the hidden data, comprises the implementation. From a

procedural programming standpoint, it’s not that complicated. A type has a

method associated with each possible request, and when you make a

particular request to an object, that method is called. This process is usually

summarized by saying that you “send a message” (make a request) to an

object, and the object figures out what to do with that message (it executes

code).

Here, the name of the type/class is Light, the name of this particular Light

object is lt, and the requests that you can make of a Light object are to turn it

on, turn it off, make it brighter, or make it dimmer. You create a Light object

by defining a “reference” (lt) for that object and calling new to request a new

object of that type. To send a message to the object, you state the name of the

object and connect it to the message request with a period (dot). From the

standpoint of the user of a predefined class, that’s pretty much all there is to

programming with objects.

Introduction to Objects 27

The preceding diagram follows the format of the Unified Modeling Language

(UML). Each class is represented by a box, with the type name in the top

portion of the box, any data members that you care to describe in the middle

portion of the box, and the methods (the functions that belong to this object,

which receive any messages you send to that object) in the bottom portion of

the box. Often, only the name of the class and the public methods are shown

in UML design diagrams, so the middle portion is not shown, as in this case.

If you’re interested only in the class name, then the bottom portion doesn’t

need to be shown, either.

An object provides services
While you’re trying to develop or understand a program design, one of the

best ways to think about objects is as “service providers.” Your program itself

will provide services to the user, and it will accomplish this by using the

services offered by other objects. Your goal is to produce (or even better,

locate in existing code libraries) a set of objects that provide the ideal services

to solve your problem.

A way to start doing this is to ask, “If I could magically pull them out of a hat,

what objects would solve my problem right away?” For example, suppose you

are creating a bookkeeping program. You might imagine some objects that

contain pre-defined bookkeeping input screens, another set of objects that

perform bookkeeping calculations, and an object that handles printing of

checks and invoices on all different kinds of printers. Maybe some of these

objects already exist, and for the ones that don’t, what would they look like?

What services would those objects provide, and what objects would they need

to fulfill their obligations? If you keep doing this, you will eventually reach a

point where you can say either, “That object seems simple enough to sit down

and write” or “I’m sure that object must exist already.” This is a reasonable

way to decompose a problem into a set of objects.

Thinking of an object as a service provider has an additional benefit: It helps

to improve the cohesiveness of the object. High cohesion is a fundamental

quality of software design: It means that the various aspects of a software

component (such as an object, although this could also apply to a method or a

library of objects) “fit together” well. One problem people have when

designing objects is cramming too much functionality into one object. For

example, in your check printing module, you may decide you need an object

that knows all about formatting and printing. You’ll probably discover that

28 Thinking in Java Bruce Eckel

this is too much for one object, and that what you need is three or more

objects. One object might be a catalog of all the possible check layouts, which

can be queried for information about how to print a check. One object or set

of objects can be a generic printing interface that knows all about different

kinds of printers (but nothing about bookkeeping—this one is a candidate for

buying rather than writing yourself). And a third object could use the services

of the other two to accomplish the task. Thus, each object has a cohesive set

of services it offers. In a good object-oriented design, each object does one

thing well, but doesn’t try to do too much. This not only allows the discovery

of objects that might be purchased (the printer interface object), but it also

produces new objects that might be reused somewhere else (the catalog of

check layouts).

Treating objects as service providers is a great simplifying tool. This is useful

not only during the design process, but also when someone else is trying to

understand your code or reuse an object. If they can see the value of the

object based on what service it provides, it makes it much easier to fit it into

the design.

The hidden implementation
It is helpful to break up the playing field into class creators (those who create

new data types) and client programmers4 (the class consumers who use the

data types in their applications). The goal of the client programmer is to

collect a toolbox full of classes to use for rapid application development. The

goal of the class creator is to build a class that exposes only what’s necessary

to the client programmer and keeps everything else hidden. Why? Because if

it’s hidden, the client programmer can’t access it, which means that the class

creator can change the hidden portion at will without worrying about the

impact on anyone else. The hidden portion usually represents the tender

insides of an object that could easily be corrupted by a careless or uninformed

client programmer, so hiding the implementation reduces program bugs.

In any relationship it’s important to have boundaries that are respected by all

parties involved. When you create a library, you establish a relationship with

the client programmer, who is also a programmer, but one who is putting

together an application by using your library, possibly to build a bigger

4 I’m indebted to my friend Scott Meyers for this term.

Introduction to Objects 29

library. If all the members of a class are available to everyone, then the client

programmer can do anything with that class and there’s no way to enforce

rules. Even though you might really prefer that the client programmer not

directly manipulate some of the members of your class, without access

control there’s no way to prevent it. Everything’s naked to the world.

So the first reason for access control is to keep client programmers’ hands off

portions they shouldn’t touch—parts that are necessary for the internal

operation of the data type but not part of the interface that users need in

order to solve their particular problems. This is actually a service to client

programmers because they can easily see what’s important to them and what

they can ignore.

The second reason for access control is to allow the library designer to change

the internal workings of the class without worrying about how it will affect

the client programmer. For example, you might implement a particular class

in a simple fashion to ease development, and then later discover that you

need to rewrite it in order to make it run faster. If the interface and

implementation are clearly separated and protected, you can accomplish this

easily.

Java uses three explicit keywords to set the boundaries in a class: public,

private, and protected. These access specifiers determine who can use the

definitions that follow. public means the following element is available to

everyone. The private keyword, on the other hand, means that no one can

access that element except you, the creator of the type, inside methods of that

type. private is a brick wall between you and the client programmer.

Someone who tries to access a private member will get a compile-time error.

The protected keyword acts like private, with the exception that an

inheriting class has access to protected members, but not private

members. Inheritance will be introduced shortly.

Java also has a “default” access, which comes into play if you don’t use one of

the aforementioned specifiers. This is usually called package access because

classes can access the members of other classes in the same package (library

component), but outside of the package those same members appear to be

private.

30 Thinking in Java Bruce Eckel

Reusing the implementation
Once a class has been created and tested, it should (ideally) represent a useful

unit of code. It turns out that this reusability is not nearly so easy to achieve

as many would hope; it takes experience and insight to produce a reusable

object design. But once you have such a design, it begs to be reused. Code

reuse is one of the greatest advantages that object-oriented programming

languages provide.

The simplest way to reuse a class is to just use an object of that class directly,

but you can also place an object of that class inside a new class. We call this

“creating a member object.” Your new class can be made up of any number

and type of other objects, in any combination that you need to achieve the

functionality desired in your new class. Because you are composing a new

class from existing classes, this concept is called composition (if the

composition happens dynamically, it’s usually called aggregation).

Composition is often referred to as a “has-a” relationship, as in “A car has an

engine.”

Car Engine

(This UML diagram indicates composition with the filled diamond, which

states there is one car. I will typically use a simpler form: just a line, without

the diamond, to indicate an association.5)

Composition comes with a great deal of flexibility. The member objects of

your new class are typically private, making them inaccessible to the client

programmers who are using the class. This allows you to change those

members without disturbing existing client code. You can also change the

member objects at run time, to dynamically change the behavior of your

program. Inheritance, which is described next, does not have this flexibility

since the compiler must place compile-time restrictions on classes created

with inheritance.

5 This is usually enough detail for most diagrams, and you don’t need to get specific about
whether you’re using aggregation or composition.

Introduction to Objects 31

Because inheritance is so important in object-oriented programming, it is

often highly emphasized, and the new programmer can get the idea that

inheritance should be used everywhere. This can result in awkward and

overly complicated designs. Instead, you should first look to composition

when creating new classes, since it is simpler and more flexible. If you take

this approach, your designs will be cleaner. Once you’ve had some experience,

it will be reasonably obvious when you need inheritance.

Inheritance
By itself, the idea of an object is a convenient tool. It allows you to package

data and functionality together by concept, so you can represent an

appropriate problem-space idea rather than being forced to use the idioms of

the underlying machine. These concepts are expressed as fundamental units

in the programming language by using the class keyword.

It seems a pity, however, to go to all the trouble to create a class and then be

forced to create a brand new one that might have similar functionality. It’s

nicer if we can take the existing class, clone it, and then make additions and

modifications to the clone. This is effectively what you get with inheritance,

with the exception that if the original class (called the base class or

superclass or parent class) is changed, the modified “clone” (called the

derived class or inherited class or subclass or child class) also reflects those

changes.

Base

Derived

(The arrow in this UML diagram points from the derived class to the base

class. As you will see, there is commonly more than one derived class.)

A type does more than describe the constraints on a set of objects; it also has

a relationship with other types. Two types can have characteristics and

behaviors in common, but one type may contain more characteristics than

another and may also handle more messages (or handle them differently).

32 Thinking in Java Bruce Eckel

Inheritance expresses this similarity between types by using the concept of

base types and derived types. A base type contains all of the characteristics

and behaviors that are shared among the types derived from it. You create a

base type to represent the core of your ideas about some objects in your

system. From the base type, you derive other types to express the different

ways that this core can be realized.

For example, a trash-recycling machine sorts pieces of trash. The base type is

“trash,” and each piece of trash has a weight, a value, and so on, and can be

shredded, melted, or decomposed. From this, more specific types of trash are

derived that may have additional characteristics (a bottle has a color) or

behaviors (an aluminum can may be crushed, a steel can is magnetic). In

addition, some behaviors may be different (the value of paper depends on its

type and condition). Using inheritance, you can build a type hierarchy that

expresses the problem you’re trying to solve in terms of its types.

A second example is the classic “shape” example, perhaps used in a

computer-aided design system or game simulation. The base type is “shape,”

and each shape has a size, a color, a position, and so on. Each shape can be

drawn, erased, moved, colored, etc. From this, specific types of shapes are

derived (inherited)—circle, square, triangle, and so on—each of which may

have additional characteristics and behaviors. Certain shapes can be flipped,

for example. Some behaviors may be different, such as when you want to

calculate the area of a shape. The type hierarchy embodies both the

similarities and differences between the shapes.

Shape

 draw()
 erase()
 move()
 getColor()
 setColor()

Circle Square Triangle

Introduction to Objects 33

Casting the solution in the same terms as the problem is very useful because

you don’t need a lot of intermediate models to get from a description of the

problem to a description of the solution. With objects, the type hierarchy is

the primary model, so you go directly from the description of the system in

the real world to the description of the system in code. Indeed, one of the

difficulties people have with object-oriented design is that it’s too simple to

get from the beginning to the end. A mind trained to look for complex

solutions can initially be stumped by this simplicity.

When you inherit from an existing type, you create a new type. This new type

contains not only all the members of the existing type (although the private

ones are hidden away and inaccessible), but more importantly it duplicates

the interface of the base class. That is, all the messages you can send to

objects of the base class you can also send to objects of the derived class.

Since we know the type of a class by the messages we can send to it, this

means that the derived class is the same type as the base class. In the

previous example, “A circle is a shape.” This type equivalence via inheritance

is one of the fundamental gateways in understanding the meaning of object-

oriented programming.

Since both the base class and derived class have the same fundamental

interface, there must be some implementation to go along with that interface.

That is, there must be some code to execute when an object receives a

particular message. If you simply inherit a class and don’t do anything else,

the methods from the base-class interface come right along into the derived

class. That means objects of the derived class have not only the same type,

they also have the same behavior, which isn’t particularly interesting.

You have two ways to differentiate your new derived class from the original

base class. The first is quite straightforward: You simply add brand new

methods to the derived class. These new methods are not part of the base-

class interface. This means that the base class simply didn’t do as much as

you wanted it to, so you added more methods. This simple and primitive use

for inheritance is, at times, the perfect solution to your problem. However,

you should look closely for the possibility that your base class might also need

these additional methods. This process of discovery and iteration of your

design happens regularly in object-oriented programming.

34 Thinking in Java Bruce Eckel

Shape

 draw()
 erase()
 move()
 getColor()
 setColor()

Circle Square Triangle

 FlipVertical()
 FlipHorizontal()

Although inheritance may sometimes imply (especially in Java, where the

keyword for inheritance is extends) that you are going to add new methods

to the interface, that’s not necessarily true. The second and more important

way to differentiate your new class is to change the behavior of an existing

base-class method. This is referred to as overriding that method.

Shape

 draw()
 erase()
 move()
 getColor()
 setColor()

Triangle

 draw()
 erase()

Circle

 draw()
 erase()

Square

 draw()
 erase()

Introduction to Objects 35

To override a method, you simply create a new definition for the method in

the derived class. You’re saying, “I’m using the same interface method here,

but I want it to do something different for my new type.”

Is-a vs. is-like-a relationships
There’s a certain debate that can occur about inheritance: Should inheritance

override only base-class methods (and not add new methods that aren’t in

the base class)? This would mean that the derived class is exactly the same

type as the base class since it has exactly the same interface. As a result, you

can exactly substitute an object of the derived class for an object of the base

class. This can be thought of as pure substitution, and it’s often referred to as

the substitution principle. In a sense, this is the ideal way to treat inheritance.

We often refer to the relationship between the base class and derived classes

in this case as an is-a relationship, because you can say, “A circle is a shape.”

A test for inheritance is to determine whether you can state the is-a

relationship about the classes and have it make sense.

There are times when you must add new interface elements to a derived type,

thus extending the interface. The new type can still be substituted for the base

type, but the substitution isn’t perfect because your new methods are not

accessible from the base type. This can be described as an is-like-a

relationship (my term). The new type has the interface of the old type but it

also contains other methods, so you can’t really say it’s exactly the same. For

example, consider an air conditioner. Suppose your house is wired with all

the controls for cooling; that is, it has an interface that allows you to control

cooling. Imagine that the air conditioner breaks down and you replace it with

a heat pump, which can both heat and cool. The heat pump is-like-an air

conditioner, but it can do more. Because the control system of your house is

designed only to control cooling, it is restricted to communication with the

cooling part of the new object. The interface of the new object has been

extended, and the existing system doesn’t know about anything except the

original interface.

36 Thinking in Java Bruce Eckel

Cooling System

 cool()

Air Conditioner

 cool()

Heat Pump

 cool()
 heat()

Thermostat

 lowerTemperature()

Controls

Of course, once you see this design it becomes clear that the base class

“cooling system” is not general enough, and should be renamed to

“temperature control system” so that it can also include heating—at which

point the substitution principle will work. However, this diagram is an

example of what can happen with design in the real world.

When you see the substitution principle it’s easy to feel like this approach

(pure substitution) is the only way to do things, and in fact it is nice if your

design works out that way. But you’ll find that there are times when it’s

equally clear that you must add new methods to the interface of a derived

class. With inspection both cases should be reasonably obvious.

Interchangeable objects
with polymorphism

When dealing with type hierarchies, you often want to treat an object not as

the specific type that it is, but instead as its base type. This allows you to write

code that doesn’t depend on specific types. In the shape example, methods

manipulate generic shapes, unconcerned about whether they’re circles,

squares, triangles, or some shape that hasn’t even been defined yet. All

shapes can be drawn, erased, and moved, so these methods simply send a

message to a shape object; they don’t worry about how the object copes with

the message.

Such code is unaffected by the addition of new types, and adding new types is

the most common way to extend an object-oriented program to handle new

Introduction to Objects 37

situations. For example, you can derive a new subtype of shape called

pentagon without modifying the methods that deal only with generic shapes.

This ability to easily extend a design by deriving new subtypes is one of the

essential ways to encapsulate change. This greatly improves designs while

reducing the cost of software maintenance.

There’s a problem, however, with attempting to treat derived-type objects as

their generic base types (circles as shapes, bicycles as vehicles, cormorants as

birds, etc.). If a method is going to tell a generic shape to draw itself, or a

generic vehicle to steer, or a generic bird to move, the compiler cannot know

at compile time precisely what piece of code will be executed. That’s the

whole point—when the message is sent, the programmer doesn’t want to

know what piece of code will be executed; the draw method can be applied

equally to a circle, a square, or a triangle, and the object will execute the

proper code depending on its specific type.

If you don’t have to know what piece of code will be executed, then when you

add a new subtype, the code it executes can be different without requiring

changes to the method that calls it. Therefore, the compiler cannot know

precisely what piece of code is executed, so what does it do? For example, in

the following diagram the BirdController object just works with generic

Bird objects and does not know what exact type they are. This is convenient

from BirdController’s perspective because it doesn’t have to write special

code to determine the exact type of Bird it’s working with or that Bird’s

behavior. So how does it happen that, when move() is called while ignoring

the specific type of Bird, the right behavior will occur (a Goose walks, flies,

or swims, and a Penguin walks or swims)?

38 Thinking in Java Bruce Eckel

BirdController

relocate()

Bird

move()

Goose

move()

Penguin

move()

What happens when

move() is called?

The answer is the primary twist in object-oriented programming: The

compiler cannot make a function call in the traditional sense. The function

call generated by a non-OOP compiler causes what is called early binding, a

term you may not have heard before because you’ve never thought about it

any other way. It means the compiler generates a call to a specific function

name, and the runtime system resolves this call to the absolute address of the

code to be executed. In OOP, the program cannot determine the address of

the code until run time, so some other scheme is necessary when a message is

sent to a generic object.

To solve the problem, object-oriented languages use the concept of late

binding. When you send a message to an object, the code being called isn’t

determined until run time. The compiler does ensure that the method exists

and performs type checking on the arguments and return value, but it doesn’t

know the exact code to execute.

To perform late binding, Java uses a special bit of code in lieu of the absolute

call. This code calculates the address of the method body, using information

stored in the object (this process is covered in great detail in the

Polymorphism chapter). Thus, each object can behave differently according

to the contents of that special bit of code. When you send a message to an

object, the object actually does figure out what to do with that message.

In some languages you must explicitly state that you want a method to have

the flexibility of late-binding properties (C++ uses the virtual keyword to do

this). In these languages, by default, methods are not dynamically bound. In

Introduction to Objects 39

Java, dynamic binding is the default behavior and you don’t need to

remember to add any extra keywords in order to get polymorphism.

Consider the shape example. The family of classes (all based on the same

uniform interface) was diagrammed earlier in this chapter. To demonstrate

polymorphism, we want to write a single piece of code that ignores the

specific details of type and talks only to the base class. That code is decoupled

from type-specific information and thus is simpler to write and easier to

understand. And, if a new type—a Hexagon, for example—is added through

inheritance, the code you write will work just as well for the new type of

Shape as it did on the existing types. Thus, the program is extensible.

If you write a method in Java (as you will soon learn how to do):

void doSomething(Shape shape) {

 shape.erase();

 // ...

 shape.draw();

}

This method speaks to any Shape, so it is independent of the specific type of

object that it’s drawing and erasing. If some other part of the program uses

the doSomething() method:

Circle circle = new Circle();

Triangle triangle = new Triangle();

Line line = new Line();

doSomething(circle);

doSomething(triangle);

doSomething(line);

The calls to doSomething() automatically work correctly, regardless of the

exact type of the object.

This is a rather amazing trick. Consider the line:

doSomething(circle);

What’s happening here is that a Circle is being passed into a method that’s

expecting a Shape. Since a Circle is a Shape it can be treated as one by

doSomething(). That is, any message that doSomething() can send to a

Shape, a Circle can accept. So it is a completely safe and logical thing to do.

40 Thinking in Java Bruce Eckel

We call this process of treating a derived type as though it were its base type

upcasting. The name cast is used in the sense of casting into a mold and the

up comes from the way the inheritance diagram is typically arranged, with

the base type at the top and the derived classes fanning out downward. Thus,

casting to a base type is moving up the inheritance diagram: “upcasting.”

Shape

Circle Square Triangle

"Upcasting"

An object-oriented program contains some upcasting somewhere, because

that’s how you decouple yourself from knowing about the exact type you’re

working with. Look at the code in doSomething():

 shape.erase();

 // ...

 shape.draw();

Notice that it doesn’t say, “If you’re a Circle, do this, if you’re a Square, do

that, etc.” If you write that kind of code, which checks for all the possible

types that a Shape can actually be, it’s messy and you need to change it every

time you add a new kind of Shape. Here, you just say, “You’re a shape, I

know you can erase() and draw() yourself, do it, and take care of the

details correctly.”

What’s impressive about the code in doSomething() is that, somehow, the

right thing happens. Calling draw() for Circle causes different code to be

executed than when calling draw() for a Square or a Line, but when the

draw() message is sent to an anonymous Shape, the correct behavior

occurs based on the actual type of the Shape. This is amazing because, as

mentioned earlier, when the Java compiler is compiling the code for

doSomething(), it cannot know exactly what types it is dealing with. So

ordinarily, you’d expect it to end up calling the version of erase() and

draw() for the base class Shape, and not for the specific Circle, Square,

or Line. And yet the right thing happens because of polymorphism. The

Introduction to Objects 41

compiler and runtime system handle the details; all you need to know right

now is that it does happen, and more importantly, how to design with it.

When you send a message to an object, the object will do the right thing, even

when upcasting is involved.

The singly rooted hierarchy
One of the issues in OOP that has become especially prominent since the

introduction of C++ is whether all classes should ultimately be inherited from

a single base class. In Java (as with virtually all other OOP languages except

for C++) the answer is yes, and the name of this ultimate base class is simply

Object. It turns out that the benefits of the singly rooted hierarchy are many.

All objects in a singly rooted hierarchy have an interface in common, so they

are all ultimately the same fundamental type. The alternative (provided by

C++) is that you don’t know that everything is the same basic type. From a

backward-compatibility standpoint this fits the model of C better and can be

thought of as less restrictive, but when you want to do full-on object-oriented

programming you must then build your own hierarchy to provide the same

convenience that’s built into other OOP languages. And in any new class

library you acquire, some other incompatible interface will be used. It

requires effort (and possibly multiple inheritance) to work the new interface

into your design. Is the extra “flexibility” of C++ worth it? If you need it—if

you have a large investment in C—it’s quite valuable. If you’re starting from

scratch, other alternatives such as Java can often be more productive.

All objects in a singly rooted hierarchy can be guaranteed to have certain

functionality. You know you can perform certain basic operations on every

object in your system. All objects can easily be created on the heap, and

argument passing is greatly simplified.

A singly rooted hierarchy makes it much easier to implement a garbage

collector, which is one of the fundamental improvements of Java over C++.

And since information about the type of an object is guaranteed to be in all

objects, you’ll never end up with an object whose type you cannot determine.

This is especially important with system-level operations, such as exception

handling, and to allow greater flexibility in programming.

42 Thinking in Java Bruce Eckel

Containers
In general, you don’t know how many objects you’re going to need to solve a

particular problem, or how long they will last. You also don’t know how to

store those objects. How can you know how much space to create if that

information isn’t known until run time?

The solution to most problems in object-oriented design seems flippant: You

create another type of object. The new type of object that solves this

particular problem holds references to other objects. Of course, you can do

the same thing with an array, which is available in most languages. But this

new object, generally called a container (also called a collection, but the Java

library uses that term in a different sense so this book will use “container”),

will expand itself whenever necessary to accommodate everything you place

inside it. So you don’t need to know how many objects you’re going to hold in

a container. Just create a container object and let it take care of the details.

Fortunately, a good OOP language comes with a set of containers as part of

the package. In C++, it’s part of the Standard C++ Library and is often called

the Standard Template Library (STL). Smalltalk has a very complete set of

containers. Java also has numerous containers in its standard library. In

some libraries, one or two generic containers is considered good enough for

all needs, and in others (Java, for example) the library has different types of

containers for different needs: several different kinds of List classes (to hold

sequences), Maps (also known as associative arrays, to associate objects

with other objects), Sets (to hold one of each type of object), and more

components such as queues, trees, stacks, etc.

From a design standpoint, all you really want is a container that can be

manipulated to solve your problem. If a single type of container satisfied all of

your needs, there’d be no reason to have different kinds. There are two

reasons that you need a choice of containers. First, containers provide

different types of interfaces and external behavior. A stack has a different

interface and behavior than a queue, which is different from a set or a list.

One of these might provide a more flexible solution to your problem than the

other. Second, different containers have different efficiencies for certain

operations. For example, there are two basic types of List: ArrayList and

LinkedList. Both are simple sequences that can have identical interfaces

and external behaviors. But certain operations can have significantly different

costs. Randomly accessing elements in an ArrayList is a constant-time

Introduction to Objects 43

operation; it takes the same amount of time regardless of the element you

select. However, in a LinkedList it is expensive to move through the list to

randomly select an element, and it takes longer to find an element that is

farther down the list. On the other hand, if you want to insert an element in

the middle of a sequence, it’s cheaper in a LinkedList than in an ArrayList.

These and other operations have different efficiencies depending on the

underlying structure of the sequence. You might start building your program

with a LinkedList and, when tuning for performance, change to an

ArrayList. Because of the abstraction via the interface List, you can change

from one to the other with minimal impact on your code.

Parameterized types (generics)
Before Java SE5, containers held the one universal type in Java: Object. The

singly rooted hierarchy means that everything is an Object, so a container

that holds Objects can hold anything.6 This made containers easy to reuse.

To use such a container, you simply add object references to it and later ask

for them back. But, since the container held only Objects, when you added

an object reference into the container it was upcast to Object, thus losing its

character. When fetching it back, you got an Object reference, and not a

reference to the type that you put in. So how do you turn it back into

something that has the specific type of the object that you put into the

container?

Here, the cast is used again, but this time you’re not casting up the

inheritance hierarchy to a more general type. Instead, you cast down the

hierarchy to a more specific type. This manner of casting is called

downcasting. With upcasting, you know, for example, that a Circle is a type

of Shape so it’s safe to upcast, but you don’t know that an Object is

necessarily a Circle or a Shape so it’s hardly safe to downcast unless you

know exactly what you’re dealing with.

It’s not completely dangerous, however, because if you downcast to the wrong

thing you’ll get a runtime error called an exception, which will be described

shortly. When you fetch object references from a container, though, you must

6 They do not hold primitives, but Java SE5 autoboxing makes this restriction almost a
non-issue. This is discussed in detail later in the book.

44 Thinking in Java Bruce Eckel

have some way to remember exactly what they are so you can perform a

proper downcast.

Downcasting and the runtime checks require extra time for the running

program and extra effort from the programmer. Wouldn’t it make sense to

somehow create the container so that it knows the types that it holds,

eliminating the need for the downcast and a possible mistake? The solution is

called a parameterized type mechanism. A parameterized type is a class that

the compiler can automatically customize to work with particular types. For

example, with a parameterized container, the compiler could customize that

container so that it would accept only Shapes and fetch only Shapes.

One of the big changes in Java SE5 is the addition of parameterized types,

called generics in Java. You’ll recognize the use of generics by the angle

brackets with types inside; for example, an ArrayList that holds Shape can

be created like this:

ArrayList<Shape> shapes = new ArrayList<Shape>();

There have also been changes to many of the standard library components in

order to take advantage of generics. As you will see, generics have an impact

on much of the code in this book.

Object creation & lifetime
One critical issue when working with objects is the way they are created and

destroyed. Each object requires resources, most notably memory, in order to

exist. When an object is no longer needed it must be cleaned up so that these

resources are released for reuse. In simple programming situations the

question of how an object is cleaned up doesn’t seem too challenging: You

create the object, use it for as long as it’s needed, and then it should be

destroyed. However, it’s not hard to encounter situations that are more

complex.

Suppose, for example, you are designing a system to manage air traffic for an

airport. (The same model might also work for managing crates in a

warehouse, or a video rental system, or a kennel for boarding pets.) At first it

seems simple: Make a container to hold airplanes, then create a new airplane

and place it in the container for each airplane that enters the air-traffic-

control zone. For cleanup, simply clean up the appropriate airplane object

when a plane leaves the zone.

Introduction to Objects 45

But perhaps you have some other system to record data about the planes;

perhaps data that doesn’t require such immediate attention as the main

controller function. Maybe it’s a record of the flight plans of all the small

planes that leave the airport. So you have a second container of small planes,

and whenever you create a plane object you also put it in this second

container if it’s a small plane. Then some background process performs

operations on the objects in this container during idle moments.

Now the problem is more difficult: How can you possibly know when to

destroy the objects? When you’re done with the object, some other part of the

system might not be. This same problem can arise in a number of other

situations, and in programming systems (such as C++) in which you must

explicitly delete an object when you’re done with it this can become quite

complex.

Where is the data for an object and how is the lifetime of the object

controlled? C++ takes the approach that control of efficiency is the most

important issue, so it gives the programmer a choice. For maximum runtime

speed, the storage and lifetime can be determined while the program is being

written, by placing the objects on the stack (these are sometimes called

automatic or scoped variables) or in the static storage area. This places a

priority on the speed of storage allocation and release, and this control can be

very valuable in some situations. However, you sacrifice flexibility because

you must know the exact quantity, lifetime, and type of objects while you’re

writing the program. If you are trying to solve a more general problem such

as computer-aided design, warehouse management, or air-traffic control, this

is too restrictive.

The second approach is to create objects dynamically in a pool of memory

called the heap. In this approach, you don’t know until run time how many

objects you need, what their lifetime is, or what their exact type is. Those are

determined at the spur of the moment while the program is running. If you

need a new object, you simply make it on the heap at the point that you need

it. Because the storage is managed dynamically, at run time, the amount of

time required to allocate storage on the heap can be noticeably longer than

the time to create storage on the stack. Creating storage on the stack is often a

single assembly instruction to move the stack pointer down and another to

move it back up. The time to create heap storage depends on the design of the

storage mechanism.

46 Thinking in Java Bruce Eckel

The dynamic approach makes the generally logical assumption that objects

tend to be complicated, so the extra overhead of finding storage and releasing

that storage will not have an important impact on the creation of an object. In

addition, the greater flexibility is essential to solve the general programming

problem.

Java uses dynamic memory allocation, exclusively.7 Every time you want to

create an object, you use the new operator to build a dynamic instance of

that object.

There’s another issue, however, and that’s the lifetime of an object. With

languages that allow objects to be created on the stack, the compiler

determines how long the object lasts and can automatically destroy it.

However, if you create it on the heap the compiler has no knowledge of its

lifetime. In a language like C++, you must determine programmatically when

to destroy the object, which can lead to memory leaks if you don’t do it

correctly (and this is a common problem in C++ programs). Java provides a

feature called a garbage collector that automatically discovers when an

object is no longer in use and destroys it. A garbage collector is much more

convenient because it reduces the number of issues that you must track and

the code you must write. More importantly, the garbage collector provides a

much higher level of insurance against the insidious problem of memory

leaks, which has brought many a C++ project to its knees.

With Java, the garbage collector is designed to take care of the problem of

releasing the memory (although this doesn’t include other aspects of cleaning

up an object). The garbage collector “knows” when an object is no longer in

use, and it then automatically releases the memory for that object. This,

combined with the fact that all objects are inherited from the single root class

Object and that you can create objects only one way—on the heap—makes

the process of programming in Java much simpler than programming in

C++. You have far fewer decisions to make and hurdles to overcome.

7 Primitive types, which you’ll learn about later, are a special case.

Introduction to Objects 47

Exception handling: dealing with
errors

Ever since the beginning of programming languages, error handling has been

a particularly difficult issue. Because it’s so hard to design a good error-

handling scheme, many languages simply ignore the issue, passing the

problem on to library designers who come up with halfway measures that

work in many situations but that can easily be circumvented, generally by just

ignoring them. A major problem with most error-handling schemes is that

they rely on programmer vigilance in following an agreed-upon convention

that is not enforced by the language. If the programmer is not vigilant—often

the case if they are in a hurry—these schemes can easily be forgotten.

Exception handling wires error handling directly into the programming

language and sometimes even the operating system. An exception is an object

that is “thrown” from the site of the error and can be “caught” by an

appropriate exception handler designed to handle that particular type of

error. It’s as if exception handling is a different, parallel path of execution

that can be taken when things go wrong. And because it uses a separate

execution path, it doesn’t need to interfere with your normally executing

code. This tends to make that code simpler to write because you aren’t

constantly forced to check for errors. In addition, a thrown exception is

unlike an error value that’s returned from a method or a flag that’s set by a

method in order to indicate an error condition—these can be ignored. An

exception cannot be ignored, so it’s guaranteed to be dealt with at some point.

Finally, exceptions provide a way to reliably recover from a bad situation.

Instead of just exiting the program, you are often able to set things right and

restore execution, which produces much more robust programs.

Java’s exception handling stands out among programming languages,

because in Java, exception handling was wired in from the beginning and

you’re forced to use it. It is the single acceptable way to report errors. If you

don’t write your code to properly handle exceptions, you’ll get a compile-time

error message. This guaranteed consistency can sometimes make error

handling much easier.

It’s worth noting that exception handling isn’t an object-oriented feature,

although in object-oriented languages the exception is normally represented

by an object. Exception handling existed before object-oriented languages.

48 Thinking in Java Bruce Eckel

Concurrent programming
A fundamental concept in computer programming is the idea of handling

more than one task at a time. Many programming problems require that the

program stop what it’s doing, deal with some other problem, and then return

to the main process. The solution has been approached in many ways.

Initially, programmers with low-level knowledge of the machine wrote

interrupt service routines, and the suspension of the main process was

initiated through a hardware interrupt. Although this worked well, it was

difficult and non-portable, so it made moving a program to a new type of

machine slow and expensive.

Sometimes, interrupts are necessary for handling time-critical tasks, but

there’s a large class of problems in which you’re simply trying to partition the

problem into separately running pieces (tasks) so that the whole program can

be more responsive. Within a program, these separately running pieces are

called threads, and the general concept is called concurrency. A common

example of concurrency is the user interface. By using tasks, a user can press

a button and get a quick response rather than being forced to wait until the

program finishes its current task.

Ordinarily, tasks are just a way to allocate the time of a single processor. But

if the operating system supports multiple processors, each task can be

assigned to a different processor, and they can truly run in parallel. One of

the convenient features of concurrency at the language level is that the

programmer doesn’t need to worry about whether there are many processors

or just one. The program is logically divided into tasks, and if the machine

has more than one processor, then the program runs faster, without any

special adjustments.

All this makes concurrency sound pretty simple. There is a catch: shared

resources. If you have more than one task running that’s expecting to access

the same resource, you have a problem. For example, two processes can’t

simultaneously send information to a printer. To solve the problem,

resources that can be shared, such as the printer, must be locked while they

are being used. So a task locks a resource, completes its task, and then

releases the lock so that someone else can use the resource.

Java’s concurrency is built into the language, and Java SE5 has added

significant additional library support.

Introduction to Objects 49

Java and the Internet
If Java is, in fact, yet another computer programming language, you may

question why it is so important and why it is being promoted as a

revolutionary step in computer programming. The answer isn’t immediately

obvious if you’re coming from a traditional programming perspective.

Although Java is very useful for solving traditional standalone programming

problems, it is also important because it solves programming problems for

the World Wide Web.

What is the Web?
The Web can seem a bit of a mystery at first, with all this talk of “surfing,”

“presence,” and “home pages.” It’s helpful to step back and see what it really

is, but to do this you must understand client/server systems, another aspect

of computing that’s full of confusing issues.

Client/server computing

The primary idea of a client/server system is that you have a central

repository of information—some kind of data, usually in a database—that you

want to distribute on demand to some set of people or machines. A key to the

client/server concept is that the repository of information is centrally located

so that it can be changed and so that those changes will propagate out to the

information consumers. Taken together, the information repository, the

software that distributes the information, and the machine(s) where the

information and software reside are called “the server.” The software that

resides on the consumer machine, communicates with the server, fetches the

information, processes it, and then displays it on the consumer machine is

called the client.

The basic concept of client/server computing, then, is not so complicated.

The problems arise because you have a single server trying to serve many

clients at once. Generally, a database management system is involved, so the

designer “balances” the layout of data into tables for optimal use. In addition,

systems often allow a client to insert new information into a server. This

means you must ensure that one client’s new data doesn’t walk over another

client’s new data, or that data isn’t lost in the process of adding it to the

database (this is called transaction processing). As client software changes, it

must be built, debugged, and installed on the client machines, which turns

out to be more complicated and expensive than you might think. It’s

50 Thinking in Java Bruce Eckel

especially problematic to support multiple types of computers and operating

systems. Finally, there’s the all-important performance issue: You might have

hundreds of clients making requests of your server at any moment, so a small

delay can be critical. To minimize latency, programmers work hard to offload

processing tasks, often to the client machine, but sometimes to other

machines at the server site, using so-called middleware. (Middleware is also

used to improve maintainability.)

The simple idea of distributing information has so many layers of complexity

that the whole problem can seem hopelessly enigmatic. And yet it’s crucial:

Client/server computing accounts for roughly half of all programming

activities. It’s responsible for everything from taking orders and credit-card

transactions to the distribution of any kind of data—stock market, scientific,

government, you name it. What we’ve come up with in the past is individual

solutions to individual problems, inventing a new solution each time. These

were hard to create and hard to use, and the user had to learn a new interface

for each one. The entire client/server problem needed to be solved in a big

way.

The Web as a giant server

The Web is actually one giant client/server system. It’s a bit worse than that,

since you have all the servers and clients coexisting on a single network at

once. You don’t need to know that, because all you care about is connecting to

and interacting with one server at a time (even though you might be hopping

around the world in your search for the correct server).

Initially it was a simple one-way process. You made a request of a server and

it handed you a file, which your machine’s browser software (i.e., the client)

would interpret by formatting onto your local machine. But in short order

people began wanting to do more than just deliver pages from a server. They

wanted full client/server capability so that the client could feed information

back to the server, for example, to do database lookups on the server, to add

new information to the server, or to place an order (which requires special

security measures). These are the changes we’ve been seeing in the

development of the Web.

The Web browser was a big step forward: the concept that one piece of

information can be displayed on any type of computer without change.

However, the original browsers were still rather primitive and rapidly bogged

down by the demands placed on them. They weren’t particularly interactive,

Introduction to Objects 51

and tended to clog up both the server and the Internet because whenever you

needed to do something that required programming you had to send

information back to the server to be processed. It could take many seconds or

minutes to find out you had misspelled something in your request. Since the

browser was just a viewer it couldn’t perform even the simplest computing

tasks. (On the other hand, it was safe, because it couldn’t execute any

programs on your local machine that might contain bugs or viruses.)

To solve this problem, different approaches have been taken. To begin with,

graphics standards have been enhanced to allow better animation and video

within browsers. The remainder of the problem can be solved only by

incorporating the ability to run programs on the client end, under the

browser. This is called client-side programming.

Client-side programming
The Web’s initial server-browser design provided for interactive content, but

the interactivity was completely provided by the server. The server produced

static pages for the client browser, which would simply interpret and display

them. Basic HyperText Markup Language (HTML) contains simple

mechanisms for data gathering: text-entry boxes, check boxes, radio boxes,

lists and drop-down lists, as well as a button that could only be programmed

to reset the data on the form or “submit” the data on the form back to the

server. This submission passes through the Common Gateway Interface

(CGI) provided on all Web servers. The text within the submission tells CGI

what to do with it. The most common action is to run a program located on

the server in a directory that’s typically called “cgi-bin.” (If you watch the

address window at the top of your browser when you push a button on a Web

page, you can sometimes see “cgi-bin” within all the gobbledygook there.)

These programs can be written in most languages. Perl has been a common

choice because it is designed for text manipulation and is interpreted, so it

can be installed on any server regardless of processor or operating system.

However, Python (www.Python.org) has been making inroads because of its

greater power and simplicity.

Many powerful Web sites today are built strictly on CGI, and you can in fact

do nearly anything with CGI. However, Web sites built on CGI programs can

rapidly become overly complicated to maintain, and there is also the problem

of response time. The response of a CGI program depends on how much data

must be sent, as well as the load on both the server and the Internet. (On top

of this, starting a CGI program tends to be slow.) The initial designers of the

52 Thinking in Java Bruce Eckel

Web did not foresee how rapidly this bandwidth would be exhausted for the

kinds of applications people developed. For example, any sort of dynamic

graphing is nearly impossible to perform with consistency because a

Graphics Interchange Format (GIF) file must be created and moved from the

server to the client for each version of the graph. In addition, you’ve no doubt

experienced the process of data validation for a Web input form. You press

the submit button on a page; the data is shipped back to the server; the server

starts a CGI program that discovers an error, formats an HTML page

informing you of the error, and then sends the page back to you; you must

then back up a page and try again. Not only is this slow, it’s inelegant.

The solution is client-side programming. Most desktop computers that run

Web browsers are powerful engines capable of doing vast work, and with the

original static HTML approach they are sitting there, just idly waiting for the

server to dish up the next page. Client-side programming means that the Web

browser is harnessed to do whatever work it can, and the result for the user is

a much speedier and more interactive experience at your Web site.

The problem with discussions of client-side programming is that they aren’t

very different from discussions of programming in general. The parameters

are almost the same, but the platform is different; a Web browser is like a

limited operating system. In the end, you must still program, and this

accounts for the dizzying array of problems and solutions produced by client-

side programming. The rest of this section provides an overview of the issues

and approaches in client-side programming.

Plug-ins

One of the most significant steps forward in client-side programming is the

development of the plug-in. This is a way for a programmer to add new

functionality to the browser by downloading a piece of code that plugs itself

into the appropriate spot in the browser. It tells the browser, “From now on

you can perform this new activity.” (You need to download the plug-in only

once.) Some fast and powerful behavior is added to browsers via plug-ins, but

writing a plug-in is not a trivial task, and isn’t something you’d want to do as

part of the process of building a particular site. The value of the plug-in for

client-side programming is that it allows an expert programmer to develop

extensions and add those extensions to a browser without the permission of

the browser manufacturer. Thus, plug-ins provide a “back door” that allows

the creation of new client-side programming languages (although not all

languages are implemented as plug-ins).

Introduction to Objects 53

Scripting languages
Plug-ins resulted in the development of browser scripting languages. With a

scripting language, you embed the source code for your client-side program

directly into the HTML page, and the plug-in that interprets that language is

automatically activated while the HTML page is being displayed. Scripting

languages tend to be reasonably easy to understand and, because they are

simply text that is part of an HTML page, they load very quickly as part of the

single server hit required to procure that page. The trade-off is that your code

is exposed for everyone to see (and steal). Generally, however, you aren’t

doing amazingly sophisticated things with scripting languages, so this is not

too much of a hardship.

One scripting language that you can expect a Web browser to support without

a plug-in is JavaScript (this has only a passing resemblance to Java and you’ll

have to climb an additional learning curve to use it. It was named that way

just to grab some of Java’s marketing momentum). Unfortunately, most Web

browsers originally implemented JavaScript in a different way from the other

Web browsers, and even from other versions of themselves. The

standardization of JavaScript in the form of ECMAScript has helped, but it

has taken a long time for the various browsers to catch up (and it didn’t help

that Microsoft was pushing its own agenda in the form of VBScript, which

also had vague similarities to JavaScript). In general, you must program in a

kind of least-common-denominator form of JavaScript in order to be able to

run on all browsers. Dealing with errors and debugging JavaScript can only

be described as a mess. As proof of its difficulty, only recently has anyone

created a truly complex piece of JavaScript (Google, in GMail), and that

required excessive dedication and expertise.

This points out that the scripting languages used inside Web browsers are

really intended to solve specific types of problems, primarily the creation of

richer and more interactive graphical user interfaces (GUIs). However, a

scripting language might solve 80 percent of the problems encountered in

client-side programming. Your problems might very well fit completely

within that 80 percent, and since scripting languages can allow easier and

faster development, you should probably consider a scripting language before

looking at a more involved solution such as Java programming.

54 Thinking in Java Bruce Eckel

Java
If a scripting language can solve 80 percent of the client-side programming

problems, what about the other 20 percent—the “really hard stuff”? Java is a

popular solution for this. Not only is it a powerful programming language

built to be secure, cross-platform, and international, but Java is being

continually extended to provide language features and libraries that elegantly

handle problems that are difficult in traditional programming languages,

such as concurrency, database access, network programming, and distributed

computing. Java allows client-side programming via the applet and with

Java Web Start.

An applet is a mini-program that will run only under a Web browser. The

applet is downloaded automatically as part of a Web page (just as, for

example, a graphic is automatically downloaded). When the applet is

activated, it executes a program. This is part of its beauty—it provides you

with a way to automatically distribute the client software from the server at

the time the user needs the client software, and no sooner. The user gets the

latest version of the client software without fail and without difficult

reinstallation. Because of the way Java is designed, the programmer needs to

create only a single program, and that program automatically works with all

computers that have browsers with built-in Java interpreters. (This safely

includes the vast majority of machines.) Since Java is a full-fledged

programming language, you can do as much work as possible on the client

before and after making requests of the server. For example, you won’t need

to send a request form across the Internet to discover that you’ve gotten a

date or some other parameter wrong, and your client computer can quickly

do the work of plotting data instead of waiting for the server to make a plot

and ship a graphic image back to you. Not only do you get the immediate win

of speed and responsiveness, but the general network traffic and load on

servers can be reduced, preventing the entire Internet from slowing down.

Alternatives
To be honest, Java applets have not particularly lived up to their initial

fanfare. When Java first appeared, what everyone seemed most excited about

was applets, because these would finally allow serious client-side

programmability, to increase responsiveness and decrease bandwidth

requirements for Internet-based applications. People envisioned vast

possibilities.

Introduction to Objects 55

Indeed, you can find some very clever applets on the Web. But the

overwhelming move to applets never happened. The biggest problem was

probably that the 10 MB download necessary to install the Java Runtime

Environment (JRE) was too scary for the average user. The fact that

Microsoft chose not to include the JRE with Internet Explorer may have

sealed its fate. In any event, Java applets didn’t happen on a large scale.

Nonetheless, applets and Java Web Start applications are still valuable in

some situations. Anytime you have control over user machines, for example

within a corporation, it is reasonable to distribute and update client

applications using these technologies, and this can save considerable time,

effort, and money, especially if you need to do frequent updates.

.NET and C#

For a while, the main competitor to Java applets was Microsoft’s ActiveX,

although that required that the client be running Windows. Since then,

Microsoft has produced a full competitor to Java in the form of the .NET

platform and the C# programming language. The .NET platform is roughly

the same as the Java Virtual Machine (JVM; the software platform on which

Java programs execute) and Java libraries, and C# bears unmistakable

similarities to Java. This is certainly the best work that Microsoft has done in

the arena of programming languages and programming environments. Of

course, they had the considerable advantage of being able to see what worked

well and what didn’t work so well in Java, and build upon that, but build they

have. This is the first time since its inception that Java has had any real

competition. As a result, the Java designers took a hard look at C# and why

programmers might want to move to it, and have responded by making

fundamental improvements to Java in Java SE5.

Currently, the main vulnerability and important question concerning .NET is

whether Microsoft will allow it to be completely ported to other platforms.

They claim there’s no problem doing this, and the Mono project (www.go-

mono.com) has a partial implementation of .NET working on Linux, but until

the implementation is complete and Microsoft has not decided to squash any

part of it, .NET as a cross-platform solution is still a risky bet.

Internet vs. intranet
The Web is the most general solution to the client/server problem, so it

makes sense to use the same technology to solve a subset of the problem, in

particular the classic client/server problem within a company. With

56 Thinking in Java Bruce Eckel

traditional client/server approaches you have the problem of multiple types

of client computers, as well as the difficulty of installing new client software,

both of which are handily solved with Web browsers and client-side

programming. When Web technology is used for an information network that

is restricted to a particular company, it is referred to as an intranet. Intranets

provide much greater security than the Internet, since you can physically

control access to the servers within your company. In terms of training, it

seems that once people understand the general concept of a browser it’s

much easier for them to deal with differences in the way pages and applets

look, so the learning curve for new kinds of systems seems to be reduced.

The security problem brings us to one of the divisions that seems to be

automatically forming in the world of client-side programming. If your

program is running on the Internet, you don’t know what platform it will be

working under, and you want to be extra careful that you don’t disseminate

buggy code. You need something cross-platform and secure, like a scripting

language or Java.

If you’re running on an intranet, you might have a different set of constraints.

It’s not uncommon that your machines could all be Intel/Windows platforms.

On an intranet, you’re responsible for the quality of your own code and can

repair bugs when they’re discovered. In addition, you might already have a

body of legacy code that you’ve been using in a more traditional client/server

approach, whereby you must physically install client programs every time you

do an upgrade. The time wasted in installing upgrades is the most compelling

reason to move to browsers, because upgrades are invisible and automatic

(Java Web Start is also a solution to this problem). If you are involved in such

an intranet, the most sensible approach to take is the shortest path that

allows you to use your existing code base, rather than trying to recode your

programs in a new language.

When faced with this bewildering array of solutions to the client-side

programming problem, the best plan of attack is a cost-benefit analysis.

Consider the constraints of your problem and what would be the shortest

path to your solution. Since client-side programming is still programming,

it’s always a good idea to take the fastest development approach for your

particular situation. This is an aggressive stance to prepare for inevitable

encounters with the problems of program development.

Introduction to Objects 57

Server-side programming
This whole discussion has ignored the issue of server-side programming,

which is arguably where Java has had its greatest success. What happens

when you make a request of a server? Most of the time the request is simply

“Send me this file.” Your browser then interprets the file in some appropriate

fashion: as an HTML page, a graphic image, a Java applet, a script program,

etc.

A more complicated request to a server generally involves a database

transaction. A common scenario involves a request for a complex database

search, which the server then formats into an HTML page and sends to you as

the result. (Of course, if the client has more intelligence via Java or a scripting

language, the raw data can be sent and formatted at the client end, which will

be faster and less load on the server.) Or you might want to register your

name in a database when you join a group or place an order, which will

involve changes to that database. These database requests must be processed

via some code on the server side, which is generally referred to as server-side

programming. Traditionally, server-side programming has been performed

using Perl, Python, C++, or some other language to create CGI programs, but

more sophisticated systems have since appeared. These include Java-based

Web servers that allow you to perform all your server-side programming in

Java by writing what are called servlets. Servlets and their offspring, JSPs,

are two of the most compelling reasons that companies that develop Web

sites are moving to Java, especially because they eliminate the problems of

dealing with differently abled browsers.

Despite all this talk about Java on the Internet, it is a general-purpose

programming language that can solve the kinds of problems that you can

solve with other languages. Here, Java’s strength is not only in its portability,

but also its programmability, its robustness, its large, standard library and

the numerous third-party libraries that are available and that continue to be

developed.

Summary
You know what a procedural program looks like: data definitions and

function calls. To find the meaning of such a program, you must work at it,

looking through the function calls and low-level concepts to create a model in

your mind. This is the reason we need intermediate representations when

58 Thinking in Java Bruce Eckel

designing procedural programs—by themselves, these programs tend to be

confusing because the terms of expression are oriented more toward the

computer than to the problem you’re solving.

Because OOP adds many new concepts on top of what you find in a

procedural language, your natural assumption may be that the resulting Java

program will be far more complicated than the equivalent procedural

program. Here, you’ll be pleasantly surprised: A well-written Java program is

generally far simpler and much easier to understand than a procedural

program. What you’ll see are the definitions of the objects that represent

concepts in your problem space (rather than the issues of the computer

representation) and messages sent to those objects to represent the activities

in that space. One of the delights of object-oriented programming is that,

with a well-designed program, it’s easy to understand the code by reading it.

Usually, there’s a lot less code as well, because many of your problems will be

solved by reusing existing library code.

OOP and Java may not be for everyone. It’s important to evaluate your own

needs and decide whether Java will optimally satisfy those needs, or if you

might be better off with another programming system (including the one

you’re currently using). If you know that your needs will be very specialized

for the foreseeable future and if you have specific constraints that may not be

satisfied by Java, then you owe it to yourself to investigate the alternatives (in

particular, I recommend looking at Python; see www.Python.org). If you still

choose Java as your language, you’ll at least understand what the options

were and have a clear vision of why you took that direction.

 59

Everything
Is an Object

“If we spoke a different language, we would perceive a
somewhat different world.”
 Ludwig Wittgenstein (1889-1951)

Although it is based on C++, Java is more of a “pure”
object-oriented language.

Both C++ and Java are hybrid languages, but in Java the designers felt that

the hybridization was not as important as it was in C++. A hybrid language

allows multiple programming styles; the reason C++ is hybrid is to support

backward compatibility with the C language. Because C++ is a superset of the

C language, it includes many of that language’s undesirable features, which

can make some aspects of C++ overly complicated.

The Java language assumes that you want to do only object-oriented

programming. This means that before you can begin you must shift your

mindset into an object-oriented world (unless it’s already there). The benefit

of this initial effort is the ability to program in a language that is simpler to

learn and to use than many other OOP languages. In this chapter you’ll see

the basic components of a Java program and learn that (almost) everything in

Java is an object.

You manipulate objects
with references

Each programming language has its own means of manipulating elements in

memory. Sometimes the programmer must be constantly aware of what type

of manipulation is going on. Are you manipulating the element directly, or

are you dealing with some kind of indirect representation (a pointer in C or

C++) that must be treated with a special syntax?

60 Thinking in Java Bruce Eckel

All this is simplified in Java. You treat everything as an object, using a single

consistent syntax. Although you treat everything as an object, the identifier

you manipulate is actually a “reference” to an object.1 You might imagine a

television (the object) and a remote control (the reference). As long as you’re

holding this reference, you have a connection to the television, but when

someone says, “Change the channel” or “Lower the volume,” what you’re

manipulating is the reference, which in turn modifies the object. If you want

to move around the room and still control the television, you take the

remote/reference with you, not the television.

Also, the remote control can stand on its own, with no television. That is, just

because you have a reference doesn’t mean there’s necessarily an object

connected to it. So if you want to hold a word or sentence, you create a

String reference:

String s;

But here you’ve created only the reference, not an object. If you decided to

send a message to s at this point, you’ll get an error because s isn’t actually

attached to anything (there’s no television). A safer practice, then, is always to

initialize a reference when you create it:

String s = "asdf";

1 This can be a flashpoint. There are those who say, “Clearly, it’s a pointer,” but this
presumes an underlying implementation. Also, Java references are much more akin to
C++ references than to pointers in their syntax. In the 1st edition of this book, I chose to
invent a new term, “handle,” because C++ references and Java references have some
important differences. I was coming out of C++ and did not want to confuse the C++
programmers whom I assumed would be the largest audience for Java. In the 2nd edition, I
decided that “reference” was the more commonly used term, and that anyone changing
from C++ would have a lot more to cope with than the terminology of references, so they
might as well jump in with both feet. However, there are people who disagree even with
the term “reference.” I read in one book where it was “completely wrong to say that Java
supports pass by reference,” because Java object identifiers (according to that author) are
actually “object references.” And (he goes on) everything is actually pass by value. So
you’re not passing by reference, you’re “passing an object reference by value.” One could
argue for the precision of such convoluted explanations, but I think my approach
simplifies the understanding of the concept without hurting anything (well, the language
lawyers may claim that I’m lying to you, but I’ll say that I’m providing an appropriate
abstraction).

Everything Is an Object 61

However, this uses a special Java feature: Strings can be initialized with

quoted text. Normally, you must use a more general type of initialization for

objects.

You must create
all the objects

When you create a reference, you want to connect it with a new object. You do

so, in general, with the new operator. The keyword new says, “Make me a

new one of these objects.” So in the preceding example, you can say:

String s = new String("asdf");

Not only does this mean “Make me a new String,” but it also gives

information about how to make the String by supplying an initial character

string.

Of course, Java comes with a plethora of ready-made types in addition to

String. What’s more important is that you can create your own types. In fact,

creating new types is the fundamental activity in Java programming, and it’s

what you’ll be learning about in the rest of this book.

Where storage lives
It’s useful to visualize some aspects of how things are laid out while the

program is running—in particular how memory is arranged. There are five

different places to store data:

1. Registers. This is the fastest storage because it exists in a place

different from that of other storage: inside the processor.

However, the number of registers is severely limited, so registers

are allocated as they are needed. You don’t have direct control, nor

do you see any evidence in your programs that registers even exist

(C & C++, on the other hand, allow you to suggest register

allocation to the compiler).

2. The stack. This lives in the general random-access memory

(RAM) area, but has direct support from the processor via its stack

pointer. The stack pointer is moved down to create new memory

and moved up to release that memory. This is an extremely fast

and efficient way to allocate storage, second only to registers. The

62 Thinking in Java Bruce Eckel

Java system must know, while it is creating the program, the exact

lifetime of all the items that are stored on the stack. This

constraint places limits on the flexibility of your programs, so

while some Java storage exists on the stack—in particular, object

references—Java objects themselves are not placed on the stack.

3. The heap. This is a general-purpose pool of memory (also in the

RAM area) where all Java objects live. The nice thing about the

heap is that, unlike the stack, the compiler doesn’t need to know

how long that storage must stay on the heap. Thus, there’s a great

deal of flexibility in using storage on the heap. Whenever you need

an object, you simply write the code to create it by using new, and

the storage is allocated on the heap when that code is executed. Of

course there’s a price you pay for this flexibility: It may take more

time to allocate and clean up heap storage than stack storage (if

you even could create objects on the stack in Java, as you can in

C++).

4. Constant storage. Constant values are often placed directly in

the program code, which is safe since they can never change.

Sometimes constants are cordoned off by themselves so that they

can be optionally placed in read-only memory (ROM), in

embedded systems.2

5. Non-RAM storage. If data lives completely outside a program, it

can exist while the program is not running, outside the control of

the program. The two primary examples of this are streamed

objects, in which objects are turned into streams of bytes,

generally to be sent to another machine, and persistent objects, in

which the objects are placed on disk so they will hold their state

even when the program is terminated. The trick with these types of

storage is turning the objects into something that can exist on the

other medium, and yet can be resurrected into a regular RAM-

based object when necessary. Java provides support for

lightweight persistence, and mechanisms such as JDBC and

2 An example of this is the string pool. All literal strings and string-valued constant
expressions are interned automatically and put into special static storage.

Everything Is an Object 63

Hibernate provide more sophisticated support for storing and

retrieving object information in databases.

Special case: primitive types
One group of types, which you’ll use quite often in your programming, gets

special treatment. You can think of these as “primitive” types. The reason for

the special treatment is that to create an object with new—especially a small,

simple variable—isn’t very efficient, because new places objects on the heap.

For these types Java falls back on the approach taken by C and C++. That is,

instead of creating the variable by using new, an “automatic” variable is

created that is not a reference. The variable holds the value directly, and it’s

placed on the stack, so it’s much more efficient.

Java determines the size of each primitive type. These sizes don’t change

from one machine architecture to another as they do in most languages. This

size invariance is one reason Java programs are more portable than programs

in most other languages.

Primitive
type

Size Minimum Maximum Wrapper type

boolean — — — Boolean

char 16 bits Unicode 0 Unicode 216- 1 Character

byte 8 bits -128 +127 Byte

short 16 bits -215 +215-1 Short

int 32 bits -231 +231-1 Integer

long 64 bits -263 +263-1 Long

float 32 bits IEEE754 IEEE754 Float

double 64 bits IEEE754 IEEE754 Double

void — — — Void

All numeric types are signed, so don’t look for unsigned types.

The size of the boolean type is not explicitly specified; it is only defined to be

able to take the literal values true or false.

The “wrapper” classes for the primitive data types allow you to make a non-

primitive object on the heap to represent that primitive type. For example:

char c = 'x';

64 Thinking in Java Bruce Eckel

Character ch = new Character(c);

Or you could also use:

Character ch = new Character('x');

Java SE5 autoboxing will automatically convert from a primitive to a wrapper

type:

Character ch = 'x';

and back:

char c = ch;

The reasons for wrapping primitives will be shown in a later chapter.

High-precision numbers

Java includes two classes for performing high-precision arithmetic:

BigInteger and BigDecimal. Although these approximately fit into the

same category as the “wrapper” classes, neither one has a primitive analogue.

Both classes have methods that provide analogues for the operations that you

perform on primitive types. That is, you can do anything with a BigInteger

or BigDecimal that you can with an int or float, it’s just that you must use

method calls instead of operators. Also, since there’s more involved, the

operations will be slower. You’re exchanging speed for accuracy.

BigInteger supports arbitrary-precision integers. This means that you can

accurately represent integral values of any size without losing any

information during operations.

BigDecimal is for arbitrary-precision fixed-point numbers; you can use

these for accurate monetary calculations, for example.

Consult the JDK documentation for details about the constructors and

methods you can call for these two classes.

Arrays in Java
Virtually all programming languages support some kind of arrays. Using

arrays in C and C++ is perilous because those arrays are only blocks of

memory. If a program accesses the array outside of its memory block or uses

Everything Is an Object 65

the memory before initialization (common programming errors), there will

be unpredictable results.

One of the primary goals of Java is safety, so many of the problems that

plague programmers in C and C++ are not repeated in Java. A Java array is

guaranteed to be initialized and cannot be accessed outside of its range. The

range checking comes at the price of having a small amount of memory

overhead on each array as well as verifying the index at run time, but the

assumption is that the safety and increased productivity are worth the

expense (and Java can sometimes optimize these operations).

When you create an array of objects, you are really creating an array of

references, and each of those references is automatically initialized to a

special value with its own keyword: null. When Java sees null, it recognizes

that the reference in question isn’t pointing to an object. You must assign an

object to each reference before you use it, and if you try to use a reference

that’s still null, the problem will be reported at run time. Thus, typical array

errors are prevented in Java.

You can also create an array of primitives. Again, the compiler guarantees

initialization because it zeroes the memory for that array.

Arrays will be covered in detail in later chapters.

You never need to
destroy an object

In most programming languages, the concept of the lifetime of a variable

occupies a significant portion of the programming effort. How long does the

variable last? If you are supposed to destroy it, when should you? Confusion

over variable lifetimes can lead to a lot of bugs, and this section shows how

Java greatly simplifies the issue by doing all the cleanup work for you.

Scoping
Most procedural languages have the concept of scope. This determines both

the visibility and lifetime of the names defined within that scope. In C, C++,

and Java, scope is determined by the placement of curly braces {}. So for

example:

{

66 Thinking in Java Bruce Eckel

 int x = 12;

 // Only x available

 {

 int q = 96;

 // Both x & q available

 }

 // Only x available

 // q is "out of scope"

}

A variable defined within a scope is available only to the end of that scope.

Any text after a ‘//’ to the end of a line is a comment.

Indentation makes Java code easier to read. Since Java is a free-form

language, the extra spaces, tabs, and carriage returns do not affect the

resulting program.

You cannot do the following, even though it is legal in C and C++:

{

 int x = 12;

 {

 int x = 96; // Illegal

 }

}

The compiler will announce that the variable x has already been defined.

Thus the C and C++ ability to “hide” a variable in a larger scope is not

allowed, because the Java designers thought that it led to confusing

programs.

Scope of objects
Java objects do not have the same lifetimes as primitives. When you create a

Java object using new, it hangs around past the end of the scope. Thus if you

use:

{

 String s = new String("a string");

} // End of scope

the reference s vanishes at the end of the scope. However, the String object

that s was pointing to is still occupying memory. In this bit of code, there is

no way to access the object after the end of the scope, because the only

Everything Is an Object 67

reference to it is out of scope. In later chapters you’ll see how the reference to

the object can be passed around and duplicated during the course of a

program.

It turns out that because objects created with new stay around for as long as

you want them, a whole slew of C++ programming problems simply vanish in

Java. In C++ you must not only make sure that the objects stay around for as

long as you need them, you must also destroy the objects when you’re done

with them.

That brings up an interesting question. If Java leaves the objects lying

around, what keeps them from filling up memory and halting your program?

This is exactly the kind of problem that would occur in C++. This is where a

bit of magic happens. Java has a garbage collector, which looks at all the

objects that were created with new and figures out which ones are not being

referenced anymore. Then it releases the memory for those objects, so the

memory can be used for new objects. This means that you never need to

worry about reclaiming memory yourself. You simply create objects, and

when you no longer need them, they will go away by themselves. This

eliminates a certain class of programming problem: the so-called “memory

leak,” in which a programmer forgets to release memory.

Creating new data types: class
If everything is an object, what determines how a particular class of object

looks and behaves? Put another way, what establishes the type of an object?

You might expect there to be a keyword called “type,” and that certainly

would have made sense. Historically, however, most object-oriented

languages have used the keyword class to mean “I’m about to tell you what a

new type of object looks like.” The class keyword (which is so common that it

will not usually be bold-faced throughout this book) is followed by the name

of the new type. For example:

class ATypeName { /* Class body goes here */ }

This introduces a new type, although the class body consists only of a

comment (the stars and slashes and what is inside, which will be discussed

later in this chapter), so there is not too much that you can do with it.

However, you can create an object of this type using new:

ATypeName a = new ATypeName();

68 Thinking in Java Bruce Eckel

But you cannot tell it to do much of anything (that is, you cannot send it any

interesting messages) until you define some methods for it.

Fields and methods
When you define a class (and all you do in Java is define classes, make objects

of those classes, and send messages to those objects), you can put two types

of elements in your class: fields (sometimes called data members), and

methods (sometimes called member functions). A field is an object of any

type that you can talk to via its reference, or a primitive type. If it is a

reference to an object, you must initialize that reference to connect it to an

actual object (using new, as seen earlier).

Each object keeps its own storage for its fields; ordinary fields are not shared

among objects. Here is an example of a class with some fields:

class DataOnly {

 int i;

 double d;

 boolean b;

}

This class doesn’t do anything except hold data. But you can create an object

like this:

DataOnly data = new DataOnly();

You can assign values to the fields, but you must first know how to refer to a

member of an object. This is accomplished by stating the name of the object

reference, followed by a period (dot), followed by the name of the member

inside the object:

objectReference.member

For example:

data.i = 47;

data.d = 1.1;

data.b = false;

It is also possible that your object might contain other objects that contain

data you’d like to modify. For this, you just keep “connecting the dots.” For

example:

myPlane.leftTank.capacity = 100;

Everything Is an Object 69

The DataOnly class cannot do much of anything except hold data, because it

has no methods. To understand how those work, you must first understand

arguments and return values, which will be described shortly.

Default values for primitive members
When a primitive data type is a member of a class, it is guaranteed to get a

default value if you do not initialize it:

Primitive type Default

boolean false

char ‘\u0000’ (null)

byte (byte)0

short (short)0

int 0

long 0L

float 0.0f

double 0.0d

The default values are only what Java guarantees when the variable is used as

a member of a class. This ensures that member variables of primitive types

will always be initialized (something C++ doesn’t do), reducing a source of

bugs. However, this initial value may not be correct or even legal for the

program you are writing. It’s best to always explicitly initialize your variables.

This guarantee doesn’t apply to local variables—those that are not fields of a

class. Thus, if within a method definition you have:

int x;

Then x will get some arbitrary value (as in C and C++); it will not

automatically be initialized to zero. You are responsible for assigning an

appropriate value before you use x. If you forget, Java definitely improves on

C++: You get a compile-time error telling you the variable might not have

been initialized. (Many C++ compilers will warn you about uninitialized

variables, but in Java these are errors.)

70 Thinking in Java Bruce Eckel

Methods, arguments,
and return values

In many languages (like C and C++), the term function is used to describe a

named subroutine. The term that is more commonly used in Java is method,

as in “a way to do something.” If you want, you can continue thinking in

terms of functions. It’s really only a syntactic difference, but this book follows

the common Java usage of the term “method.”

Methods in Java determine the messages an object can receive. The

fundamental parts of a method are the name, the arguments, the return type,

and the body. Here is the basic form:

ReturnType methodName(/* Argument list */) {

 /* Method body */

}

The return type describes the value that comes back from the method after

you call it. The argument list gives the types and names for the information

that you want to pass into the method. The method name and argument list

(which is called the signature of the method) uniquely identify that method.

Methods in Java can be created only as part of a class. A method can be called

only for an object,3 and that object must be able to perform that method call.

If you try to call the wrong method for an object, you’ll get an error message

at compile time. You call a method for an object by naming the object

followed by a period (dot), followed by the name of the method and its

argument list, like this:

objectName.methodName(arg1, arg2, arg3);

For example, suppose you have a method f() that takes no arguments and

returns a value of type int. Then, if you have an object called a for which f()

can be called, you can say this:

int x = a.f();

The type of the return value must be compatible with the type of x.

3 static methods, which you’ll learn about soon, can be called for the class, without an
object.

Everything Is an Object 71

This act of calling a method is commonly referred to as sending a message to

an object. In the preceding example, the message is f() and the object is a.

Object-oriented programming is often summarized as simply “sending

messages to objects.”

The argument list
The method argument list specifies what information you pass into the

method. As you might guess, this information—like everything else in Java—

takes the form of objects. So, what you must specify in the argument list are

the types of the objects to pass in and the name to use for each one. As in any

situation in Java where you seem to be handing objects around, you are

actually passing references.4 The type of the reference must be correct,

however. If the argument is supposed to be a String, you must pass in a

String or the compiler will give an error.

Consider a method that takes a String as its argument. Here is the definition,

which must be placed within a class definition for it to be compiled:

int storage(String s) {

 return s.length() * 2;

}

This method tells you how many bytes are required to hold the information in

a particular String. (The size of each char in a String is 16 bits, or two

bytes, to support Unicode characters.) The argument is of type String and is

called s. Once s is passed into the method, you can treat it just like any other

object. (You can send messages to it.) Here, the length() method is called,

which is one of the methods for Strings; it returns the number of characters

in a string.

You can also see the use of the return keyword, which does two things. First,

it means “Leave the method, I’m done.” Second, if the method produces a

value, that value is placed right after the return statement. In this case, the

return value is produced by evaluating the expression s.length() * 2.

4 With the usual exception of the aforementioned “special” data types boolean, char,
byte, short, int, long, float, and double. In general, though, you pass objects, which
really means you pass references to objects.

72 Thinking in Java Bruce Eckel

You can return any type you want, but if you don’t want to return anything at

all, you do so by indicating that the method returns void. Here are some

examples:

boolean flag() { return true; }

double naturalLogBase() { return 2.718; }

void nothing() { return; }

void nothing2() {}

When the return type is void, then the return keyword is used only to exit

the method, and is therefore unnecessary when you reach the end of the

method. You can return from a method at any point, but if you’ve given a

non-void return type, then the compiler will force you (with error messages)

to return the appropriate type of value regardless of where you return.

At this point, it can look like a program is just a bunch of objects with

methods that take other objects as arguments and send messages to those

other objects. That is indeed much of what goes on, but in the following

chapter you’ll learn how to do the detailed low-level work by making

decisions within a method. For this chapter, sending messages will suffice.

Building a Java program
There are several other issues you must understand before seeing your first

Java program.

Name visibility
A problem in any programming language is the control of names. If you use a

name in one module of the program, and another programmer uses the same

name in another module, how do you distinguish one name from another and

prevent the two names from “clashing?” In C this is a particular problem

because a program is often an unmanageable sea of names. C++ classes (on

which Java classes are based) nest functions within classes so they cannot

clash with function names nested within other classes. However, C++ still

allows global data and global functions, so clashing is still possible. To solve

this problem, C++ introduced namespaces using additional keywords.

Java was able to avoid all of this by taking a fresh approach. To produce an

unambiguous name for a library, the Java creators want you to use your

Internet domain name in reverse since domain names are guaranteed to be

unique. Since my (original) domain name was MindView.net, my utility

Everything Is an Object 73

library of foibles would be named net.mindview.utility.foibles. After your

reversed domain name, the dots are intended to represent subdirectories.

In Java 1.0 and Java 1.1 the domain extensions com, edu, org, net, etc.,

were capitalized by convention, so the library would appear:

NET.mindview.utility.foibles. Partway through the development of Java

2, however, it was discovered that this caused problems, so now the entire

package name is lowercase.

This mechanism means that all of your files automatically live in their own

namespaces, and each class within a file must have a unique identifier—the

language prevents name clashes for you.

Using other components
Whenever you want to use a predefined class in your program, the compiler

must know how to locate it. Of course, the class might already exist in the

same source-code file that it’s being called from. In that case, you simply use

the class—even if the class doesn’t get defined until later in the file (Java

eliminates the so-called “forward referencing” problem).

What about a class that exists in some other file? You might think that the

compiler should be smart enough to simply go and find it, but there is a

problem. Imagine that you want to use a class with a particular name, but

more than one definition for that class exists (presumably these are different

definitions). Or worse, imagine that you’re writing a program, and as you’re

building it you add a new class to your library that conflicts with the name of

an existing class.

To solve this problem, you must eliminate all potential ambiguities. This is

accomplished by telling the Java compiler exactly what classes you want by

using the import keyword. import tells the compiler to bring in a package,

which is a library of classes. (In other languages, a library could consist of

functions and data as well as classes, but remember that all code in Java must

be written inside a class.)

Most of the time you’ll be using components from the standard Java libraries

that come with your compiler. With these, you don’t need to worry about

long, reversed domain names; you just say, for example:

import java.util.ArrayList;

74 Thinking in Java Bruce Eckel

to tell the compiler that you want to use Java’s ArrayList class. However,

util contains a number of classes, and you might want to use several of them

without declaring them all explicitly. This is easily accomplished by using ‘*’

to indicate a wild card:

import java.util.*;

It is more common to import a collection of classes in this manner than to

import classes individually.

The static keyword
Ordinarily, when you create a class you are describing how objects of that

class look and how they will behave. You don’t actually get an object until you

create one using new, and at that point storage is allocated and methods

become available.

There are two situations in which this approach is not sufficient. One is if you

want to have only a single piece of storage for a particular field, regardless of

how many objects of that class are created, or even if no objects are created.

The other is if you need a method that isn’t associated with any particular

object of this class. That is, you need a method that you can call even if no

objects are created.

You can achieve both of these effects with the static keyword. When you say

something is static, it means that particular field or method is not tied to any

particular object instance of that class. So even if you’ve never created an

object of that class you can call a static method or access a static field. With

ordinary, non-static fields and methods, you must create an object and use

that object to access the field or method, since non-static fields and methods

must know the particular object they are working with.5

Some object-oriented languages use the terms class data and class methods,

meaning that the data and methods exist only for the class as a whole, and

not for any particular objects of the class. Sometimes the Java literature uses

these terms too.

5 Of course, since static methods don’t need any objects to be created before they are
used, they cannot directly access non-static members or methods by simply calling those
other members without referring to a named object (since non-static members and
methods must be tied to a particular object).

Everything Is an Object 75

To make a field or method static, you simply place the keyword before the

definition. For example, the following produces a static field and initializes

it:

class StaticTest {

 static int i = 47;

}

Now even if you make two StaticTest objects, there will still be only one

piece of storage for StaticTest.i. Both objects will share the same i.

Consider:

StaticTest st1 = new StaticTest();

StaticTest st2 = new StaticTest();

At this point, both st1.i and st2.i have the same value of 47 since they refer

to the same piece of memory.

There are two ways to refer to a static variable. As the preceding example

indicates, you can name it via an object, by saying, for example, st2.i. You

can also refer to it directly through its class name, something you cannot do

with a non-static member.

StaticTest.i++;

The ++ operator adds one to the variable. At this point, both st1.i and st2.i

will have the value 48.

Using the class name is the preferred way to refer to a static variable. Not

only does it emphasize that variable’s static nature, but in some cases it gives

the compiler better opportunities for optimization.

Similar logic applies to static methods. You can refer to a static method

either through an object as you can with any method, or with the special

additional syntax ClassName.method(). You define a static method in a

similar way:

class Incrementable {

 static void increment() { StaticTest.i++; }

}

You can see that the Incrementable method increment() increments the

static data i using the ++ operator. You can call increment() in the typical

way, through an object:

76 Thinking in Java Bruce Eckel

Incrementable sf = new Incrementable();

sf.increment();

Or, because increment() is a static method, you can call it directly through

its class:

Incrementable.increment();

Although static, when applied to a field, definitely changes the way the data

is created (one for each class versus the non-static one for each object), when

applied to a method it’s not so dramatic. An important use of static for

methods is to allow you to call that method without creating an object. This is

essential, as you will see, in defining the main() method that is the entry

point for running an application.

Your first Java program
Finally, here’s the first complete program. It starts by printing a string, and

then the date, using the Date class from the Java standard library.

// HelloDate.java

import java.util.*;

public class HelloDate {

 public static void main(String[] args) {

 System.out.println("Hello, it's: ");

 System.out.println(new Date());

 }

}

At the beginning of each program file, you must place any necessary import

statements to bring in extra classes you’ll need for the code in that file. Note

that I say “extra.” That’s because there’s a certain library of classes that are

automatically brought into every Java file: java.lang. Start up your Web

browser and look at the documentation from Oracle. (If you haven’t

downloaded the JDK documentation from http://java.oracle.com, do so

now. Note that this documentation doesn’t come packed with the JDK; you

must do a separate download to get it.) If you look at the list of the packages,

you’ll see all the different class libraries that come with Java. Select

java.lang. This will bring up a list of all the classes that are part of that

library. Since java.lang is implicitly included in every Java code file, these

classes are automatically available. There’s no Date class listed in java.lang,

which means you must import another library to use that. If you don’t know

Everything Is an Object 77

the library where a particular class is, or if you want to see all of the classes,

you can select “Tree” in the Java documentation. Now you can find every

single class that comes with Java. Then you can use the browser’s “find”

function to find Date. When you do you’ll see it listed as java.util.Date,

which lets you know that it’s in the util library and that you must import

java.util.* in order to use Date.

If you go back to the beginning, select java.lang and then System, you’ll see

that the System class has several fields, and if you select out, you’ll discover

that it’s a static PrintStream object. Since it’s static, you don’t need to

create anything with new. The out object is always there, and you can just

use it. What you can do with this out object is determined by its type:

PrintStream. Conveniently, PrintStream is shown in the description as a

hyperlink, so if you click on that, you’ll see a list of all the methods you can

call for PrintStream. There are quite a few, and these will be covered later

in the book. For now all we’re interested in is println(), which in effect

means “Print what I’m giving you out to the console and end with a newline.”

Thus, in any Java program you write you can write something like this:

System.out.println("A String of things");

whenever you want to display information to the console.

The name of the class is the same as the name of the file. When you’re

creating a standalone program such as this one, one of the classes in the file

must have the same name as the file. (The compiler complains if you don’t do

this.) That class must contain a method called main() with this signature

and return type:

public static void main(String[] args) {

The public keyword means that the method is available to the outside world

(described in detail in the Access Control chapter). The argument to main()

is an array of String objects. The args won’t be used in this program, but the

Java compiler insists that they be there because they hold the arguments

from the command line.

The line that prints the date is quite interesting:

System.out.println(new Date());

The argument is a Date object that is being created just to send its value

(which is automatically converted to a String) to println(). As soon as this

78 Thinking in Java Bruce Eckel

statement is finished, that Date is unnecessary, and the garbage collector can

come along and get it anytime. We don’t need to worry about cleaning it up.

When you look at the JDK documentation from http://java.oracle.com, you

will see that System has many other methods that allow you to produce

interesting effects (one of Java’s most powerful assets is its large set of

standard libraries). For example:

//: object/ShowProperties.java

public class ShowProperties {

 public static void main(String[] args) {

 System.getProperties().list(System.out);

 System.out.println(System.getProperty("user.name"));

 System.out.println(

 System.getProperty("java.library.path"));

 }

} ///:~

The first line in main() displays all of the “properties” from the system

where you are running the program, so it gives you environment information.

The list() method sends the results to its argument, System.out. You will

see later in the book that you can send the results elsewhere, to a file, for

example. You can also ask for a specific property—in this case, the user name

and java.library.path. (The unusual comments at the beginning and end

will be explained a little later.)

Compiling and running
To compile and run this program, and all the other programs in this book,

you must first have a Java programming environment. There are a number of

third-party development environments, but in this book I will assume that

you are using the Java Developer’s Kit (JDK) from Oracle, which is free. If

you are using another development system, you will need to look in the

documentation for that system to determine how to compile and run

programs.

Get on the Internet and go to http://java.oracle.com. There you will find

information and links that will lead you through the process of downloading

and installing the JDK for your particular platform.

Once the JDK is installed, and you’ve set up your computer’s path

information so that it will find javac and java, download and unpack the

Everything Is an Object 79

source code for this book (you can find it at www.MindViewLLC.com). This

will create a subdirectory for each chapter in this book. Move to the

subdirectory named object and type:

javac HelloDate.java

This command should produce no response. If you get any kind of an error

message, it means you haven’t installed the JDK properly and you need to

investigate those problems.

On the other hand, if you just get your command prompt back, you can type:

java HelloDate

and you’ll get the message and the date as output.

This is the process you can use to compile and run each of the programs in

this book. However, you will see that the source code for this book also has a

file called build.xml in each chapter, and this contains “Ant” commands for

automatically building the files for that chapter. Once you have Ant installed

(from http://jakarta.apache.org/ant) you can just type ‘ant’ at the

command prompt to compile and run the programs in each chapter. If you

haven’t installed Ant yet, you can just type the javac and java commands by

hand.

Comments and embedded
documentation

There are two types of comments in Java. The first is the traditional C-style

comment that was inherited by C++. These comments begin with a /* and

continue, possibly across many lines, until a */. Note that many programmers

will begin each line of a continued comment with a *, so you’ll often see:

/* This is a comment

 * that continues

 * across lines

 */

Remember, however, that everything inside the /* and */ is ignored, so

there’s no difference in saying:

/* This is a comment that

continues across lines */

80 Thinking in Java Bruce Eckel

The second form of comment comes from C++. It is the single-line comment,

which starts with a // and continues until the end of the line. This type of

comment is convenient and commonly used because it’s easy. You don’t need

to hunt on the keyboard to find / and then * (instead, you just press the same

key twice), and you don’t need to close the comment. So you will often see:

// This is a one-line comment

Comment documentation
Possibly the biggest problem with documenting code has been maintaining

that documentation. If the documentation and the code are separate, it

becomes tedious to change the documentation every time you change the

code. The solution seems simple: Link the code to the documentation. The

easiest way to do this is to put everything in the same file. To complete the

picture, however, you need a special comment syntax to mark the

documentation and a tool to extract those comments and put them in a useful

form. This is what Java has done.

The tool to extract the comments is called Javadoc, and it is part of the JDK

installation. It uses some of the technology from the Java compiler to look for

special comment tags that you put in your programs. It not only extracts the

information marked by these tags, but it also pulls out the class name or

method name that adjoins the comment. This way you can get away with the

minimal amount of work to generate decent program documentation.

The output of Javadoc is an HTML file that you can view with your Web

browser. Thus, Javadoc allows you to create and maintain a single source file

and automatically generate useful documentation. Because of Javadoc, you

have a straightforward standard for creating documentation, so you can

expect or even demand documentation with all Java libraries.

In addition, you can write your own Javadoc handlers, called doclets, if you

want to perform special operations on the information processed by Javadoc

(to produce output in a different format, for example).

What follows is only an introduction and overview of the basics of Javadoc. A

thorough description can be found in the JDK documentation. When you

unpack the documentation, look in the “tooldocs” subdirectory (or follow the

“tooldocs” link).

Everything Is an Object 81

Syntax
All of the Javadoc commands occur only within /** comments. The

comments end with */ as usual. There are two primary ways to use Javadoc:

Embed HTML or use “doc tags.” Standalone doc tags are commands that

start with an ‘@’ and are placed at the beginning of a comment line. (A

leading ‘*’, however, is ignored.) Inline doc tags can appear anywhere within

a Javadoc comment and also start with an ‘@’ but are surrounded by curly

braces.

There are three “types” of comment documentation, which correspond to the

element the comment precedes: class, field, or method. That is, a class

comment appears right before the definition of a class, a field comment

appears right in front of the definition of a field, and a method comment

appears right in front of the definition of a method. As a simple example:

//: object/Documentation1.java

/** A class comment */

public class Documentation1 {

 /** A field comment */

 public int i;

 /** A method comment */

 public void f() {}

} ///:~

Note that Javadoc will process comment documentation for only public and

protected members. Comments for private and package-access members

(see the Access Control chapter) are ignored, and you’ll see no output.

(However, you can use the -private flag to include private members as

well.) This makes sense, since only public and protected members are

available outside the file, which is the client programmer’s perspective.

The output for the preceding code is an HTML file that has the same standard

format as all the rest of the Java documentation, so users will be comfortable

with the format and can easily navigate your classes. It’s worth entering the

preceding code, sending it through Javadoc, and viewing the resulting HTML

file to see the results.

82 Thinking in Java Bruce Eckel

Embedded HTML
Javadoc passes HTML commands through to the generated HTML

document. This allows you full use of HTML; however, the primary motive is

to let you format code, such as:

//: object/Documentation2.java

/**

* <pre>

* System.out.println(new Date());

* </pre>

*/

public class Documentation2 {}

///:~

You can also use HTML just as you would in any other Web document to

format the regular text in your descriptions:

//: object/Documentation3.java

/**

* You can even insert a list:

*

* Item one

* Item two

* Item three

*

*/

public class Documentation3 {}

///:~

Note that within the documentation comment, asterisks at the beginning of a

line are thrown away by Javadoc, along with leading spaces. Javadoc

reformats everything so that it conforms to the standard documentation

appearance. Don’t use headings such as <h1> or <hr> as embedded HTML,

because Javadoc inserts its own headings and yours will interfere with them.

All types of comment documentation—class, field, and method—can support

embedded HTML.

Some example tags
Here are some of the Javadoc tags available for code documentation. Before

trying to do anything serious using Javadoc, you should consult the Javadoc

Everything Is an Object 83

reference in the JDK documentation to learn all the different ways that you

can use Javadoc.

@see
This tag allows you to refer to the documentation in other classes. Javadoc

will generate HTML with the @see tags hyperlinked to the other

documentation. The forms are:

@see classname

@see fully-qualified-classname

@see fully-qualified-classname#method-name

Each one adds a hyperlinked “See Also” entry to the generated

documentation. Javadoc will not check the hyperlinks you give it to make

sure they are valid.

{@link package.class#member label}

Very similar to @see, except that it can be used inline and uses the label as

the hyperlink text rather than “See Also.”

{@docRoot}

Produces the relative path to the documentation root directory. Useful for

explicit hyperlinking to pages in the documentation tree.

{@inheritDoc}
Inherits the documentation from the nearest base class of this class into the

current doc comment.

@version

This is of the form:

@version version-information

in which version-information is any significant information you see fit to

include. When the -version flag is placed on the Javadoc command line, the

version information will be called out specially in the generated HTML

documentation.

@author

This is of the form:

84 Thinking in Java Bruce Eckel

@author author-information

in which author-information is, presumably, your name, but it could also

include your email address or any other appropriate information. When the

-author flag is placed on the Javadoc command line, the author information

will be called out specially in the generated HTML documentation.

You can have multiple author tags for a list of authors, but they must be

placed consecutively. All the author information will be lumped together into

a single paragraph in the generated HTML.

@since
This tag allows you to indicate the version of this code that began using a

particular feature. You’ll see it appearing in the HTML Java documentation to

indicate what version of the JDK is used.

@param

This is used for method documentation, and is of the form:

@param parameter-name description

in which parameter-name is the identifier in the method parameter list,

and description is text that can continue on subsequent lines. The

description is considered finished when a new documentation tag is

encountered. You can have any number of these, presumably one for each

parameter.

@return

This is used for method documentation, and looks like this:

@return description

in which description gives you the meaning of the return value. It can

continue on subsequent lines.

@throws
Exceptions will be demonstrated in the Error Handling with Exceptions

chapter. Briefly, they are objects that can be “thrown” out of a method if that

method fails. Although only one exception object can emerge when you call a

method, a particular method might produce any number of different types of

exceptions, all of which need descriptions. So the form for the exception tag

is:

Everything Is an Object 85

@throws fully-qualified-class-name description

in which fully-qualified-class-name gives an unambiguous name of an

exception class that’s defined somewhere, and description (which can

continue on subsequent lines) tells you why this particular type of exception

can emerge from the method call.

@deprecated
This is used to indicate features that were superseded by an improved

feature. The deprecated tag is a suggestion that you no longer use this

particular feature, since sometime in the future it is likely to be removed. A

method that is marked @deprecated causes the compiler to issue a warning

if it is used. In Java SE5, the @deprecated Javadoc tag has been superseded

by the @Deprecated annotation (you’ll learn about these in the

Annotations chapter).

Documentation example
 Here is the first Java program again, this time with documentation

comments added:

//: object/HelloDate.java

import java.util.*;

/** The first Thinking in Java example program.

 * Displays a string and today's date.

 * @author Bruce Eckel

 * @author www.MindViewLLC.com

 * @version 4.0

*/

public class HelloDate {

 /** Entry point to class & application.

 * @param args array of string arguments

 * @throws exceptions No exceptions thrown

 */

 public static void main(String[] args) {

 System.out.println("Hello, it's: ");

 System.out.println(new Date());

 }

} /* Output: (55% match)

Hello, it's:

Wed Oct 05 14:39:36 MDT 2005

*///:~

86 Thinking in Java Bruce Eckel

The first line of the file uses my own technique of putting a ‘//:’ as a special

marker for the comment line containing the source file name. That line

contains the path information to the file (object indicates this chapter)

followed by the file name. The last line also finishes with a comment, and this

one (‘///:~’) indicates the end of the source code listing, which allows it to be

automatically updated into the text of this book after being checked with a

compiler and executed.

The /* Output: tag indicates the beginning of the output that will be

generated by this file. In this form, it can be automatically tested to verify its

accuracy. In this case, the (55% match) indicates to the testing system that

the output will be fairly different from one run to the next so it should only

expect a 55 percent correlation with the output shown here. Most examples in

this book that produce output will contain the output in this commented

form, so you can see the output and know that it is correct.

Coding style
The style described in the Code Conventions for the Java Programming

Language6 is to capitalize the first letter of a class name. If the class name

consists of several words, they are run together (that is, you don’t use

underscores to separate the names), and the first letter of each embedded

word is capitalized, such as:

class AllTheColorsOfTheRainbow { // ...

This is sometimes called “camel-casing.” For almost everything else—

methods, fields (member variables), and object reference names—the

accepted style is just as it is for classes except that the first letter of the

identifier is lowercase. For example:

class AllTheColorsOfTheRainbow {

 int anIntegerRepresentingColors;

 void changeTheHueOfTheColor(int newHue) {

 // ...

 }

 // ...

6 http://www.oracle.com/technetwork/java/codeconventions-150003.pdf. To preserve
space in this book and seminar presentations, not all of these guidelines could be followed,
but you’ll see that the style I use here matches the Java standard as much as possible.

Everything Is an Object 87

}

The user must also type all these long names, so be merciful.

The Java code you will see in the Oracle libraries also follows the placement

of open-and-close curly braces that you see used in this book.

Summary
The goal of this chapter is just enough Java to understand how to write a

simple program. You’ve also gotten an overview of the language and some of

its basic ideas. However, the examples so far have all been of the form “Do

this, then do that, then do something else.” The next two chapters will

introduce the basic operators used in Java programming, and then show you

how to control the flow of your program.

Exercises
Normally, exercises will be distributed throughout the chapters, but in this

chapter you were learning how to write basic programs so all the exercises

were delayed until the end.

The number in parentheses after each exercise number is an indicator of how

difficult the exercise is, in a ranking from 1-10.

Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for sale from www.MindViewLLC.com.

Exercise 1: (2) Create a class containing an int and a char that are not
initialized, and print their values to verify that Java performs default
initialization.

Exercise 2: (1) Following the HelloDate.java example in this chapter,
create a “hello, world” program that simply displays that statement. You need
only a single method in your class (the “main” one that gets executed when
the program starts). Remember to make it static and to include the
argument list, even though you don’t use the argument list. Compile the
program with javac and run it using java. If you are using a different
development environment than the JDK, learn how to compile and run
programs in that environment.

Exercise 3: (1) Find the code fragments involving ATypeName and turn
them into a program that compiles and runs.

88 Thinking in Java Bruce Eckel

Exercise 4: (1) Turn the DataOnly code fragments into a program that
compiles and runs.

Exercise 5: (1) Modify the previous exercise so that the values of the data
in DataOnly are assigned to and printed in main().

Exercise 6: (2) Write a program that includes and calls the storage()
method defined as a code fragment in this chapter.

Exercise 7: (1) Turn the Incrementable code fragments into a working
program.

Exercise 8: (3) Write a program that demonstrates that, no matter how
many objects you create of a particular class, there is only one instance of a
particular static field in that class.

Exercise 9: (2) Write a program that demonstrates that autoboxing works
for all the primitive types and their wrappers.

Exercise 10: (2) Write a program that prints three arguments taken from
the command line. To do this, you’ll need to index into the command-line
array of Strings.

Exercise 11: (1) Turn the AllTheColorsOfTheRainbow example into
a program that compiles and runs.

Exercise 12: (2) Find the code for the second version of
HelloDate.java, which is the simple comment documentation example.
Execute Javadoc on the file and view the results with your Web browser.

Exercise 13: (1) Run Documentation1.java, Documentation2.java,
and Documentation3.java through Javadoc. Verify the resulting
documentation with your Web browser.

Exercise 14: (1) Add an HTML list of items to the documentation in the
previous exercise.

Exercise 15: (1) Take the program in Exercise 2 and add comment
documentation to it. Extract this comment documentation into an HTML file
using Javadoc and view it with your Web browser.

Exercise 16: (1) In the Initialization & Cleanup chapter, locate the
Overloading.java example and add Javadoc documentation. Extract this
comment documentation into an HTML file using Javadoc and view it with
your Web browser.

 89

Operators
At the lowest level, data in Java is manipulated using
operators.

Because Java was inherited from C++, most of these operators will be

familiar to C and C++ programmers. Java has also added some

improvements and simplifications.

If you’re familiar with C or C++ syntax, you can skim through this chapter

and the next, looking for places where Java is different from those languages.

However, if you find yourself floundering a bit in these two chapters, make

sure you go through the multimedia seminar Thinking in C, freely

downloadable from www.MindViewLLC.com. It contains audio lectures,

slides, exercises, and solutions specifically designed to bring you up to speed

with the fundamentals necessary to learn Java.

Simpler print statements
In the previous chapter, you were introduced to the Java print statement:

System.out.println("Rather a lot to type");

You may observe that this is not only a lot to type (and thus many redundant

tendon hits), but also rather noisy to read. Most languages before and after

Java have taken a much simpler approach to such a commonly used

statement.

The Access Control chapter introduces the concept of the static import that

was added to Java SE5, and creates a tiny library to simplify writing print

statements. However, you don’t need to know those details in order to begin

using that library. We can rewrite the program from the last chapter using

this new library:

//: operators/HelloDate.java

import java.util.*;

import static net.mindview.util.Print.*;

public class HelloDate {

90 Thinking in Java Bruce Eckel

 public static void main(String[] args) {

 print("Hello, it's: ");

 print(new Date());

 }

} /* Output: (55% match)

Hello, it's:

Wed Oct 05 14:39:05 MDT 2005

*///:~

The results are much cleaner. Notice the insertion of the static keyword in

the second import statement.

In order to use this library, you must download this book’s code package from

www.MindViewLLC.com. Unzip the code tree and add the root directory of

that code tree to your computer’s CLASSPATH environment variable. (You’ll

eventually get a full introduction to the classpath, but you might as well get

used to struggling with it early. Alas, it is one of the more common battles you

will have with Java.)

Although the use of net.mindview.util.Print nicely simplifies most code, it

is not justifiable everywhere. If there are only a small number of print

statements in a program, I forego the import and write out the full

System.out.println().

Exercise 1: (1) Write a program that uses the “short” and normal form of
print statement.

Using Java operators
An operator takes one or more arguments and produces a new value. The

arguments are in a different form than ordinary method calls, but the effect is

the same. Addition and unary plus (+), subtraction and unary minus (-),

multiplication (*), division (/), and assignment (=) all work much the same in

any programming language.

All operators produce a value from their operands. In addition, some

operators change the value of an operand. This is called a side effect. The

most common use for operators that modify their operands is to generate the

side effect, but you should keep in mind that the value produced is available

for your use, just as in operators without side effects.

Operators 91

Almost all operators work only with primitives. The exceptions are ‘=’, ‘==’

and ‘!=’, which work with all objects (and are a point of confusion for

objects). In addition, the String class supports ‘+’ and ‘+=’.

Precedence
Operator precedence defines how an expression evaluates when several

operators are present. Java has specific rules that determine the order of

evaluation. The easiest one to remember is that multiplication and division

happen before addition and subtraction. Programmers often forget the other

precedence rules, so you should use parentheses to make the order of

evaluation explicit. For example, look at statements (1) and (2):

//: operators/Precedence.java

public class Precedence {

 public static void main(String[] args) {

 int x = 1, y = 2, z = 3;

 int a = x + y - 2/2 + z; // (1)

 int b = x + (y - 2)/(2 + z); // (2)

 System.out.println("a = " + a + " b = " + b);

 }

} /* Output:

a = 5 b = 1

*///:~

These statements look roughly the same, but from the output you can see that

they have very different meanings which depend on the use of parentheses.

Notice that the System.out.println() statement involves the ‘+’ operator.

In this context, ‘+’ means “string concatenation” and, if necessary, “string

conversion.” When the compiler sees a String followed by a ‘+’ followed by a

non-String, it attempts to convert the non-String into a String. As you can

see from the output, it successfully converts from int into String for a and b.

Assignment
Assignment is performed with the operator =. It means “Take the value of the

right-hand side (often called the rvalue) and copy it into the left-hand side

(often called the lvalue).” An rvalue is any constant, variable, or expression

that produces a value, but an lvalue must be a distinct, named variable. (That

92 Thinking in Java Bruce Eckel

is, there must be a physical space to store the value.) For instance, you can

assign a constant value to a variable:

a = 4;

but you cannot assign anything to a constant value—it cannot be an lvalue.

(You can’t say 4 = a;.)

Assignment of primitives is quite straightforward. Since the primitive holds

the actual value and not a reference to an object, when you assign primitives,

you copy the contents from one place to another. For example, if you say a =

b for primitives, then the contents of b are copied into a. If you then go on to

modify a, b is naturally unaffected by this modification. As a programmer,

this is what you can expect for most situations.

When you assign objects, however, things change. Whenever you manipulate

an object, what you’re manipulating is the reference, so when you assign

“from one object to another,” you’re actually copying a reference from one

place to another. This means that if you say c = d for objects, you end up with

both c and d pointing to the object that, originally, only d pointed to. Here’s

an example that demonstrates this behavior:

//: operators/Assignment.java

// Assignment with objects is a bit tricky.

import static net.mindview.util.Print.*;

class Tank {

 int level;

}

public class Assignment {

 public static void main(String[] args) {

 Tank t1 = new Tank();

 Tank t2 = new Tank();

 t1.level = 9;

 t2.level = 47;

 print("1: t1.level: " + t1.level +

 ", t2.level: " + t2.level);

 t1 = t2;

 print("2: t1.level: " + t1.level +

 ", t2.level: " + t2.level);

 t1.level = 27;

 print("3: t1.level: " + t1.level +

 ", t2.level: " + t2.level);

Operators 93

 }

} /* Output:

1: t1.level: 9, t2.level: 47

2: t1.level: 47, t2.level: 47

3: t1.level: 27, t2.level: 27

*///:~

The Tank class is simple, and two instances (t1 and t2) are created within

main(). The level field within each Tank is given a different value, and

then t2 is assigned to t1, and t1 is changed. In many programming languages

you expect t1 and t2 to be independent at all times, but because you’ve

assigned a reference, changing the t1 object appears to change the t2 object

as well! This is because both t1 and t2 contain the same reference, which is

pointing to the same object. (The original reference that was in t1, that

pointed to the object holding a value of 9, was overwritten during the

assignment and effectively lost; its object will be cleaned up by the garbage

collector.)

This phenomenon is often called aliasing, and it’s a fundamental way that

Java works with objects. But what if you don’t want aliasing to occur in this

case? You could forego the assignment and say:

t1.level = t2.level;

This retains the two separate objects instead of discarding one and tying t1

and t2 to the same object. You’ll soon realize that manipulating the fields

within objects is messy and goes against good object-oriented design

principles. This is a nontrivial topic, so you should keep in mind that

assignment for objects can add surprises.

Exercise 2: (1) Create a class containing a float and use it to demonstrate
aliasing.

Aliasing during method calls
Aliasing will also occur when you pass an object into a method:

//: operators/PassObject.java

// Passing objects to methods may not be

// what you're used to.

import static net.mindview.util.Print.*;

class Letter {

 char c;

94 Thinking in Java Bruce Eckel

}

public class PassObject {

 static void f(Letter y) {

 y.c = 'z';

 }

 public static void main(String[] args) {

 Letter x = new Letter();

 x.c = 'a';

 print("1: x.c: " + x.c);

 f(x);

 print("2: x.c: " + x.c);

 }

} /* Output:

1: x.c: a

2: x.c: z

*///:~

In many programming languages, the method f() would appear to be making

a copy of its argument Letter y inside the scope of the method. But once

again a reference is being passed, so the line

y.c = 'z';

is actually changing the object outside of f().

Aliasing and its solution is a complex issue which is covered in one of the

online supplements for this book. However, you should be aware of it at this

point so you can watch for pitfalls.

Exercise 3: (1) Create a class containing a float and use it to demonstrate
aliasing during method calls.

Mathematical operators
The basic mathematical operators are the same as the ones available in most

programming languages: addition (+), subtraction (-), division (/),

multiplication (*) and modulus (%, which produces the remainder from

division). Integer division truncates, rather than rounds, the result.

Java also uses the shorthand notation from C/C++ that performs an

operation and an assignment at the same time. This is denoted by an operator

followed by an equal sign, and is consistent with all the operators in the

Operators 95

language (whenever it makes sense). For example, to add 4 to the variable x

and assign the result to x, use: x += 4.

This example shows the use of the mathematical operators:

//: operators/MathOps.java

// Demonstrates the mathematical operators.

import java.util.*;

import static net.mindview.util.Print.*;

public class MathOps {

 public static void main(String[] args) {

 // Create a seeded random number generator:

 Random rand = new Random(47);

 int i, j, k;

 // Choose value from 1 to 100:

 j = rand.nextInt(100) + 1;

 print("j : " + j);

 k = rand.nextInt(100) + 1;

 print("k : " + k);

 i = j + k;

 print("j + k : " + i);

 i = j - k;

 print("j - k : " + i);

 i = k / j;

 print("k / j : " + i);

 i = k * j;

 print("k * j : " + i);

 i = k % j;

 print("k % j : " + i);

 j %= k;

 print("j %= k : " + j);

 // Floating-point number tests:

 float u, v, w; // Applies to doubles, too

 v = rand.nextFloat();

 print("v : " + v);

 w = rand.nextFloat();

 print("w : " + w);

 u = v + w;

 print("v + w : " + u);

 u = v - w;

 print("v - w : " + u);

 u = v * w;

 print("v * w : " + u);

 u = v / w;

96 Thinking in Java Bruce Eckel

 print("v / w : " + u);

 // The following also works for char,

 // byte, short, int, long, and double:

 u += v;

 print("u += v : " + u);

 u -= v;

 print("u -= v : " + u);

 u *= v;

 print("u *= v : " + u);

 u /= v;

 print("u /= v : " + u);

 }

} /* Output:

j : 59

k : 56

j + k : 115

j - k : 3

k / j : 0

k * j : 3304

k % j : 56

j %= k : 3

v : 0.5309454

w : 0.0534122

v + w : 0.5843576

v - w : 0.47753322

v * w : 0.028358962

v / w : 9.940527

u += v : 10.471473

u -= v : 9.940527

u *= v : 5.2778773

u /= v : 9.940527

*///:~

To generate numbers, the program first creates a Random object. If you

create a Random object with no arguments, Java uses the current time as a

seed for the random number generator, and will thus produce different

output for each execution of the program. However, in the examples in this

book, it is important that the output shown at the end of the examples be as

consistent as possible, so that this output can be verified with external tools.

By providing a seed (an initialization value for the random number generator

that will always produce the same sequence for a particular seed value) when

creating the Random object, the same random numbers will be generated

Operators 97

each time the program is executed, so the output is verifiable.1 To generate

more varying output, feel free to remove the seed in the examples in the book.

The program generates a number of different types of random numbers with

the Random object simply by calling the methods nextInt() and

nextFloat() (you can also call nextLong() or nextDouble()). The

argument to nextInt() sets the upper bound on the generated number. The

lower bound is zero, which we don’t want because of the possibility of a

divide-by-zero, so the result is offset by one.

Exercise 4: (2) Write a program that calculates velocity using a constant
distance and a constant time.

Unary minus and plus operators
The unary minus (-) and unary plus (+) are the same operators as binary

minus and plus. The compiler figures out which use is intended by the way

you write the expression. For instance, the statement

x = -a;

has an obvious meaning. The compiler is able to figure out:

x = a * -b;

but the reader might get confused, so it is sometimes clearer to say:

x = a * (-b);

Unary minus inverts the sign on the data. Unary plus provides symmetry with

unary minus, but its only effect is to promote smaller-type operands to int.

Auto increment and decrement
Java, like C, has a number of shortcuts. Shortcuts can make code much easier

to type, and either easier or harder to read.

Two of the nicer shortcuts are the increment and decrement operators (often

referred to as the auto-increment and auto-decrement operators). The

decrement operator is -- and means “decrease by one unit.” The increment

operator is ++ and means “increase by one unit.” If a is an int, for example,

1 The number 47 was considered a “magic number” at a college I attended, and it stuck.

98 Thinking in Java Bruce Eckel

the expression ++a is equivalent to (a = a + 1). Increment and decrement

operators not only modify the variable, but also produce the value of the

variable as a result.

There are two versions of each type of operator, often called the prefix and

postfix versions. Pre-increment means the ++ operator appears before the

variable, and post-increment means the ++ operator appears after the

variable. Similarly, pre-decrement means the -- operator appears before the

variable, and post-decrement means the -- operator appears after the

variable. For pre-increment and pre-decrement (i.e., ++a or --a), the

operation is performed and the value is produced. For post-increment and

post-decrement (i.e., a++ or a--), the value is produced, then the operation is

performed. As an example:

//: operators/AutoInc.java

// Demonstrates the ++ and -- operators.

import static net.mindview.util.Print.*;

public class AutoInc {

 public static void main(String[] args) {

 int i = 1;

 print("i : " + i);

 print("++i : " + ++i); // Pre-increment

 print("i++ : " + i++); // Post-increment

 print("i : " + i);

 print("--i : " + --i); // Pre-decrement

 print("i-- : " + i--); // Post-decrement

 print("i : " + i);

 }

} /* Output:

i : 1

++i : 2

i++ : 2

i : 3

--i : 2

i-- : 2

i : 1

*///:~

You can see that for the prefix form, you get the value after the operation has

been performed, but with the postfix form, you get the value before the

operation is performed. These are the only operators, other than those

Operators 99

involving assignment, that have side effects—they change the operand rather

than using just its value.

The increment operator is one explanation for the name C++, implying “one

step beyond C.” In an early Java speech, Bill Joy (one of the Java creators),

said that “Java=C++--” (C plus plus minus minus), suggesting that Java is

C++ with the unnecessary hard parts removed, and therefore a much simpler

language. As you progress in this book, you’ll see that many parts are simpler,

and yet in other ways Java isn’t much easier than C++.

Relational operators
Relational operators generate a boolean result. They evaluate the

relationship between the values of the operands. A relational expression

produces true if the relationship is true, and false if the relationship is

untrue. The relational operators are less than (<), greater than (>), less than

or equal to (<=), greater than or equal to (>=), equivalent (==) and not

equivalent (!=). Equivalence and nonequivalence work with all primitives,

but the other comparisons won’t work with type boolean. Because boolean

values can only be true or false, “greater than” and “less than” doesn’t make

sense.

Testing object equivalence
The relational operators == and != also work with all objects, but their

meaning often confuses the first-time Java programmer. Here’s an example:

//: operators/Equivalence.java

public class Equivalence {

 public static void main(String[] args) {

 Integer n1 = new Integer(47);

 Integer n2 = new Integer(47);

 System.out.println(n1 == n2);

 System.out.println(n1 != n2);

 }

} /* Output:

false

true

*///:~

The statement System.out.println(n1 == n2) will print the result of the

boolean comparison within it. Surely the output should be “true” and then

100 Thinking in Java Bruce Eckel

“false,” since both Integer objects are the same. But while the contents of the

objects are the same, the references are not the same. The operators == and

!= compare object references, so the output is actually “false” and then “true.”

Naturally, this surprises people at first.

What if you want to compare the actual contents of an object for equivalence?

You must use the special method equals() that exists for all objects (not

primitives, which work fine with == and !=). Here’s how it’s used:

//: operators/EqualsMethod.java

public class EqualsMethod {

 public static void main(String[] args) {

 Integer n1 = new Integer(47);

 Integer n2 = new Integer(47);

 System.out.println(n1.equals(n2));

 }

} /* Output:

true

*///:~

The result is now what you expect. Ah, but it’s not as simple as that. If you

create your own class, like this:

//: operators/EqualsMethod2.java

// Default equals() does not compare contents.

class Value {

 int i;

}

public class EqualsMethod2 {

 public static void main(String[] args) {

 Value v1 = new Value();

 Value v2 = new Value();

 v1.i = v2.i = 100;

 System.out.println(v1.equals(v2));

 }

} /* Output:

false

*///:~

things are confusing again: The result is false. This is because the default

behavior of equals() is to compare references. So unless you override

Operators 101

equals() in your new class you won’t get the desired behavior.

Unfortunately, you won’t learn about overriding until the Reusing Classes

chapter and about the proper way to define equals() until the Containers in

Depth chapter, but being aware of the way equals() behaves might save you

some grief in the meantime.

Most of the Java library classes implement equals() so that it compares the

contents of objects instead of their references.

Exercise 5: (2) Create a class called Dog containing two Strings: name
and says. In main(), create two dog objects with names “spot” (who says,
“Ruff!”) and “scruffy” (who says, “Wurf!”). Then display their names and
what they say.

Exercise 6: (3) Following Exercise 5, create a new Dog reference and
assign it to spot’s object. Test for comparison using == and equals() for all
references.

Logical operators
Each of the logical operators AND (&&), OR (||) and NOT (!) produces a

boolean value of true or false based on the logical relationship of its

arguments. This example uses the relational and logical operators:

//: operators/Bool.java

// Relational and logical operators.

import java.util.*;

import static net.mindview.util.Print.*;

public class Bool {

 public static void main(String[] args) {

 Random rand = new Random(47);

 int i = rand.nextInt(100);

 int j = rand.nextInt(100);

 print("i = " + i);

 print("j = " + j);

 print("i > j is " + (i > j));

 print("i < j is " + (i < j));

 print("i >= j is " + (i >= j));

 print("i <= j is " + (i <= j));

 print("i == j is " + (i == j));

 print("i != j is " + (i != j));

 // Treating an int as a boolean is not legal Java:

//! print("i && j is " + (i && j));

102 Thinking in Java Bruce Eckel

//! print("i || j is " + (i || j));

//! print("!i is " + !i);

 print("(i < 10) && (j < 10) is "

 + ((i < 10) && (j < 10)));

 print("(i < 10) || (j < 10) is "

 + ((i < 10) || (j < 10)));

 }

} /* Output:

i = 58

j = 55

i > j is true

i < j is false

i >= j is true

i <= j is false

i == j is false

i != j is true

(i < 10) && (j < 10) is false

(i < 10) || (j < 10) is false

*///:~

You can apply AND, OR, or NOT to boolean values only. You can’t use a

non-boolean as if it were a boolean in a logical expression as you can in C

and C++. You can see the failed attempts at doing this commented out with a

‘//!’ (this comment syntax enables automatic removal of comments to

facilitate testing). The subsequent expressions, however, produce boolean

values using relational comparisons, then use logical operations on the

results.

Note that a boolean value is automatically converted to an appropriate text

form if it is used where a String is expected.

You can replace the definition for int in the preceding program with any

other primitive data type except boolean. Be aware, however, that the

comparison of floating point numbers is very strict. A number that is the

tiniest fraction different from another number is still “not equal.” A number

that is the tiniest bit above zero is still nonzero.

Exercise 7: (3) Write a program that simulates coin-flipping.

Short-circuiting
When dealing with logical operators, you run into a phenomenon called

“short-circuiting.” This means that the expression will be evaluated only until

the truth or falsehood of the entire expression can be unambiguously

Operators 103

determined. As a result, the latter parts of a logical expression might not be

evaluated. Here’s an example that demonstrates short-circuiting:

//: operators/ShortCircuit.java

// Demonstrates short-circuiting behavior

// with logical operators.

import static net.mindview.util.Print.*;

public class ShortCircuit {

 static boolean test1(int val) {

 print("test1(" + val + ")");

 print("result: " + (val < 1));

 return val < 1;

 }

 static boolean test2(int val) {

 print("test2(" + val + ")");

 print("result: " + (val < 2));

 return val < 2;

 }

 static boolean test3(int val) {

 print("test3(" + val + ")");

 print("result: " + (val < 3));

 return val < 3;

 }

 public static void main(String[] args) {

 boolean b = test1(0) && test2(2) && test3(2);

 print("expression is " + b);

 }

} /* Output:

test1(0)

result: true

test2(2)

result: false

expression is false

*///:~

Each test performs a comparison against the argument and returns true or

false. It also prints information to show you that it’s being called. The tests

are used in the expression:

test1(0) && test2(2) && test3(2)

You might naturally think that all three tests would be executed, but the

output shows otherwise. The first test produced a true result, so the

expression evaluation continues. However, the second test produced a false

104 Thinking in Java Bruce Eckel

result. Since this means that the whole expression must be false, why

continue evaluating the rest of the expression? It might be expensive. The

reason for short-circuiting, in fact, is that you can get a potential performance

increase if all the parts of a logical expression do not need to be evaluated.

Literals
Ordinarily, when you insert a literal value into a program, the compiler

knows exactly what type to make it. Sometimes, however, the type is

ambiguous. When this happens, you must guide the compiler by adding some

extra information in the form of characters associated with the literal value.

The following code shows these characters:

//: operators/Literals.java

import static net.mindview.util.Print.*;

public class Literals {

 public static void main(String[] args) {

 int i1 = 0x2f; // Hexadecimal (lowercase)

 print("i1: " + Integer.toBinaryString(i1));

 int i2 = 0X2F; // Hexadecimal (uppercase)

 print("i2: " + Integer.toBinaryString(i2));

 int i3 = 0177; // Octal (leading zero)

 print("i3: " + Integer.toBinaryString(i3));

 char c = 0xffff; // max char hex value

 print("c: " + Integer.toBinaryString(c));

 byte b = 0x7f; // max byte hex value

 print("b: " + Integer.toBinaryString(b));

 short s = 0x7fff; // max short hex value

 print("s: " + Integer.toBinaryString(s));

 long n1 = 200L; // long suffix

 long n2 = 200l; // long suffix (but can be confusing)

 long n3 = 200;

 float f1 = 1;

 float f2 = 1F; // float suffix

 float f3 = 1f; // float suffix

 double d1 = 1d; // double suffix

 double d2 = 1D; // double suffix

 // (Hex and Octal also work with long)

 }

} /* Output:

i1: 101111

i2: 101111

Operators 105

i3: 1111111

c: 1111111111111111

b: 1111111

s: 111111111111111

*///:~

A trailing character after a literal value establishes its type. Uppercase or

lowercase L means long (however, using a lowercase l is confusing because it

can look like the number one). Uppercase or lowercase F means float.

Uppercase or lowercase D means double.

Hexadecimal (base 16), which works with all the integral data types, is

denoted by a leading 0x or 0X followed by 0-9 or a-f either in uppercase or

lowercase. If you try to initialize a variable with a value bigger than it can

hold (regardless of the numerical form of the value), the compiler will give

you an error message. Notice in the preceding code the maximum possible

hexadecimal values for char, byte, and short. If you exceed these, the

compiler will automatically make the value an int and tell you that you need

a narrowing cast for the assignment (casts are defined later in this chapter).

You’ll know you’ve stepped over the line.

Octal (base 8) is denoted by a leading zero in the number and digits from 0-7.

There is no literal representation for binary numbers in C, C++, or Java.

However, when working with hexadecimal and octal notation, it’s useful to

display the binary form of the results. This is easily accomplished with the

static toBinaryString() methods from the Integer and Long classes.

Notice that when passing smaller types to Integer.toBinaryString(), the

type is automatically converted to an int.

Exercise 8: (2) Show that hex and octal notations work with long values.
Use Long.toBinaryString() to display the results.

Exponential notation
Exponents use a notation that I’ve always found rather dismaying:

//: operators/Exponents.java

// "e" means "10 to the power."

public class Exponents {

 public static void main(String[] args) {

 // Uppercase and lowercase 'e' are the same:

 float expFloat = 1.39e-43f;

106 Thinking in Java Bruce Eckel

 expFloat = 1.39E-43f;

 System.out.println(expFloat);

 double expDouble = 47e47d; // 'd' is optional

 double expDouble2 = 47e47; // Automatically double

 System.out.println(expDouble);

 }

} /* Output:

1.39E-43

4.7E48

*///:~

In science and engineering, ‘e’ refers to the base of natural logarithms,

approximately 2.718. (A more precise double value is available in Java as

Math.E.) This is used in exponentiation expressions such as 1.39 x e-43,

which means 1.39 x 2.718-43. However, when the FORTRAN programming

language was invented, they decided that e would mean “ten to the power,”

which is an odd decision because FORTRAN was designed for science and

engineering, and one would think its designers would be sensitive about

introducing such an ambiguity.2 At any rate, this custom was followed in C,

C++ and now Java. So if you’re used to thinking in terms of e as the base of

natural logarithms, you must do a mental translation when you see an

expression such as 1.39 e-43f in Java; it means 1.39 x 10-43.

Note that you don’t need to use the trailing character when the compiler can

figure out the appropriate type. With

long n3 = 200;

there’s no ambiguity, so an L after the 200 would be superfluous. However,

with

2 John Kirkham writes, “I started computing in 1962 using FORTRAN II on an IBM 1620.
At that time, and throughout the 1960s and into the 1970s, FORTRAN was an all
uppercase language. This probably started because many of the early input devices were
old teletype units that used 5 bit Baudot code, which had no lowercase capability. The ‘E’
in the exponential notation was also always uppercase and was never confused with the
natural logarithm base ‘e’, which is always lowercase. The ‘E’ simply stood for exponential,
which was for the base of the number system used—usually 10. At the time octal was also
widely used by programmers. Although I never saw it used, if I had seen an octal number
in exponential notation I would have considered it to be base 8. The first time I remember
seeing an exponential using a lowercase ‘e’ was in the late 1970s and I also found it
confusing. The problem arose as lowercase crept into FORTRAN, not at its beginning. We
actually had functions to use if you really wanted to use the natural logarithm base, but
they were all uppercase.”

Operators 107

float f4 = 1e-43f; // 10 to the power

the compiler normally takes exponential numbers as doubles, so without the

trailing f, it will give you an error telling you that you must use a cast to

convert double to float.

Exercise 9: (1) Display the largest and smallest numbers for both float
and double exponential notation.

Bitwise operators
The bitwise operators allow you to manipulate individual bits in an integral

primitive data type. Bitwise operators perform Boolean algebra on the

corresponding bits in the two arguments to produce the result.

The bitwise operators come from C’s low-level orientation, where you often

manipulate hardware directly and must set the bits in hardware registers.

Java was originally designed to be embedded in TV set-top boxes, so this low-

level orientation still made sense. However, you probably won’t use the

bitwise operators much.

The bitwise AND operator (&) produces a one in the output bit if both input

bits are one; otherwise, it produces a zero. The bitwise OR operator (|)

produces a one in the output bit if either input bit is a one and produces a

zero only if both input bits are zero. The bitwise EXCLUSIVE OR, or XOR

(^), produces a one in the output bit if one or the other input bit is a one, but

not both. The bitwise NOT (~, also called the ones complement operator) is a

unary operator; it takes only one argument. (All other bitwise operators are

binary operators.) Bitwise NOT produces the opposite of the input bit—a one

if the input bit is zero, a zero if the input bit is one.

The bitwise operators and logical operators use the same characters, so it is

helpful to have a mnemonic device to help you remember the meanings:

Because bits are “small,” there is only one character in the bitwise operators.

Bitwise operators can be combined with the = sign to unite the operation and

assignment: &=, |= and ^= are all legitimate. (Since ~ is a unary operator, it

cannot be combined with the = sign.)

The boolean type is treated as a one-bit value, so it is somewhat different.

You can perform a bitwise AND, OR, and XOR, but you can’t perform a

bitwise NOT (presumably to prevent confusion with the logical NOT). For

108 Thinking in Java Bruce Eckel

booleans, the bitwise operators have the same effect as the logical operators

except that they do not short circuit. Also, bitwise operations on booleans

include an XOR logical operator that is not included under the list of “logical”

operators. You cannot use booleans in shift expressions, which are

described next.

Exercise 10: (3) Write a program with two constant values, one with
alternating binary ones and zeroes, with a zero in the least-significant digit,
and the second, also alternating, with a one in the least-significant digit (hint:
It’s easiest to use hexadecimal constants for this). Take these two values and
combine them in all possible ways using the bitwise operators, and display
the results using Integer.toBinaryString().

Shift operators
The shift operators also manipulate bits. They can be used solely with

primitive, integral types. The left-shift operator (<<) produces the operand to

the left of the operator after it has been shifted to the left by the number of

bits specified to the right of the operator (inserting zeroes at the lower-order

bits). The signed right-shift operator (>>) produces the operand to the left of

the operator after it has been shifted to the right by the number of bits

specified to the right of the operator. The signed right shift >> uses sign

extension: If the value is positive, zeroes are inserted at the higher-order bits;

if the value is negative, ones are inserted at the higher-order bits. Java has

also added the unsigned right shift >>>, which uses zero extension:

Regardless of the sign, zeroes are inserted at the higher-order bits. This

operator does not exist in C or C++.

If you shift a char, byte, or short, it will be promoted to int before the shift

takes place, and the result will be an int. Only the five low-order bits of the

right-hand side will be used. This prevents you from shifting more than the

number of bits in an int. If you’re operating on a long, you’ll get a long

result. Only the six low-order bits of the right-hand side will be used, so you

can’t shift more than the number of bits in a long.

Shifts can be combined with the equal sign (<<= or >>= or >>>=). The

lvalue is replaced by the lvalue shifted by the rvalue. There is a problem,

however, with the unsigned right shift combined with assignment. If you use

it with byte or short, you don’t get the correct results. Instead, these are

promoted to int and right shifted, but then truncated as they are assigned

Operators 109

back into their variables, so you get -1 in those cases. The following example

demonstrates this:

//: operators/URShift.java

// Test of unsigned right shift.

import static net.mindview.util.Print.*;

public class URShift {

 public static void main(String[] args) {

 int i = -1;

 print(Integer.toBinaryString(i));

 i >>>= 10;

 print(Integer.toBinaryString(i));

 long l = -1;

 print(Long.toBinaryString(l));

 l >>>= 10;

 print(Long.toBinaryString(l));

 short s = -1;

 print(Integer.toBinaryString(s));

 s >>>= 10;

 print(Integer.toBinaryString(s));

 byte b = -1;

 print(Integer.toBinaryString(b));

 b >>>= 10;

 print(Integer.toBinaryString(b));

 b = -1;

 print(Integer.toBinaryString(b));

 print(Integer.toBinaryString(b>>>10));

 }

} /* Output:

11111111111111111111111111111111

1111111111111111111111

11

11

11111111111111111111111111111111

11111111111111111111111111111111

11111111111111111111111111111111

11111111111111111111111111111111

11111111111111111111111111111111

1111111111111111111111

*///:~

In the last shift, the resulting value is not assigned back into b, but is printed

directly, so the correct behavior occurs.

110 Thinking in Java Bruce Eckel

Here’s an example that demonstrates the use of all the operators involving

bits:

//: operators/BitManipulation.java

// Using the bitwise operators.

import java.util.*;

import static net.mindview.util.Print.*;

public class BitManipulation {

 public static void main(String[] args) {

 Random rand = new Random(47);

 int i = rand.nextInt();

 int j = rand.nextInt();

 printBinaryInt("-1", -1);

 printBinaryInt("+1", +1);

 int maxpos = 2147483647;

 printBinaryInt("maxpos", maxpos);

 int maxneg = -2147483648;

 printBinaryInt("maxneg", maxneg);

 printBinaryInt("i", i);

 printBinaryInt("~i", ~i);

 printBinaryInt("-i", -i);

 printBinaryInt("j", j);

 printBinaryInt("i & j", i & j);

 printBinaryInt("i | j", i | j);

 printBinaryInt("i ^ j", i ^ j);

 printBinaryInt("i << 5", i << 5);

 printBinaryInt("i >> 5", i >> 5);

 printBinaryInt("(~i) >> 5", (~i) >> 5);

 printBinaryInt("i >>> 5", i >>> 5);

 printBinaryInt("(~i) >>> 5", (~i) >>> 5);

 long l = rand.nextLong();

 long m = rand.nextLong();

 printBinaryLong("-1L", -1L);

 printBinaryLong("+1L", +1L);

 long ll = 9223372036854775807L;

 printBinaryLong("maxpos", ll);

 long lln = -9223372036854775808L;

 printBinaryLong("maxneg", lln);

 printBinaryLong("l", l);

 printBinaryLong("~l", ~l);

 printBinaryLong("-l", -l);

 printBinaryLong("m", m);

Operators 111

 printBinaryLong("l & m", l & m);

 printBinaryLong("l | m", l | m);

 printBinaryLong("l ^ m", l ^ m);

 printBinaryLong("l << 5", l << 5);

 printBinaryLong("l >> 5", l >> 5);

 printBinaryLong("(~l) >> 5", (~l) >> 5);

 printBinaryLong("l >>> 5", l >>> 5);

 printBinaryLong("(~l) >>> 5", (~l) >>> 5);

 }

 static void printBinaryInt(String s, int i) {

 print(s + ", int: " + i + ", binary:\n " +

 Integer.toBinaryString(i));

 }

 static void printBinaryLong(String s, long l) {

 print(s + ", long: " + l + ", binary:\n " +

 Long.toBinaryString(l));

 }

} /* Output:

-1, int: -1, binary:

 11111111111111111111111111111111

+1, int: 1, binary:

 1

maxpos, int: 2147483647, binary:

 1111111111111111111111111111111

maxneg, int: -2147483648, binary:

 10000000000000000000000000000000

i, int: -1172028779, binary:

 10111010001001000100001010010101

~i, int: 1172028778, binary:

 1000101110110111011110101101010

-i, int: 1172028779, binary:

 1000101110110111011110101101011

j, int: 1717241110, binary:

 1100110010110110000010100010110

i & j, int: 570425364, binary:

 100010000000000000000000010100

i | j, int: -25213033, binary:

 11111110011111110100011110010111

i ^ j, int: -595638397, binary:

 11011100011111110100011110000011

i << 5, int: 1149784736, binary:

 1000100100010000101001010100000

i >> 5, int: -36625900, binary:

 11111101110100010010001000010100

112 Thinking in Java Bruce Eckel

(~i) >> 5, int: 36625899, binary:

 10001011101101110111101011

i >>> 5, int: 97591828, binary:

 101110100010010001000010100

(~i) >>> 5, int: 36625899, binary:

 10001011101101110111101011

...

*///:~

The two methods at the end, printBinaryInt() and printBinaryLong(),

take an int or a long, respectively, and print it out in binary format along

with a descriptive string. As well as demonstrating the effect of all the bitwise

operators for int and long, this example also shows the minimum,

maximum, +1, and -1 values for int and long so you can see what they look

like. Note that the high bit represents the sign: 0 means positive and 1 means

negative. The output for the int portion is displayed above.

The binary representation of the numbers is referred to as signed twos

complement.

Exercise 11: (3) Start with a number that has a binary one in the most
significant position (hint: Use a hexadecimal constant). Using the signed
right-shift operator, right shift it all the way through all of its binary
positions, each time displaying the result using Integer.toBinaryString().

Exercise 12: (3) Start with a number that is all binary ones. Left shift it,
then use the unsigned right-shift operator to right shift through all of its
binary positions, each time displaying the result using
Integer.toBinaryString().

Exercise 13: (1) Write a method that displays char values in binary
form. Demonstrate it using several different characters.

Ternary if-else operator
The ternary operator, also called the conditional operator, is unusual

because it has three operands. It is truly an operator because it produces a

value, unlike the ordinary if-else statement that you’ll see in the next section

of this chapter. The expression is of the form:

boolean-exp ? value0 : value1

Operators 113

If boolean-exp evaluates to true, value0 is evaluated, and its result becomes

the value produced by the operator. If boolean-exp is false, value1 is

evaluated and its result becomes the value produced by the operator.

Of course, you could use an ordinary if-else statement (described later), but

the ternary operator is much terser. Although C (where this operator

originated) prides itself on being a terse language, and the ternary operator

might have been introduced partly for efficiency, you should be somewhat

wary of using it on an everyday basis—it’s easy to produce unreadable code.

The conditional operator is different from if-else because it produces a value.

Here’s an example comparing the two:

//: operators/TernaryIfElse.java

import static net.mindview.util.Print.*;

public class TernaryIfElse {

 static int ternary(int i) {

 return i < 10 ? i * 100 : i * 10;

 }

 static int standardIfElse(int i) {

 if(i < 10)

 return i * 100;

 else

 return i * 10;

 }

 public static void main(String[] args) {

 print(ternary(9));

 print(ternary(10));

 print(standardIfElse(9));

 print(standardIfElse(10));

 }

} /* Output:

900

100

900

100

*///:~

You can see that this code in ternary() is more compact than what you’d

need to write without the ternary operator, in standardIfElse(). However,

standardIfElse() is easier to understand, and doesn’t require a lot more

typing. So be sure to ponder your reasons when choosing the ternary

114 Thinking in Java Bruce Eckel

operator—it’s generally warranted when you’re setting a variable to one of

two values.

String operator + and +=
There’s one special usage of an operator in Java: The + and += operators can

be used to concatenate strings, as you’ve already seen. It seems a natural use

of these operators even though it doesn’t fit with the traditional way that they

are used.

This capability seemed like a good idea in C++, so operator overloading was

added to C++ to allow the C++ programmer to add meanings to almost any

operator. Unfortunately, operator overloading combined with some of the

other restrictions in C++ turns out to be a fairly complicated feature for

programmers to design into their classes. Although operator overloading

would have been much simpler to implement in Java than it was in C++ (as

has been demonstrated in the C# language, which does have straightforward

operator overloading), this feature was still considered too complex, so Java

programmers cannot implement their own overloaded operators like C++

and C# programmers can.

The use of the String operators has some interesting behavior. If an

expression begins with a String, then all operands that follow must be

Strings (remember that the compiler automatically turns a double-quoted

sequence of characters into a String):

//: operators/StringOperators.java

import static net.mindview.util.Print.*;

public class StringOperators {

 public static void main(String[] args) {

 int x = 0, y = 1, z = 2;

 String s = "x, y, z ";

 print(s + x + y + z);

 print(x + " " + s); // Converts x to a String

 s += "(summed) = "; // Concatenation operator

 print(s + (x + y + z));

 print("" + x); // Shorthand for Integer.toString()

 }

} /* Output:

x, y, z 012

0 x, y, z

x, y, z (summed) = 3

Operators 115

0

*///:~

Note that the output from the first print statement is ‘o12’ instead of just ‘3’,

which is what you’d get if it was summing the integers. This is because the

Java compiler converts x, y, and z into their String representations and

concatenates those strings, instead of adding them together first. The second

print statement converts the leading variable into a String, so the string

conversion does not depend on what comes first. Finally, you see the use of

the += operator to append a string to s, and the use of parentheses to control

the order of evaluation of the expression so that the ints are actually summed

before they are displayed.

Notice the last example in main(): you will sometimes see an empty String

followed by a + and a primitive as a way to perform the conversion without

calling the more cumbersome explicit method (Integer.toString(), in this

case).

Common pitfalls when using
operators

One of the pitfalls when using operators is attempting to leave out the

parentheses when you are even the least bit uncertain about how an

expression will evaluate. This is still true in Java.

An extremely common error in C and C++ looks like this:

while(x = y) {

 //

}

The programmer was clearly trying to test for equivalence (==) rather than

do an assignment. In C and C++ the result of this assignment will always be

true if y is nonzero, and you’ll probably get an infinite loop. In Java, the

result of this expression is not a boolean, but the compiler expects a

boolean and won’t convert from an int, so it will conveniently give you a

compile-time error and catch the problem before you ever try to run the

program. So the pitfall never happens in Java. (The only time you won’t get a

compile-time error is when x and y are boolean, in which case x = y is a

legal expression, and in the preceding example, probably an error.)

116 Thinking in Java Bruce Eckel

A similar problem in C and C++ is using bitwise AND and OR instead of the

logical versions. Bitwise AND and OR use one of the characters (& or |) while

logical AND and OR use two (&& and ||). Just as with = and ==, it’s easy to

type just one character instead of two. In Java, the compiler again prevents

this, because it won’t let you cavalierly use one type where it doesn’t belong.

Casting operators
The word cast is used in the sense of “casting into a mold.” Java will

automatically change one type of data into another when appropriate. For

instance, if you assign an integral value to a floating point variable, the

compiler will automatically convert the int to a float. Casting allows you to

make this type conversion explicit, or to force it when it wouldn’t normally

happen.

To perform a cast, put the desired data type inside parentheses to the left of

any value. You can see this in the following example:

//: operators/Casting.java

public class Casting {

 public static void main(String[] args) {

 int i = 200;

 long lng = (long)i;

 lng = i; // "Widening," so cast not really required

 long lng2 = (long)200;

 lng2 = 200;

 // A "narrowing conversion":

 i = (int)lng2; // Cast required

 }

} ///:~

As you can see, it’s possible to perform a cast on a numeric value as well as on

a variable. Notice that you can introduce superfluous casts; for example, the

compiler will automatically promote an int value to a long when necessary.

However, you are allowed to use superfluous casts to make a point or to

clarify your code. In other situations, a cast may be essential just to get the

code to compile.

In C and C++, casting can cause some headaches. In Java, casting is safe,

with the exception that when you perform a so-called narrowing conversion

(that is, when you go from a data type that can hold more information to one

that doesn’t hold as much), you run the risk of losing information. Here the

Operators 117

compiler forces you to use a cast, in effect saying, “This can be a dangerous

thing to do—if you want me to do it anyway you must make the cast explicit.”

With a widening conversion an explicit cast is not needed, because the new

type will more than hold the information from the old type so that no

information is ever lost.

Java allows you to cast any primitive type to any other primitive type, except

for boolean, which doesn’t allow any casting at all. Class types do not allow

casting. To convert one to the other, there must be special methods. (You’ll

find out later in this book that objects can be cast within a family of types; an

Oak can be cast to a Tree and vice versa, but not to a foreign type such as a

Rock.)

Truncation and rounding
When you are performing narrowing conversions, you must pay attention to

issues of truncation and rounding. For example, if you cast from a floating

point value to an integral value, what does Java do? For example, if you have

the value 29.7 and you cast it to an int, is the resulting value 30 or 29? The

answer to this can be seen in this example:

//: operators/CastingNumbers.java

// What happens when you cast a float

// or double to an integral value?

import static net.mindview.util.Print.*;

public class CastingNumbers {

 public static void main(String[] args) {

 double above = 0.7, below = 0.4;

 float fabove = 0.7f, fbelow = 0.4f;

 print("(int)above: " + (int)above);

 print("(int)below: " + (int)below);

 print("(int)fabove: " + (int)fabove);

 print("(int)fbelow: " + (int)fbelow);

 }

} /* Output:

(int)above: 0

(int)below: 0

(int)fabove: 0

(int)fbelow: 0

*///:~

118 Thinking in Java Bruce Eckel

So the answer is that casting from a float or double to an integral value

always truncates the number. If instead you want the result to be rounded,

use the round() methods in java.lang.Math:

//: operators/RoundingNumbers.java

// Rounding floats and doubles.

import static net.mindview.util.Print.*;

public class RoundingNumbers {

 public static void main(String[] args) {

 double above = 0.7, below = 0.4;

 float fabove = 0.7f, fbelow = 0.4f;

 print("Math.round(above): " + Math.round(above));

 print("Math.round(below): " + Math.round(below));

 print("Math.round(fabove): " + Math.round(fabove));

 print("Math.round(fbelow): " + Math.round(fbelow));

 }

} /* Output:

Math.round(above): 1

Math.round(below): 0

Math.round(fabove): 1

Math.round(fbelow): 0

*///:~

Since the round() is part of java.lang, you don’t need an extra import to

use it.

Promotion
You’ll discover that if you perform any mathematical or bitwise operations on

primitive data types that are smaller than an int (that is, char, byte, or

short), those values will be promoted to int before performing the

operations, and the resulting value will be of type int. So if you want to assign

back into the smaller type, you must use a cast. (And, since you’re assigning

back into a smaller type, you might be losing information.) In general, the

largest data type in an expression is the one that determines the size of the

result of that expression; if you multiply a float and a double, the result will

be double; if you add an int and a long, the result will be long.

Java has no “sizeof”
In C and C++, the sizeof() operator tells you the number of bytes allocated

for data items. The most compelling reason for sizeof() in C and C++ is for

Operators 119

portability. Different data types might be different sizes on different

machines, so the programmer must discover how big those types are when

performing operations that are sensitive to size. For example, one computer

might store integers in 32 bits, whereas another might store integers as 16

bits. Programs could store larger values in integers on the first machine. As

you might imagine, portability is a huge headache for C and C++

programmers.

Java does not need a sizeof() operator for this purpose, because all the data

types are the same size on all machines. You do not need to think about

portability on this level—it is designed into the language.

A compendium of operators
The following example shows which primitive data types can be used with

particular operators. Basically, it is the same example repeated over and over,

but using different primitive data types. The file will compile without error

because the lines that fail are commented out with a //!.

//: operators/AllOps.java

// Tests all the operators on all the primitive data types

// to show which ones are accepted by the Java compiler.

public class AllOps {

 // To accept the results of a boolean test:

 void f(boolean b) {}

 void boolTest(boolean x, boolean y) {

 // Arithmetic operators:

 //! x = x * y;

 //! x = x / y;

 //! x = x % y;

 //! x = x + y;

 //! x = x - y;

 //! x++;

 //! x--;

 //! x = +y;

 //! x = -y;

 // Relational and logical:

 //! f(x > y);

 //! f(x >= y);

 //! f(x < y);

 //! f(x <= y);

 f(x == y);

120 Thinking in Java Bruce Eckel

 f(x != y);

 f(!y);

 x = x && y;

 x = x || y;

 // Bitwise operators:

 //! x = ~y;

 x = x & y;

 x = x | y;

 x = x ^ y;

 //! x = x << 1;

 //! x = x >> 1;

 //! x = x >>> 1;

 // Compound assignment:

 //! x += y;

 //! x -= y;

 //! x *= y;

 //! x /= y;

 //! x %= y;

 //! x <<= 1;

 //! x >>= 1;

 //! x >>>= 1;

 x &= y;

 x ^= y;

 x |= y;

 // Casting:

 //! char c = (char)x;

 //! byte b = (byte)x;

 //! short s = (short)x;

 //! int i = (int)x;

 //! long l = (long)x;

 //! float f = (float)x;

 //! double d = (double)x;

 }

 void charTest(char x, char y) {

 // Arithmetic operators:

 x = (char)(x * y);

 x = (char)(x / y);

 x = (char)(x % y);

 x = (char)(x + y);

 x = (char)(x - y);

 x++;

 x--;

 x = (char)+y;

 x = (char)-y;

Operators 121

 // Relational and logical:

 f(x > y);

 f(x >= y);

 f(x < y);

 f(x <= y);

 f(x == y);

 f(x != y);

 //! f(!x);

 //! f(x && y);

 //! f(x || y);

 // Bitwise operators:

 x= (char)~y;

 x = (char)(x & y);

 x = (char)(x | y);

 x = (char)(x ^ y);

 x = (char)(x << 1);

 x = (char)(x >> 1);

 x = (char)(x >>> 1);

 // Compound assignment:

 x += y;

 x -= y;

 x *= y;

 x /= y;

 x %= y;

 x <<= 1;

 x >>= 1;

 x >>>= 1;

 x &= y;

 x ^= y;

 x |= y;

 // Casting:

 //! boolean bl = (boolean)x;

 byte b = (byte)x;

 short s = (short)x;

 int i = (int)x;

 long l = (long)x;

 float f = (float)x;

 double d = (double)x;

 }

 void byteTest(byte x, byte y) {

 // Arithmetic operators:

 x = (byte)(x* y);

 x = (byte)(x / y);

 x = (byte)(x % y);

122 Thinking in Java Bruce Eckel

 x = (byte)(x + y);

 x = (byte)(x - y);

 x++;

 x--;

 x = (byte)+ y;

 x = (byte)- y;

 // Relational and logical:

 f(x > y);

 f(x >= y);

 f(x < y);

 f(x <= y);

 f(x == y);

 f(x != y);

 //! f(!x);

 //! f(x && y);

 //! f(x || y);

 // Bitwise operators:

 x = (byte)~y;

 x = (byte)(x & y);

 x = (byte)(x | y);

 x = (byte)(x ^ y);

 x = (byte)(x << 1);

 x = (byte)(x >> 1);

 x = (byte)(x >>> 1);

 // Compound assignment:

 x += y;

 x -= y;

 x *= y;

 x /= y;

 x %= y;

 x <<= 1;

 x >>= 1;

 x >>>= 1;

 x &= y;

 x ^= y;

 x |= y;

 // Casting:

 //! boolean bl = (boolean)x;

 char c = (char)x;

 short s = (short)x;

 int i = (int)x;

 long l = (long)x;

 float f = (float)x;

 double d = (double)x;

Operators 123

 }

 void shortTest(short x, short y) {

 // Arithmetic operators:

 x = (short)(x * y);

 x = (short)(x / y);

 x = (short)(x % y);

 x = (short)(x + y);

 x = (short)(x - y);

 x++;

 x--;

 x = (short)+y;

 x = (short)-y;

 // Relational and logical:

 f(x > y);

 f(x >= y);

 f(x < y);

 f(x <= y);

 f(x == y);

 f(x != y);

 //! f(!x);

 //! f(x && y);

 //! f(x || y);

 // Bitwise operators:

 x = (short)~y;

 x = (short)(x & y);

 x = (short)(x | y);

 x = (short)(x ^ y);

 x = (short)(x << 1);

 x = (short)(x >> 1);

 x = (short)(x >>> 1);

 // Compound assignment:

 x += y;

 x -= y;

 x *= y;

 x /= y;

 x %= y;

 x <<= 1;

 x >>= 1;

 x >>>= 1;

 x &= y;

 x ^= y;

 x |= y;

 // Casting:

 //! boolean bl = (boolean)x;

124 Thinking in Java Bruce Eckel

 char c = (char)x;

 byte b = (byte)x;

 int i = (int)x;

 long l = (long)x;

 float f = (float)x;

 double d = (double)x;

 }

 void intTest(int x, int y) {

 // Arithmetic operators:

 x = x * y;

 x = x / y;

 x = x % y;

 x = x + y;

 x = x - y;

 x++;

 x--;

 x = +y;

 x = -y;

 // Relational and logical:

 f(x > y);

 f(x >= y);

 f(x < y);

 f(x <= y);

 f(x == y);

 f(x != y);

 //! f(!x);

 //! f(x && y);

 //! f(x || y);

 // Bitwise operators:

 x = ~y;

 x = x & y;

 x = x | y;

 x = x ^ y;

 x = x << 1;

 x = x >> 1;

 x = x >>> 1;

 // Compound assignment:

 x += y;

 x -= y;

 x *= y;

 x /= y;

 x %= y;

 x <<= 1;

 x >>= 1;

Operators 125

 x >>>= 1;

 x &= y;

 x ^= y;

 x |= y;

 // Casting:

 //! boolean bl = (boolean)x;

 char c = (char)x;

 byte b = (byte)x;

 short s = (short)x;

 long l = (long)x;

 float f = (float)x;

 double d = (double)x;

 }

 void longTest(long x, long y) {

 // Arithmetic operators:

 x = x * y;

 x = x / y;

 x = x % y;

 x = x + y;

 x = x - y;

 x++;

 x--;

 x = +y;

 x = -y;

 // Relational and logical:

 f(x > y);

 f(x >= y);

 f(x < y);

 f(x <= y);

 f(x == y);

 f(x != y);

 //! f(!x);

 //! f(x && y);

 //! f(x || y);

 // Bitwise operators:

 x = ~y;

 x = x & y;

 x = x | y;

 x = x ^ y;

 x = x << 1;

 x = x >> 1;

 x = x >>> 1;

 // Compound assignment:

 x += y;

126 Thinking in Java Bruce Eckel

 x -= y;

 x *= y;

 x /= y;

 x %= y;

 x <<= 1;

 x >>= 1;

 x >>>= 1;

 x &= y;

 x ^= y;

 x |= y;

 // Casting:

 //! boolean bl = (boolean)x;

 char c = (char)x;

 byte b = (byte)x;

 short s = (short)x;

 int i = (int)x;

 float f = (float)x;

 double d = (double)x;

 }

 void floatTest(float x, float y) {

 // Arithmetic operators:

 x = x * y;

 x = x / y;

 x = x % y;

 x = x + y;

 x = x - y;

 x++;

 x--;

 x = +y;

 x = -y;

 // Relational and logical:

 f(x > y);

 f(x >= y);

 f(x < y);

 f(x <= y);

 f(x == y);

 f(x != y);

 //! f(!x);

 //! f(x && y);

 //! f(x || y);

 // Bitwise operators:

 //! x = ~y;

 //! x = x & y;

 //! x = x | y;

Operators 127

 //! x = x ^ y;

 //! x = x << 1;

 //! x = x >> 1;

 //! x = x >>> 1;

 // Compound assignment:

 x += y;

 x -= y;

 x *= y;

 x /= y;

 x %= y;

 //! x <<= 1;

 //! x >>= 1;

 //! x >>>= 1;

 //! x &= y;

 //! x ^= y;

 //! x |= y;

 // Casting:

 //! boolean bl = (boolean)x;

 char c = (char)x;

 byte b = (byte)x;

 short s = (short)x;

 int i = (int)x;

 long l = (long)x;

 double d = (double)x;

 }

 void doubleTest(double x, double y) {

 // Arithmetic operators:

 x = x * y;

 x = x / y;

 x = x % y;

 x = x + y;

 x = x - y;

 x++;

 x--;

 x = +y;

 x = -y;

 // Relational and logical:

 f(x > y);

 f(x >= y);

 f(x < y);

 f(x <= y);

 f(x == y);

 f(x != y);

 //! f(!x);

128 Thinking in Java Bruce Eckel

 //! f(x && y);

 //! f(x || y);

 // Bitwise operators:

 //! x = ~y;

 //! x = x & y;

 //! x = x | y;

 //! x = x ^ y;

 //! x = x << 1;

 //! x = x >> 1;

 //! x = x >>> 1;

 // Compound assignment:

 x += y;

 x -= y;

 x *= y;

 x /= y;

 x %= y;

 //! x <<= 1;

 //! x >>= 1;

 //! x >>>= 1;

 //! x &= y;

 //! x ^= y;

 //! x |= y;

 // Casting:

 //! boolean bl = (boolean)x;

 char c = (char)x;

 byte b = (byte)x;

 short s = (short)x;

 int i = (int)x;

 long l = (long)x;

 float f = (float)x;

 }

} ///:~

Note that boolean is quite limited. You can assign to it the values true and

false, and you can test it for truth or falsehood, but you cannot add booleans

or perform any other type of operation on them.

In char, byte, and short, you can see the effect of promotion with the

arithmetic operators. Each arithmetic operation on any of those types

produces an int result, which must be explicitly cast back to the original type

(a narrowing conversion that might lose information) to assign back to that

type. With int values, however, you do not need to cast, because everything is

already an int. Don’t be lulled into thinking everything is safe, though. If you

Operators 129

multiply two ints that are big enough, you’ll overflow the result. The

following example demonstrates this:

//: operators/Overflow.java

// Surprise! Java lets you overflow.

public class Overflow {

 public static void main(String[] args) {

 int big = Integer.MAX_VALUE;

 System.out.println("big = " + big);

 int bigger = big * 4;

 System.out.println("bigger = " + bigger);

 }

} /* Output:

big = 2147483647

bigger = -4

*///:~

You get no errors or warnings from the compiler, and no exceptions at run

time. Java is good, but it’s not that good.

Compound assignments do not require casts for char, byte, or short, even

though they are performing promotions that have the same results as the

direct arithmetic operations. On the other hand, the lack of the cast certainly

simplifies the code.

You can see that, with the exception of boolean, any primitive type can be

cast to any other primitive type. Again, you must be aware of the effect of a

narrowing conversion when casting to a smaller type; otherwise, you might

unknowingly lose information during the cast.

Exercise 14: (3) Write a method that takes two String arguments and
uses all the boolean comparisons to compare the two Strings and print the
results. For the == and !=, also perform the equals() test. In main(), call
your method with some different String objects.

Summary
If you’ve had experience with any languages that use C-like syntax, you can

see that the operators in Java are so similar that there is virtually no learning

curve. If you found this chapter challenging, make sure you view the

multimedia presentation Thinking in C, available at

www.MindViewLLC.com.

130 Thinking in Java Bruce Eckel

Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for sale from www.MindViewLLC.com.

 131

Controlling
Execution

Like a sentient creature, a program must manipulate its
world and make choices during execution. In Java you
make choices with execution control statements.

Java uses all of C’s execution control statements, so if you’ve programmed

with C or C++, then most of what you see will be familiar. Most procedural

programming languages have some kind of control statements, and there is

often overlap among languages. In Java, the keywords include if-else,

while, do-while, for, return, break, and a selection statement called

switch. Java does not, however, support the much-maligned goto (which

can still be the most expedient way to solve certain types of problems). You

can still do a goto-like jump, but it is much more constrained than a typical

goto.

true and false
All conditional statements use the truth or falsehood of a conditional

expression to determine the execution path. An example of a conditional

expression is a == b. This uses the conditional operator == to see if the value

of a is equivalent to the value of b. The expression returns true or false. Any

of the relational operators you’ve seen in the previous chapter can be used to

produce a conditional statement. Note that Java doesn’t allow you to use a

number as a boolean, even though it’s allowed in C and C++ (where truth is

nonzero and falsehood is zero). If you want to use a non-boolean in a

boolean test, such as if(a), you must first convert it to a boolean value by

using a conditional expression, such as if(a != 0).

if-else
The if-else statement is the most basic way to control program flow. The

else is optional, so you can use if in two forms:

132 Thinking in Java Bruce Eckel

if(Boolean-expression)

 statement

or

if(Boolean-expression)

 statement

else

 statement

The Boolean-expression must produce a boolean result. The statement is

either a simple statement terminated by a semicolon, or a compound

statement, which is a group of simple statements enclosed in braces.

Whenever the word “statement” is used, it always implies that the statement

can be simple or compound.

As an example of if-else, here is a test() method that will tell you whether a

guess is above, below, or equivalent to a target number:

//: control/IfElse.java

import static net.mindview.util.Print.*;

public class IfElse {

 static int result = 0;

 static void test(int testval, int target) {

 if(testval > target)

 result = +1;

 else if(testval < target)

 result = -1;

 else

 result = 0; // Match

 }

 public static void main(String[] args) {

 test(10, 5);

 print(result);

 test(5, 10);

 print(result);

 test(5, 5);

 print(result);

 }

} /* Output:

1

-1

0

*///:~

Controlling Execution 133

In the middle of test(), you’ll also see an “else if,” which is not a new

keyword but just an else followed by a new if statement.

Although Java, like C and C++ before it, is a “free-form” language, it is

conventional to indent the body of a control flow statement so the reader can

easily determine where it begins and ends.

Iteration
Looping is controlled by while, do-while and for, which are sometimes

classified as iteration statements. A statement repeats until the controlling

Boolean-expression evaluates to false. The form for a while loop is:

while(Boolean-expression)

 statement

The Boolean-expression is evaluated once at the beginning of the loop and

again before each further iteration of the statement.

Here’s a simple example that generates random numbers until a particular

condition is met:

//: control/WhileTest.java

// Demonstrates the while loop.

public class WhileTest {

 static boolean condition() {

 boolean result = Math.random() < 0.99;

 System.out.print(result + ", ");

 return result;

 }

 public static void main(String[] args) {

 while(condition())

 System.out.println("Inside 'while'");

 System.out.println("Exited 'while'");

 }

} /* (Execute to see output) *///:~

The condition() method uses the static method random() in the Math

library, which generates a double value between 0 and 1. (It includes 0, but

not 1.) The result value comes from the comparison operator <, which

produces a boolean result. If you print a boolean value, you automatically

get the appropriate string “true” or “false.” The conditional expression for the

134 Thinking in Java Bruce Eckel

while says: “repeat the statements in the body as long as condition()

returns true.”

do-while
The form for do-while is

do

 statement

while(Boolean-expression);

The sole difference between while and do-while is that the statement of the

do-while always executes at least once, even if the expression evaluates to

false the first time. In a while, if the conditional is false the first time the

statement never executes. In practice, do-while is less common than while.

for
A for loop is perhaps the most commonly used form of iteration. This loop

performs initialization before the first iteration. Then it performs conditional

testing and, at the end of each iteration, some form of “stepping.” The form of

the for loop is:

for(initialization; Boolean-expression; step)

 statement

Any of the expressions initialization, Boolean-expression or step can be

empty. The expression is tested before each iteration, and as soon as it

evaluates to false, execution will continue at the line following the for

statement. At the end of each loop, the step executes.

for loops are usually used for “counting” tasks:

//: control/ListCharacters.java

// Demonstrates "for" loop by listing

// all the lowercase ASCII letters.

public class ListCharacters {

 public static void main(String[] args) {

 for(char c = 0; c < 128; c++)

 if(Character.isLowerCase(c))

 System.out.println("value: " + (int)c +

 " character: " + c);

 }

} /* Output:

Controlling Execution 135

value: 97 character: a

value: 98 character: b

value: 99 character: c

value: 100 character: d

value: 101 character: e

value: 102 character: f

value: 103 character: g

value: 104 character: h

value: 105 character: i

value: 106 character: j

...

*///:~

Note that the variable c is defined at the point where it is used, inside the

control expression of the for loop, rather than at the beginning of main().

The scope of c is the statement controlled by the for.

This program also uses the java.lang.Character “wrapper” class, which not

only wraps the primitive char type in an object, but also provides other

utilities. Here, the static isLowerCase() method is used to detect whether

the character in question is a lowercase letter.

Traditional procedural languages like C require that all variables be defined

at the beginning of a block so that when the compiler creates a block, it can

allocate space for those variables. In Java and C++, you can spread your

variable declarations throughout the block, defining them at the point that

you need them. This allows a more natural coding style and makes code

easier to understand.

Exercise 1: (1) Write a program that prints values from 1 to 100.

Exercise 2: (2) Write a program that generates 25 random int values. For
each value, use an if-else statement to classify it as greater than, less than, or
equal to a second randomly generated value.

Exercise 3: (1) Modify Exercise 2 so that your code is surrounded by an
“infinite” while loop. It will then run until you interrupt it from the keyboard
(typically by pressing Control-C).

Exercise 4: (3) Write a program that uses two nested for loops and the
modulus operator (%) to detect and print prime numbers (integral numbers
that are not evenly divisible by any other numbers except for themselves and
1).

136 Thinking in Java Bruce Eckel

Exercise 5: (4) Repeat Exercise 10 from the previous chapter, using the
ternary operator and a bitwise test to display the ones and zeroes, instead of
Integer.toBinaryString().

The comma operator
The comma operator (not the comma separator, which is used to separate

definitions and method arguments) has only one use in Java: in the control

expression of a for loop. In both the initialization and step portions of the

control expression, you can have a number of statements separated by

commas, and those statements will be evaluated sequentially.

Using the comma operator, you can define multiple variables within a for

statement, but they must be of the same type:

//: control/CommaOperator.java

public class CommaOperator {

 public static void main(String[] args) {

 for(int i = 1, j = i + 10; i < 5; i++, j = i * 2) {

 System.out.println("i = " + i + " j = " + j);

 }

 }

} /* Output:

i = 1 j = 11

i = 2 j = 4

i = 3 j = 6

i = 4 j = 8

*///:~

The int definition in the for statement covers both i and j. The initialization

portion can have any number of definitions of one type. The ability to define

variables in a control expression is limited to the for loop. You cannot use

this approach with any of the other selection or iteration statements.

You can see that in both the initialization and step portions, the statements

are evaluated in sequential order.

Foreach syntax
Java SE5 introduces a new and more succinct for syntax, for use with arrays

and containers (you’ll learn more about these in the Arrays and Containers

Controlling Execution 137

in Depth chapter). This is often called the foreach syntax, and it means that

you don’t have to create an int to count through a sequence of items—the

foreach produces each item for you, automatically.

For example, suppose you have an array of float and you’d like to select each

element in that array:

//: control/ForEachFloat.java

import java.util.*;

public class ForEachFloat {

 public static void main(String[] args) {

 Random rand = new Random(47);

 float f[] = new float[10];

 for(int i = 0; i < 10; i++)

 f[i] = rand.nextFloat();

 for(float x : f)

 System.out.println(x);

 }

} /* Output:

0.72711575

0.39982635

0.5309454

0.0534122

0.16020656

0.57799757

0.18847865

0.4170137

0.51660204

0.73734957

*///:~

The array is populated using the old for loop, because it must be accessed

with an index. You can see the foreach syntax in the line:

 for(float x : f) {

This defines a variable x of type float and sequentially assigns each element

of f to x.

Any method that returns an array is a candidate for use with foreach. For

example, the String class has a method toCharArray() that returns an

array of char, so you can easily iterate through the characters in a string:

//: control/ForEachString.java

138 Thinking in Java Bruce Eckel

public class ForEachString {

 public static void main(String[] args) {

 for(char c : "An African Swallow".toCharArray())

 System.out.print(c + " ");

 }

} /* Output:

A n A f r i c a n S w a l l o w

*///:~

As you’ll see in the Holding Your Objects chapter, foreach will also work with

any object that is Iterable.

Many for statements involve stepping through a sequence of integral values,

like this:

for(int i = 0; i < 100; i++)

For these, the foreach syntax won’t work unless you want to create an array of

int first. To simplify this task, I’ve created a method called range() in

net.mindview.util.Range that automatically generates the appropriate

array. My intent is for range() to be used as a static import:

//: control/ForEachInt.java

import static net.mindview.util.Range.*;

import static net.mindview.util.Print.*;

public class ForEachInt {

 public static void main(String[] args) {

 for(int i : range(10)) // 0..9

 printnb(i + " ");

 print();

 for(int i : range(5, 10)) // 5..9

 printnb(i + " ");

 print();

 for(int i : range(5, 20, 3)) // 5..20 step 3

 printnb(i + " ");

 print();

 }

} /* Output:

0 1 2 3 4 5 6 7 8 9

5 6 7 8 9

5 8 11 14 17

*///:~

Controlling Execution 139

The range() method has been overloaded, which means the same method

name can be used with different argument lists (you’ll learn about

overloading soon). The first overloaded form of range() just starts at zero

and produces values up to but not including the top end of the range. The

second form starts at the first value and goes until one less than the second,

and the third form has a step value so it increases by that value. range() is a

very simple version of what’s called a generator, which you’ll see later in the

book.

Note that although range() allows the use of the foreach syntax in more

places, and thus arguably increases readability, it is a little less efficient, so if

you are tuning for performance you may want to use a profiler, which is a tool

that measures the performance of your code.

You’ll note the use of printnb() in addition to print(). The printnb()

method does not emit a newline, so it allows you to output a line in pieces.

The foreach syntax not only saves time when typing in code. More

importantly, it is far easier to read and says what you are trying to do (get

each element of the array) rather than giving the details of how you are doing

it (“I’m creating this index so I can use it to select each of the array

elements.”). The foreach syntax will be used whenever possible in this book.

return
Several keywords represent unconditional branching, which simply means

that the branch happens without any test. These include return, break,

continue, and a way to jump to a labeled statement which is similar to the

goto in other languages.

The return keyword has two purposes: It specifies what value a method will

return (if it doesn’t have a void return value) and it causes the current

method to exit, returning that value. The preceding test() method can be

rewritten to take advantage of this:

//: control/IfElse2.java

import static net.mindview.util.Print.*;

public class IfElse2 {

 static int test(int testval, int target) {

 if(testval > target)

 return +1;

140 Thinking in Java Bruce Eckel

 else if(testval < target)

 return -1;

 else

 return 0; // Match

 }

 public static void main(String[] args) {

 print(test(10, 5));

 print(test(5, 10));

 print(test(5, 5));

 }

} /* Output:

1

-1

0

*///:~

There’s no need for else, because the method will not continue after

executing a return.

If you do not have a return statement in a method that returns void, there’s

an implicit return at the end of that method, so it’s not always necessary to

include a return statement. However, if your method states it will return

anything other than void, you must ensure every code path will return a

value.

Exercise 6: (2) Modify the two test() methods in IfElse.java and
IfElse2.java so that they take two extra arguments, begin and end, and so
that testval is tested to see if it is within the range between (and including)
begin and end.

break and continue
You can also control the flow of the loop inside the body of any of the

iteration statements by using break and continue. break quits the loop

without executing the rest of the statements in the loop. continue stops the

execution of the current iteration and goes back to the beginning of the loop

to begin the next iteration.

This program shows examples of break and continue within for and while

loops:

//: control/BreakAndContinue.java

// Demonstrates break and continue keywords.

import static net.mindview.util.Range.*;

Controlling Execution 141

public class BreakAndContinue {

 public static void main(String[] args) {

 for(int i = 0; i < 100; i++) {

 if(i == 74) break; // Out of for loop

 if(i % 9 != 0) continue; // Next iteration

 System.out.print(i + " ");

 }

 System.out.println();

 // Using foreach:

 for(int i : range(100)) {

 if(i == 74) break; // Out of for loop

 if(i % 9 != 0) continue; // Next iteration

 System.out.print(i + " ");

 }

 System.out.println();

 int i = 0;

 // An "infinite loop":

 while(true) {

 i++;

 int j = i * 27;

 if(j == 1269) break; // Out of loop

 if(i % 10 != 0) continue; // Top of loop

 System.out.print(i + " ");

 }

 }

} /* Output:

0 9 18 27 36 45 54 63 72

0 9 18 27 36 45 54 63 72

10 20 30 40

*///:~

In the for loop, the value of i never gets to 100 because the break statement

breaks out of the loop when i is 74. Normally, you’d use a break like this only

if you didn’t know when the terminating condition was going to occur. The

continue statement causes execution to go back to the top of the iteration

loop (thus incrementing i) whenever i is not evenly divisible by 9. When it is,

the value is printed.

The second for loop shows the use of foreach, and that it produces the same

results.

Finally, you see an “infinite” while loop that would, in theory, continue

forever. However, inside the loop there is a break statement that will break

142 Thinking in Java Bruce Eckel

out of the loop. In addition, you’ll see that the continue statement moves

control back to the top of the loop without completing anything after that

continue statement. (Thus printing happens in the second loop only when

the value of i is divisible by 10.) In the output, the value 0 is printed, because

0 % 9 produces 0.

Another form of the infinite loop is for(;;). The compiler treats both

while(true) and for(;;) in the same way, so whichever one you use is a

matter of programming taste.

Exercise 7: Modify Exercise 1 so that the program exits by using the
break keyword at value 99. Try using return instead.

The infamous “goto”
The goto keyword has been present in programming languages from the

beginning. Indeed, goto was the genesis of program control in assembly

language: “If condition A, then jump here; otherwise, jump there.” If you read

the assembly code that is ultimately generated by virtually any compiler,

you’ll see that program control contains many jumps (the Java compiler

produces its own “assembly code,” but this code is run by the Java Virtual

Machine rather than directly on a hardware CPU).

A goto is a jump at the source-code level, and that’s what brought it into

disrepute. If a program will always jump from one point to another, isn’t

there some way to reorganize the code so the flow of control is not so jumpy?

goto fell into true disfavor with the publication of the famous “Goto

considered harmful” paper by Edsger Dijkstra, and since then goto-bashing

has been a popular sport, with advocates of the cast-out keyword scurrying

for cover.

As is typical in situations like this, the middle ground is the most fruitful. The

problem is not the use of goto, but the overuse of goto; in rare situations

goto is actually the best way to structure control flow.

Although goto is a reserved word in Java, it is not used in the language; Java

has no goto. However, it does have something that looks a bit like a jump

tied in with the break and continue keywords. It’s not a jump but rather a

way to break out of an iteration statement. The reason it’s often thrown in

with discussions of goto is because it uses the same mechanism: a label.

A label is an identifier followed by a colon, like this:

Controlling Execution 143

label1:

The only place a label is useful in Java is right before an iteration statement.

And that means right before—it does no good to put any other statement

between the label and the iteration. And the sole reason to put a label before

an iteration is if you’re going to nest another iteration or a switch (which

you’ll learn about shortly) inside it. That’s because the break and continue

keywords will normally interrupt only the current loop, but when used with a

label, they’ll interrupt the loops up to where the label exists:

label1:

outer-iteration {

 inner-iteration {

 //...

 break; // (1)

 //...

 continue; // (2)

 //...

 continue label1; // (3)

 //...

 break label1; // (4)

 }

}

In (1), the break breaks out of the inner iteration and you end up in the

outer iteration. In (2), the continue moves back to the beginning of the

inner iteration. But in (3), the continue label1 breaks out of the inner

iteration and the outer iteration, all the way back to label1. Then it does in

fact continue the iteration, but starting at the outer iteration. In (4), the

break label1 also breaks all the way out to label1, but it does not reenter

the iteration. It actually does break out of both iterations.

Here is an example using for loops:

//: control/LabeledFor.java

// For loops with "labeled break" and "labeled continue."

import static net.mindview.util.Print.*;

public class LabeledFor {

 public static void main(String[] args) {

 int i = 0;

 outer: // Can't have statements here

 for(; true ;) { // infinite loop

 inner: // Can't have statements here

144 Thinking in Java Bruce Eckel

 for(; i < 10; i++) {

 print("i = " + i);

 if(i == 2) {

 print("continue");

 continue;

 }

 if(i == 3) {

 print("break");

 i++; // Otherwise i never

 // gets incremented.

 break;

 }

 if(i == 7) {

 print("continue outer");

 i++; // Otherwise i never

 // gets incremented.

 continue outer;

 }

 if(i == 8) {

 print("break outer");

 break outer;

 }

 for(int k = 0; k < 5; k++) {

 if(k == 3) {

 print("continue inner");

 continue inner;

 }

 }

 }

 }

 // Can't break or continue to labels here

 }

} /* Output:

i = 0

continue inner

i = 1

continue inner

i = 2

continue

i = 3

break

i = 4

continue inner

i = 5

Controlling Execution 145

continue inner

i = 6

continue inner

i = 7

continue outer

i = 8

break outer

*///:~

Note that break breaks out of the for loop, and that the increment

expression doesn’t occur until the end of the pass through the for loop. Since

break skips the increment expression, the increment is performed directly in

the case of i == 3. The continue outer statement in the case of i == 7 also

goes to the top of the loop and also skips the increment, so it too is

incremented directly.

If not for the break outer statement, there would be no way to get out of the

outer loop from within an inner loop, since break by itself can break out of

only the innermost loop. (The same is true for continue.)

Of course, in the cases where breaking out of a loop will also exit the method,

you can simply use a return.

Here is a demonstration of labeled break and continue statements with

while loops:

//: control/LabeledWhile.java

// While loops with "labeled break" and "labeled continue."

import static net.mindview.util.Print.*;

public class LabeledWhile {

 public static void main(String[] args) {

 int i = 0;

 outer:

 while(true) {

 print("Outer while loop");

 while(true) {

 i++;

 print("i = " + i);

 if(i == 1) {

 print("continue");

 continue;

 }

 if(i == 3) {

146 Thinking in Java Bruce Eckel

 print("continue outer");

 continue outer;

 }

 if(i == 5) {

 print("break");

 break;

 }

 if(i == 7) {

 print("break outer");

 break outer;

 }

 }

 }

 }

} /* Output:

Outer while loop

i = 1

continue

i = 2

i = 3

continue outer

Outer while loop

i = 4

i = 5

break

Outer while loop

i = 6

i = 7

break outer

*///:~

The same rules hold true for while:

1. A plain continue goes to the top of the innermost loop and

continues.

2. A labeled continue goes to the label and reenters the loop right

after that label.

3. A break “drops out of the bottom” of the loop.

4. A labeled break drops out of the bottom of the end of the loop

denoted by the label.

Controlling Execution 147

It’s important to remember that the only reason to use labels in Java is when

you have nested loops and you want to break or continue through more

than one nested level.

In Dijkstra’s “Goto considered harmful” paper, what he specifically objected

to was the labels, not the goto. He observed that the number of bugs seems

to increase with the number of labels in a program, and that labels and gotos

make programs difficult to analyze. Note that Java labels don’t suffer from

this problem, since they are constrained in their placement and can’t be used

to transfer control in an ad hoc manner. It’s also interesting to note that this

is a case where a language feature is made more useful by restricting the

power of the statement.

switch
The switch is sometimes called a selection statement. The switch statement

selects from among pieces of code based on the value of an integral

expression. Its general form is:

switch(integral-selector) {

 case integral-value1 : statement; break;

 case integral-value2 : statement; break;

 case integral-value3 : statement; break;

 case integral-value4 : statement; break;

 case integral-value5 : statement; break;

 // ...

 default: statement;

}

Integral-selector is an expression that produces an integral value. The

switch compares the result of integral-selector to each integral-value. If it

finds a match, the corresponding statement (a single statement or multiple

statements; braces are not required) executes. If no match occurs, the

default statement executes.

You will notice in the preceding definition that each case ends with a break,

which causes execution to jump to the end of the switch body. This is the

conventional way to build a switch statement, but the break is optional. If it

is missing, the code for the following case statements executes until a break

is encountered. Although you don’t usually want this kind of behavior, it can

be useful to an experienced programmer. Note that the last statement,

following the default, doesn’t have a break because the execution just falls

148 Thinking in Java Bruce Eckel

through to where the break would have taken it anyway. You could put a

break at the end of the default statement with no harm if you considered it

important for style’s sake.

The switch statement is a clean way to implement multiway selection (i.e.,

selecting from among a number of different execution paths), but it requires a

selector that evaluates to an integral value, such as int or char. If you want

to use, for example, a string or a floating point number as a selector, it won’t

work in a switch statement. For non-integral types, you must use a series of

if statements. At the end of the next chapter, you’ll see that Java SE5’s new

enum feature helps ease this restriction, as enums are designed to work

nicely with switch.

Here’s an example that creates letters randomly and determines whether

they’re vowels or consonants:

//: control/VowelsAndConsonants.java

// Demonstrates the switch statement.

import java.util.*;

import static net.mindview.util.Print.*;

public class VowelsAndConsonants {

 public static void main(String[] args) {

 Random rand = new Random(47);

 for(int i = 0; i < 100; i++) {

 int c = rand.nextInt(26) + 'a';

 printnb((char)c + ", " + c + ": ");

 switch(c) {

 case 'a':

 case 'e':

 case 'i':

 case 'o':

 case 'u': print("vowel");

 break;

 case 'y':

 case 'w': print("Sometimes a vowel");

 break;

 default: print("consonant");

 }

 }

 }

} /* Output:

y, 121: Sometimes a vowel

n, 110: consonant

Controlling Execution 149

z, 122: consonant

b, 98: consonant

r, 114: consonant

n, 110: consonant

y, 121: Sometimes a vowel

g, 103: consonant

c, 99: consonant

f, 102: consonant

o, 111: vowel

w, 119: Sometimes a vowel

z, 122: consonant

...

*///:~

Since Random.nextInt(26) generates a value between 0 and 25, you need

only add an offset of ‘a’ to produce the lowercase letters. The single-quoted

characters in the case statements also produce integral values that are used

for comparison.

Notice how the cases can be “stacked” on top of each other to provide

multiple matches for a particular piece of code. You should also be aware that

it’s essential to put the break statement at the end of a particular case;

otherwise, control will simply drop through and continue processing on the

next case.

In the statement:

int c = rand.nextInt(26) + 'a';

Random.nextInt() produces a random int value from 0 to 25, which is

added to the value of ‘a’. This means that ‘a’ is automatically converted to an

int to perform the addition.

In order to print c as a character, it must be cast to char; otherwise, you’ll

produce integral output.

Exercise 8: (2) Create a switch statement that prints a message for each
case, and put the switch inside a for loop that tries each case. Put a break
after each case and test it, then remove the breaks and see what happens.

Exercise 9: (4) A Fibonacci sequence is the sequence of numbers 1, 1, 2, 3,
5, 8, 13, 21, 34, and so on, where each number (from the third on) is the sum
of the previous two. Create a method that takes an integer as an argument
and displays that many Fibonacci numbers starting from the beginning, e.g.,

150 Thinking in Java Bruce Eckel

If you run java Fibonacci 5 (where Fibonacci is the name of the class) the
output will be: 1, 1, 2, 3, 5.

Exercise 10: (5) A vampire number has an even number of digits and is
formed by multiplying a pair of numbers containing half the number of digits
of the result. The digits are taken from the original number in any order.
Pairs of trailing zeroes are not allowed. Examples include:
1260 = 21 * 60
1827 = 21 * 87
2187 = 27 * 81
Write a program that finds all the 4-digit vampire numbers. (Suggested by
Dan Forhan.)

Summary
This chapter concludes the study of fundamental features that appear in most

programming languages: calculation, operator precedence, type casting, and

selection and iteration. Now you’re ready to begin taking steps that move you

closer to the world of object-oriented programming. The next chapter will

cover the important issues of initialization and cleanup of objects, followed in

the subsequent chapter by the essential concept of implementation hiding.

Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for sale from www.MindViewLLC.com.

 151

Initialization
& Cleanup

As the computer revolution progresses, “unsafe”
programming has become one of the major culprits that
makes programming expensive.

Two of these safety issues are initialization and cleanup. Many C bugs occur

when the programmer forgets to initialize a variable. This is especially true

with libraries when users don’t know how to initialize a library component, or

even that they must. Cleanup is a special problem because it’s easy to forget

about an element when you’re done with it, since it no longer concerns you.

Thus, the resources used by that element are retained and you can easily end

up running out of resources (most notably, memory).

C++ introduced the concept of a constructor, a special method automatically

called when an object is created. Java also adopted the constructor, and in

addition has a garbage collector that automatically releases memory

resources when they’re no longer being used. This chapter examines the

issues of initialization and cleanup, and their support in Java.

Guaranteed initialization
with the constructor

You can imagine creating a method called initialize() for every class you

write. The name is a hint that it should be called before using the object.

Unfortunately, this means the user must remember to call that method. In

Java, the class designer can guarantee initialization of every object by

providing a constructor. If a class has a constructor, Java automatically calls

that constructor when an object is created, before users can even get their

hands on it. So initialization is guaranteed.

The next challenge is what to name this method. There are two issues. The

first is that any name you use could clash with a name you might like to use as

152 Thinking in Java Bruce Eckel

a member in the class. The second is that because the compiler is responsible

for calling the constructor, it must always know which method to call. The

C++ solution seems the easiest and most logical, so it’s also used in Java: The

name of the constructor is the same as the name of the class. It makes sense

that such a method will be called automatically during initialization.

Here’s a simple class with a constructor:

//: initialization/SimpleConstructor.java

// Demonstration of a simple constructor.

class Rock {

 Rock() { // This is the constructor

 System.out.print("Rock ");

 }

}

public class SimpleConstructor {

 public static void main(String[] args) {

 for(int i = 0; i < 10; i++)

 new Rock();

 }

} /* Output:

Rock Rock Rock Rock Rock Rock Rock Rock Rock Rock

*///:~

Now, when an object is created:

new Rock();

storage is allocated and the constructor is called. It is guaranteed that the

object will be properly initialized before you can get your hands on it.

Note that the coding style of making the first letter of all methods lowercase

does not apply to constructors, since the name of the constructor must match

the name of the class exactly.

A constructor that takes no arguments is called the default constructor. The

Java documents typically use the term no-arg constructor, but “default

constructor” has been in use for many years before Java appeared, so I will

tend to use that. But like any method, the constructor can also have

arguments to allow you to specify how an object is created. The preceding

example can easily be changed so the constructor takes an argument:

Initialization & Cleanup 153

//: initialization/SimpleConstructor2.java

// Constructors can have arguments.

class Rock2 {

 Rock2(int i) {

 System.out.print("Rock " + i + " ");

 }

}

public class SimpleConstructor2 {

 public static void main(String[] args) {

 for(int i = 0; i < 8; i++)

 new Rock2(i);

 }

} /* Output:

Rock 0 Rock 1 Rock 2 Rock 3 Rock 4 Rock 5 Rock 6 Rock 7

*///:~

Constructor arguments provide you with a way to provide parameters for the

initialization of an object. For example, if the class Tree has a constructor

that takes a single integer argument denoting the height of the tree, you

create a Tree object like this:

Tree t = new Tree(12); // 12-foot tree

If Tree(int) is your only constructor, then the compiler won’t let you create a

Tree object any other way.

Constructors eliminate a large class of problems and make the code easier to

read. In the preceding code fragment, for example, you don’t see an explicit

call to some initialize() method that is conceptually separate from creation.

In Java, creation and initialization are unified concepts—you can’t have one

without the other.

The constructor is an unusual type of method because it has no return value.

This is distinctly different from a void return value, in which the method

returns nothing but you still have the option to make it return something else.

Constructors return nothing and you don’t have an option (the new

expression does return a reference to the newly created object, but the

constructor itself has no return value). If there were a return value, and if you

could select your own, the compiler would somehow need to know what to do

with that return value.

154 Thinking in Java Bruce Eckel

Exercise 1: (1) Create a class containing an uninitialized String
reference. Demonstrate that this reference is initialized by Java to null.

Exercise 2: (2) Create a class with a String field that is initialized at the
point of definition, and another one that is initialized by the constructor.
What is the difference between the two approaches?

Method overloading
One of the important features in any programming language is the use of

names. When you create an object, you give a name to a region of storage. A

method is a name for an action. You refer to all objects and methods by using

names. Well-chosen names create a system that is easier for people to

understand and change. It’s a lot like writing prose—the goal is to

communicate with your readers.

A problem arises when mapping the concept of nuance in human language

onto a programming language. Often, the same word expresses a number of

different meanings—it’s overloaded. This is useful, especially when it comes

to trivial differences. You say, “Wash the shirt,” “Wash the car,” and “Wash

the dog.” It would be silly to be forced to say, “shirtWash the shirt,” “carWash

the car,” and “dogWash the dog” just so the listener doesn’t need to make any

distinction about the action performed. Most human languages are

redundant, so even if you miss a few words, you can still determine the

meaning. You don’t need unique identifiers—you can deduce meaning from

context.

Most programming languages (C in particular) require you to have a unique

identifier for each method (often called functions in those languages). So you

could not have one function called print() for printing integers and another

called print() for printing floats—each function requires a unique name.

In Java (and C++), another factor forces the overloading of method names:

the constructor. Because the constructor’s name is predetermined by the

name of the class, there can be only one constructor name. But what if you

want to create an object in more than one way? For example, suppose you

build a class that can initialize itself in a standard way or by reading

information from a file. You need two constructors, the default constructor

and one that takes a String as an argument, which is the name of the file

from which to initialize the object. Both are constructors, so they must have

the same name—the name of the class. Thus, method overloading is essential

Initialization & Cleanup 155

to allow the same method name to be used with different argument types.

And although method overloading is a must for constructors, it’s a general

convenience and can be used with any method.

Here’s an example that shows both overloaded constructors and overloaded

methods:

//: initialization/Overloading.java

// Demonstration of both constructor

// and ordinary method overloading.

import static net.mindview.util.Print.*;

class Tree {

 int height;

 Tree() {

 print("Planting a seedling");

 height = 0;

 }

 Tree(int initialHeight) {

 height = initialHeight;

 print("Creating new Tree that is " +

 height + " feet tall");

 }

 void info() {

 print("Tree is " + height + " feet tall");

 }

 void info(String s) {

 print(s + ": Tree is " + height + " feet tall");

 }

}

public class Overloading {

 public static void main(String[] args) {

 for(int i = 0; i < 5; i++) {

 Tree t = new Tree(i);

 t.info();

 t.info("overloaded method");

 }

 // Overloaded constructor:

 new Tree();

 }

} /* Output:

Creating new Tree that is 0 feet tall

Tree is 0 feet tall

156 Thinking in Java Bruce Eckel

overloaded method: Tree is 0 feet tall

Creating new Tree that is 1 feet tall

Tree is 1 feet tall

overloaded method: Tree is 1 feet tall

Creating new Tree that is 2 feet tall

Tree is 2 feet tall

overloaded method: Tree is 2 feet tall

Creating new Tree that is 3 feet tall

Tree is 3 feet tall

overloaded method: Tree is 3 feet tall

Creating new Tree that is 4 feet tall

Tree is 4 feet tall

overloaded method: Tree is 4 feet tall

Planting a seedling

*///:~

A Tree object can be created either as a seedling, with no argument, or as a

plant grown in a nursery, with an existing height. To support this, there is a

default constructor, and one that takes the existing height.

You might also want to call the info() method in more than one way. For

example, if you have an extra message you want printed, you can use

info(String), and info() if you have nothing more to say. It would seem

strange to give two separate names to what is obviously the same concept.

Fortunately, method overloading allows you to use the same name for both.

Distinguishing overloaded methods
If the methods have the same name, how can Java know which method you

mean? There’s a simple rule: Each overloaded method must take a unique list

of argument types.

If you think about this for a second, it makes sense. How else could a

programmer tell the difference between two methods that have the same

name, other than by the types of their arguments?

Even differences in the ordering of arguments are sufficient to distinguish

two methods, although you don’t normally want to take this approach

because it produces difficult-to-maintain code:

//: initialization/OverloadingOrder.java

// Overloading based on the order of the arguments.

import static net.mindview.util.Print.*;

Initialization & Cleanup 157

public class OverloadingOrder {

 static void f(String s, int i) {

 print("String: " + s + ", int: " + i);

 }

 static void f(int i, String s) {

 print("int: " + i + ", String: " + s);

 }

 public static void main(String[] args) {

 f("String first", 11);

 f(99, "Int first");

 }

} /* Output:

String: String first, int: 11

int: 99, String: Int first

*///:~

The two f() methods have identical arguments, but the order is different, and

that’s what makes them distinct.

Overloading with primitives
A primitive can be automatically promoted from a smaller type to a larger

one, and this can be slightly confusing in combination with overloading. The

following example demonstrates what happens when a primitive is handed to

an overloaded method:

//: initialization/PrimitiveOverloading.java

// Promotion of primitives and overloading.

import static net.mindview.util.Print.*;

public class PrimitiveOverloading {

 void f1(char x) { printnb("f1(char) "); }

 void f1(byte x) { printnb("f1(byte) "); }

 void f1(short x) { printnb("f1(short) "); }

 void f1(int x) { printnb("f1(int) "); }

 void f1(long x) { printnb("f1(long) "); }

 void f1(float x) { printnb("f1(float) "); }

 void f1(double x) { printnb("f1(double) "); }

 void f2(byte x) { printnb("f2(byte) "); }

 void f2(short x) { printnb("f2(short) "); }

 void f2(int x) { printnb("f2(int) "); }

 void f2(long x) { printnb("f2(long) "); }

 void f2(float x) { printnb("f2(float) "); }

158 Thinking in Java Bruce Eckel

 void f2(double x) { printnb("f2(double) "); }

 void f3(short x) { printnb("f3(short) "); }

 void f3(int x) { printnb("f3(int) "); }

 void f3(long x) { printnb("f3(long) "); }

 void f3(float x) { printnb("f3(float) "); }

 void f3(double x) { printnb("f3(double) "); }

 void f4(int x) { printnb("f4(int) "); }

 void f4(long x) { printnb("f4(long) "); }

 void f4(float x) { printnb("f4(float) "); }

 void f4(double x) { printnb("f4(double) "); }

 void f5(long x) { printnb("f5(long) "); }

 void f5(float x) { printnb("f5(float) "); }

 void f5(double x) { printnb("f5(double) "); }

 void f6(float x) { printnb("f6(float) "); }

 void f6(double x) { printnb("f6(double) "); }

 void f7(double x) { printnb("f7(double) "); }

 void testConstVal() {

 printnb("5: ");

 f1(5);f2(5);f3(5);f4(5);f5(5);f6(5);f7(5); print();

 }

 void testChar() {

 char x = 'x';

 printnb("char: ");

 f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x); print();

 }

 void testByte() {

 byte x = 0;

 printnb("byte: ");

 f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x); print();

 }

 void testShort() {

 short x = 0;

 printnb("short: ");

 f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x); print();

 }

 void testInt() {

 int x = 0;

 printnb("int: ");

Initialization & Cleanup 159

 f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x); print();

 }

 void testLong() {

 long x = 0;

 printnb("long: ");

 f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x); print();

 }

 void testFloat() {

 float x = 0;

 printnb("float: ");

 f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x); print();

 }

 void testDouble() {

 double x = 0;

 printnb("double: ");

 f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x); print();

 }

 public static void main(String[] args) {

 PrimitiveOverloading p =

 new PrimitiveOverloading();

 p.testConstVal();

 p.testChar();

 p.testByte();

 p.testShort();

 p.testInt();

 p.testLong();

 p.testFloat();

 p.testDouble();

 }

} /* Output:

5: f1(int) f2(int) f3(int) f4(int) f5(long) f6(float)

f7(double)

char: f1(char) f2(int) f3(int) f4(int) f5(long) f6(float)

f7(double)

byte: f1(byte) f2(byte) f3(short) f4(int) f5(long) f6(float)

f7(double)

short: f1(short) f2(short) f3(short) f4(int) f5(long)

f6(float) f7(double)

int: f1(int) f2(int) f3(int) f4(int) f5(long) f6(float)

f7(double)

long: f1(long) f2(long) f3(long) f4(long) f5(long) f6(float)

f7(double)

float: f1(float) f2(float) f3(float) f4(float) f5(float)

f6(float) f7(double)

160 Thinking in Java Bruce Eckel

double: f1(double) f2(double) f3(double) f4(double)

f5(double) f6(double) f7(double)

*///:~

You can see that the constant value 5 is treated as an int, so if an overloaded

method is available that takes an int, it is used. In all other cases, if you have

a data type that is smaller than the argument in the method, that data type is

promoted. char produces a slightly different effect, since if it doesn’t find an

exact char match, it is promoted to int.

What happens if your argument is bigger than the argument expected by the

overloaded method? A modification of the preceding program gives the

answer:

//: initialization/Demotion.java

// Demotion of primitives and overloading.

import static net.mindview.util.Print.*;

public class Demotion {

 void f1(char x) { print("f1(char)"); }

 void f1(byte x) { print("f1(byte)"); }

 void f1(short x) { print("f1(short)"); }

 void f1(int x) { print("f1(int)"); }

 void f1(long x) { print("f1(long)"); }

 void f1(float x) { print("f1(float)"); }

 void f1(double x) { print("f1(double)"); }

 void f2(char x) { print("f2(char)"); }

 void f2(byte x) { print("f2(byte)"); }

 void f2(short x) { print("f2(short)"); }

 void f2(int x) { print("f2(int)"); }

 void f2(long x) { print("f2(long)"); }

 void f2(float x) { print("f2(float)"); }

 void f3(char x) { print("f3(char)"); }

 void f3(byte x) { print("f3(byte)"); }

 void f3(short x) { print("f3(short)"); }

 void f3(int x) { print("f3(int)"); }

 void f3(long x) { print("f3(long)"); }

 void f4(char x) { print("f4(char)"); }

 void f4(byte x) { print("f4(byte)"); }

 void f4(short x) { print("f4(short)"); }

 void f4(int x) { print("f4(int)"); }

Initialization & Cleanup 161

 void f5(char x) { print("f5(char)"); }

 void f5(byte x) { print("f5(byte)"); }

 void f5(short x) { print("f5(short)"); }

 void f6(char x) { print("f6(char)"); }

 void f6(byte x) { print("f6(byte)"); }

 void f7(char x) { print("f7(char)"); }

 void testDouble() {

 double x = 0;

 print("double argument:");

 f1(x);f2((float)x);f3((long)x);f4((int)x);

 f5((short)x);f6((byte)x);f7((char)x);

 }

 public static void main(String[] args) {

 Demotion p = new Demotion();

 p.testDouble();

 }

} /* Output:

double argument:

f1(double)

f2(float)

f3(long)

f4(int)

f5(short)

f6(byte)

f7(char)

*///:~

Here, the methods take narrower primitive values. If your argument is wider,

then you must perform a narrowing conversion with a cast. If you don’t do

this, the compiler will issue an error message.

Overloading on return values
It is common to wonder, “Why only class names and method argument lists?

Why not distinguish between methods based on their return values?” For

example, these two methods, which have the same name and arguments, are

easily distinguished from each other:

void f() {}

int f() { return 1; }

162 Thinking in Java Bruce Eckel

This might work fine as long as the compiler could unequivocally determine

the meaning from the context, as in int x = f(). However, you can also call a

method and ignore the return value. This is often referred to as calling a

method for its side effect, since you don’t care about the return value, but

instead want the other effects of the method call. So if you call the method

this way:

f();

how can Java determine which f() should be called? And how could someone

reading the code see it? Because of this sort of problem, you cannot use

return value types to distinguish overloaded methods.

Default constructors
As mentioned previously, a default constructor (a.k.a. a “no-arg” constructor)

is one without arguments that is used to create a “default object.” If you

create a class that has no constructors, the compiler will automatically create

a default constructor for you. For example:

//: initialization/DefaultConstructor.java

class Bird {}

public class DefaultConstructor {

 public static void main(String[] args) {

 Bird b = new Bird(); // Default!

 }

} ///:~

The expression

new Bird()

creates a new object and calls the default constructor, even though one was

not explicitly defined. Without it, you would have no method to call to build

the object. However, if you define any constructors (with or without

arguments), the compiler will not synthesize one for you:

//: initialization/NoSynthesis.java

class Bird2 {

 Bird2(int i) {}

 Bird2(double d) {}

Initialization & Cleanup 163

}

public class NoSynthesis {

 public static void main(String[] args) {

 //! Bird2 b = new Bird2(); // No default

 Bird2 b2 = new Bird2(1);

 Bird2 b3 = new Bird2(1.0);

 }

} ///:~

If you say:

new Bird2()

the compiler will complain that it cannot find a constructor that matches.

When you don’t put in any constructors, it’s as if the compiler says, “You are

bound to need some constructor, so let me make one for you.” But if you write

a constructor, the compiler says, “You’ve written a constructor so you know

what you’re doing; if you didn’t put in a default it’s because you meant to

leave it out.”

Exercise 3: (1) Create a class with a default constructor (one that takes no
arguments) that prints a message. Create an object of this class.

Exercise 4: (1) Add an overloaded constructor to the previous exercise
that takes a String argument and prints it along with your message.

Exercise 5: (2) Create a class called Dog with an overloaded bark()
method. This method should be overloaded based on various primitive data
types, and print different types of barking, howling, etc., depending on which
overloaded version is called. Write a main() that calls all the different
versions.

Exercise 6: (1) Modify the previous exercise so that two of the overloaded
methods have two arguments (of two different types), but in reversed order
relative to each other. Verify that this works.

Exercise 7: (1) Create a class without a constructor, and then create an
object of that class in main() to verify that the default constructor is
automatically synthesized.

The this keyword
If you have two objects of the same type called a and b, you might wonder

how it is that you can call a method peel() for both those objects:

164 Thinking in Java Bruce Eckel

//: initialization/BananaPeel.java

class Banana { void peel(int i) { /* ... */ } }

public class BananaPeel {

 public static void main(String[] args) {

 Banana a = new Banana(),

 b = new Banana();

 a.peel(1);

 b.peel(2);

 }

} ///:~

If there’s only one method called peel(), how can that method know whether

it’s being called for the object a or b?

To allow you to write the code in a convenient object-oriented syntax in

which you “send a message to an object,” the compiler does some undercover

work for you. There’s a secret first argument passed to the method peel(),

and that argument is the reference to the object that’s being manipulated. So

the two method calls become something like:

Banana.peel(a, 1);

Banana.peel(b, 2);

This is internal and you can’t write these expressions and get the compiler to

accept them, but it gives you an idea of what’s happening.

Suppose you’re inside a method and you’d like to get the reference to the

current object. Since that reference is passed secretly by the compiler, there’s

no identifier for it. However, for this purpose there’s a keyword: this. The

this keyword—which can be used only inside a non-static method—

produces the reference to the object that the method has been called for. You

can treat the reference just like any other object reference. Keep in mind that

if you’re calling a method of your class from within another method of your

class, you don’t need to use this. You simply call the method. The current

this reference is automatically used for the other method. Thus you can say:

//: initialization/Apricot.java

public class Apricot {

 void pick() { /* ... */ }

 void pit() { pick(); /* ... */ }

} ///:~

Initialization & Cleanup 165

Inside pit(), you could say this.pick() but there’s no need to.1 The

compiler does it for you automatically. The this keyword is used only for

those special cases in which you need to explicitly use the reference to the

current object. For example, it’s often used in return statements when you

want to return the reference to the current object:

//: initialization/Leaf.java

// Simple use of the "this" keyword.

public class Leaf {

 int i = 0;

 Leaf increment() {

 i++;

 return this;

 }

 void print() {

 System.out.println("i = " + i);

 }

 public static void main(String[] args) {

 Leaf x = new Leaf();

 x.increment().increment().increment().print();

 }

} /* Output:

i = 3

*///:~

Because increment() returns the reference to the current object via the

this keyword, multiple operations can easily be performed on the same

object.

The this keyword is also useful for passing the current object to another

method:

//: initialization/PassingThis.java

class Person {

1 Some people will obsessively put this in front of every method call and field reference,
arguing that it makes it “clearer and more explicit.” Don’t do it. There’s a reason that we
use high-level languages: They do things for us. If you put this in when it’s not necessary,
you will confuse and annoy everyone who reads your code, since all the rest of the code
they’ve read won’t use this everywhere. People expect this to be used only when it is
necessary. Following a consistent and straightforward coding style saves time and money.

166 Thinking in Java Bruce Eckel

 public void eat(Apple apple) {

 Apple peeled = apple.getPeeled();

 System.out.println("Yummy");

 }

}

class Peeler {

 static Apple peel(Apple apple) {

 // ... remove peel

 return apple; // Peeled

 }

}

class Apple {

 Apple getPeeled() { return Peeler.peel(this); }

}

public class PassingThis {

 public static void main(String[] args) {

 new Person().eat(new Apple());

 }

} /* Output:

Yummy

*///:~

Apple needs to call Peeler.peel(), which is a foreign utility method that

performs an operation that, for some reason, needs to be external to Apple

(perhaps the external method can be applied across many different classes,

and you don’t want to repeat the code). To pass itself to the foreign method, it

must use this.

Exercise 8: (1) Create a class with two methods. Within the first method,
call the second method twice: the first time without using this, and the
second time using this—just to see it working; you should not use this form
in practice.

Calling constructors from constructors
When you write several constructors for a class, there are times when you’d

like to call one constructor from another to avoid duplicating code. You can

make such a call by using the this keyword.

Normally, when you say this, it is in the sense of “this object” or “the current

object,” and by itself it produces the reference to the current object. In a

Initialization & Cleanup 167

constructor, the this keyword takes on a different meaning when you give it

an argument list. It makes an explicit call to the constructor that matches that

argument list. Thus you have a straightforward way to call other constructors:

//: initialization/Flower.java

// Calling constructors with "this"

import static net.mindview.util.Print.*;

public class Flower {

 int petalCount = 0;

 String s = "initial value";

 Flower(int petals) {

 petalCount = petals;

 print("Constructor w/ int arg only, petalCount= "

 + petalCount);

 }

 Flower(String ss) {

 print("Constructor w/ String arg only, s = " + ss);

 s = ss;

 }

 Flower(String s, int petals) {

 this(petals);

//! this(s); // Can't call two!

 this.s = s; // Another use of "this"

 print("String & int args");

 }

 Flower() {

 this("hi", 47);

 print("default constructor (no args)");

 }

 void printPetalCount() {

//! this(11); // Not inside non-constructor!

 print("petalCount = " + petalCount + " s = "+ s);

 }

 public static void main(String[] args) {

 Flower x = new Flower();

 x.printPetalCount();

 }

} /* Output:

Constructor w/ int arg only, petalCount= 47

String & int args

default constructor (no args)

petalCount = 47 s = hi

*///:~

168 Thinking in Java Bruce Eckel

The constructor Flower(String s, int petals) shows that, while you can

call one constructor using this, you cannot call two. In addition, the

constructor call must be the first thing you do, or you’ll get a compiler error

message.

This example also shows another way you’ll see this used. Since the name of

the argument s and the name of the member data s are the same, there’s an

ambiguity. You can resolve it using this.s, to say that you’re referring to the

member data. You’ll often see this form used in Java code, and it’s used in

numerous places in this book.

In printPetalCount() you can see that the compiler won’t let you call a

constructor from inside any method other than a constructor.

Exercise 9: (1) Create a class with two (overloaded) constructors. Using
this, call the second constructor inside the first one.

The meaning of static
With the this keyword in mind, you can more fully understand what it means

to make a method static. It means that there is no this for that particular

method. You cannot call non-static methods from inside static methods2

(although the reverse is possible), and you can call a static method for the

class itself, without any object. In fact, that’s primarily what a static method

is for. It’s as if you’re creating the equivalent of a global method. However,

global methods are not permitted in Java, and putting the static method

inside a class allows it access to other static methods and to static fields.

Some people argue that static methods are not object-oriented, since they do

have the semantics of a global method; with a static method, you don’t send

a message to an object, since there’s no this. This is probably a fair argument,

and if you find yourself using a lot of static methods, you should probably

rethink your strategy. However, statics are pragmatic, and there are times

when you genuinely need them, so whether or not they are “proper OOP”

should be left to the theoreticians.

2 The one case in which this is possible occurs if you pass a reference to an object into the
static method (the static method could also create its own object). Then, via the
reference (which is now effectively this), you can call non-static methods and access non-
static fields. But typically, if you want to do something like this, you’ll just make an
ordinary, non-static method.

Initialization & Cleanup 169

Cleanup: finalization and
garbage collection

Programmers know about the importance of initialization, but often forget

the importance of cleanup. After all, who needs to clean up an int? But with

libraries, simply “letting go” of an object once you’re done with it is not

always safe. Of course, Java has the garbage collector to reclaim the memory

of objects that are no longer used. Now consider an unusual case: Suppose

your object allocates “special” memory without using new. The garbage

collector only knows how to release memory allocated with new, so it won’t

know how to release the object’s “special” memory. To handle this case, Java

provides a method called finalize() that you can define for your class.

Here’s how it’s supposed to work. When the garbage collector is ready to

release the storage used for your object, it will first call finalize(), and only

on the next garbage-collection pass will it reclaim the object’s memory. So if

you choose to use finalize(), it gives you the ability to perform some

important cleanup at the time of garbage collection.

This is a potential programming pitfall because some programmers,

especially C++ programmers, might initially mistake finalize() for the

destructor in C++, which is a function that is always called when an object is

destroyed. It is important to distinguish between C++ and Java here, because

in C++, objects always get destroyed (in a bug-free program), whereas in

Java, objects do not always get garbage collected. Or, put another way:

1. Your objects might not get garbage collected.

2. Garbage collection is not destruction.

If you remember this, you will stay out of trouble. What it means is that if

there is some activity that must be performed before you no longer need an

object, you must perform that activity yourself. Java has no destructor or

similar concept, so you must create an ordinary method to perform this

cleanup. For example, suppose that in the process of creating your object, it

draws itself on the screen. If you don’t explicitly erase its image from the

screen, it might never get cleaned up. If you put some kind of erasing

functionality inside finalize(), then if an object is garbage collected and

finalize() is called (and there’s no guarantee this will happen), then the

170 Thinking in Java Bruce Eckel

image will first be removed from the screen, but if it isn’t, the image will

remain.

You might find that the storage for an object never gets released because your

program never nears the point of running out of storage. If your program

completes and the garbage collector never gets around to releasing the

storage for any of your objects, that storage will be returned to the operating

system en masse as the program exits. This is a good thing, because garbage

collection has some overhead, and if you never do it, you never incur that

expense.

What is finalize() for?
So, if you should not use finalize() as a general-purpose cleanup method,

what good is it?

A third point to remember is:

3. Garbage collection is only about memory.

That is, the sole reason for the existence of the garbage collector is to recover

memory that your program is no longer using. So any activity that is

associated with garbage collection, most notably your finalize() method,

must also be only about memory and its deallocation.

Does this mean that if your object contains other objects, finalize() should

explicitly release those objects? Well, no—the garbage collector takes care of

the release of all object memory regardless of how the object is created. It

turns out that the need for finalize() is limited to special cases in which

your object can allocate storage in some way other than creating an object.

But, you might observe, everything in Java is an object, so how can this be?

It would seem that finalize() is in place because of the possibility that you’ll

do something C-like by allocating memory using a mechanism other than the

normal one in Java. This can happen primarily through native methods,

which are a way to call non-Java code from Java. C and C++ are the only

languages currently supported by native methods, but since they can call

subprograms in other languages, you can effectively call anything. Inside the

non-Java code, C’s malloc() family of functions might be called to allocate

storage, and unless you call free(), that storage will not be released, causing

a memory leak. Of course, free() is a C and C++ function, so you’d need to

call it in a native method inside your finalize().

Initialization & Cleanup 171

After reading this, you probably get the idea that you won’t use finalize()

much.3 You’re correct; it is not the appropriate place for normal cleanup to

occur. So where should normal cleanup be performed?

You must perform cleanup
To clean up an object, the user of that object must call a cleanup method at

the point the cleanup is desired. This sounds pretty straightforward, but it

collides a bit with the C++ concept of the destructor. In C++, all objects are

destroyed. Or rather, all objects should be destroyed. If the C++ object is

created as a local (i.e., on the stack—not possible in Java), then the

destruction happens at the closing curly brace of the scope in which the object

was created. If the object was created using new (like in Java), the destructor

is called when the programmer calls the C++ operator delete (which doesn’t

exist in Java). If the C++ programmer forgets to call delete, the destructor is

never called, and you have a memory leak, plus the other parts of the object

never get cleaned up. This kind of bug can be very difficult to track down, and

is one of the compelling reasons to move from C++ to Java.

In contrast, Java doesn’t allow you to create local objects—you must always

use new. But in Java, there’s no “delete” for releasing the object, because the

garbage collector releases the storage for you. So from a simplistic

standpoint, you could say that because of garbage collection, Java has no

destructor. You’ll see as this book progresses, however, that the presence of a

garbage collector does not remove the need for or the utility of destructors.

(And you should never call finalize() directly, so that’s not a solution.) If

you want some kind of cleanup performed other than storage release, you

must still explicitly call an appropriate method in Java, which is the

equivalent of a C++ destructor without the convenience.

Remember that neither garbage collection nor finalization is guaranteed. If

the JVM isn’t close to running out of memory, then it might not waste time

recovering memory through garbage collection.

3 Joshua Bloch goes further in his section titled “avoid finalizers”: “Finalizers are
unpredictable, often dangerous, and generally unnecessary.” Effective JavaTM
Programming Language Guide, p. 20 (Addison-Wesley, 2001).

172 Thinking in Java Bruce Eckel

The termination condition
In general, you can’t rely on finalize() being called, and you must create

separate “cleanup” methods and call them explicitly. So it appears that

finalize() is only useful for obscure memory cleanup that most

programmers will never use. However, there is an interesting use of

finalize() that does not rely on it being called every time. This is the

verification of the termination condition4 of an object.

At the point that you’re no longer interested in an object—when it’s ready to

be cleaned up—that object should be in a state whereby its memory can be

safely released. For example, if the object represents an open file, that file

should be closed by the programmer before the object is garbage collected. If

any portions of the object are not properly cleaned up, then you have a bug in

your program that can be very difficult to find. finalize() can be used to

eventually discover this condition, even if it isn’t always called. If one of the

finalizations happens to reveal the bug, then you discover the problem, which

is all you really care about.

Here’s a simple example of how you might use it:

//: initialization/TerminationCondition.java

// Using finalize() to detect an object that

// hasn't been properly cleaned up.

class Book {

 boolean checkedOut = false;

 Book(boolean checkOut) {

 checkedOut = checkOut;

 }

 void checkIn() {

 checkedOut = false;

 }

 protected void finalize() {

 if(checkedOut)

 System.out.println("Error: checked out");

 // Normally, you'll also do this:

 // super.finalize(); // Call the base-class version

 }

4 A term coined by Bill Venners (www.Artima.com) during a seminar that he and I were
giving together.

Initialization & Cleanup 173

}

public class TerminationCondition {

 public static void main(String[] args) {

 Book novel = new Book(true);

 // Proper cleanup:

 novel.checkIn();

 // Drop the reference, forget to clean up:

 new Book(true);

 // Force garbage collection & finalization:

 System.gc();

 }

} /* Output:

Error: checked out

*///:~

The termination condition is that all Book objects are supposed to be

checked in before they are garbage collected, but in main(), a programmer

error doesn’t check in one of the books. Without finalize() to verify the

termination condition, this can be a difficult bug to find.

Note that System.gc() is used to force finalization. But even if it isn’t, it’s

highly probable that the errant Book will eventually be discovered through

repeated executions of the program (assuming the program allocates enough

storage to cause the garbage collector to execute).

You should generally assume that the base-class version of finalize() will

also be doing something important, and call it using super, as you can see in

Book.finalize(). In this case, it is commented out because it requires

exception handling, which we haven’t covered yet.

Exercise 10: (2) Create a class with a finalize() method that prints a
message. In main(), create an object of your class. Explain the behavior of
your program.

Exercise 11: (4) Modify the previous exercise so that your finalize()
will always be called.

Exercise 12: (4) Create a class called Tank that can be filled and
emptied, and has a termination condition that it must be empty when the
object is cleaned up. Write a finalize() that verifies this termination
condition. In main(), test the possible scenarios that can occur when your
Tank is used.

174 Thinking in Java Bruce Eckel

How a garbage collector works
If you come from a programming language where allocating objects on the

heap is expensive, you may naturally assume that Java’s scheme of allocating

everything (except primitives) on the heap is also expensive. However, it

turns out that the garbage collector can have a significant impact on

increasing the speed of object creation. This might sound a bit odd at first—

that storage release affects storage allocation—but it’s the way some JVMs

work, and it means that allocating storage for heap objects in Java can be

nearly as fast as creating storage on the stack in other languages.

For example, you can think of the C++ heap as a yard where each object

stakes out its own piece of turf. This real estate can become abandoned

sometime later and must be reused. In some JVMs, the Java heap is quite

different; it’s more like a conveyor belt that moves forward every time you

allocate a new object. This means that object storage allocation is remarkably

rapid. The “heap pointer” is simply moved forward into virgin territory, so it’s

effectively the same as C++’s stack allocation. (Of course, there’s a little extra

overhead for bookkeeping, but it’s nothing like searching for storage.)

You might observe that the heap isn’t in fact a conveyor belt, and if you treat

it that way, you’ll start paging memory—moving it on and off disk, so that you

can appear to have more memory than you actually do. Paging significantly

impacts performance. Eventually, after you create enough objects, you’ll run

out of memory. The trick is that the garbage collector steps in, and while it

collects the garbage it compacts all the objects in the heap so that you’ve

effectively moved the “heap pointer” closer to the beginning of the conveyor

belt and farther away from a page fault. The garbage collector rearranges

things and makes it possible for the high-speed, infinite-free-heap model to

be used while allocating storage.

To understand garbage collection in Java, it’s helpful to learn how garbage-

collection schemes work in other systems. A simple but slow garbage-

collection technique is called reference counting. This means that each object

contains a reference counter, and every time a reference is attached to that

object, the reference count is increased. Every time a reference goes out of

scope or is set to null, the reference count is decreased. Thus, managing

reference counts is a small but constant overhead that happens throughout

the lifetime of your program. The garbage collector moves through the entire

list of objects, and when it finds one with a reference count of zero it releases

that storage (however, reference counting schemes often release an object as

Initialization & Cleanup 175

soon as the count goes to zero). The one drawback is that if objects circularly

refer to each other they can have nonzero reference counts while still being

garbage. Locating such self-referential groups requires significant extra work

for the garbage collector. Reference counting is commonly used to explain

one kind of garbage collection, but it doesn’t seem to be used in any JVM

implementations.

In faster schemes, garbage collection is not based on reference counting.

Instead, it is based on the idea that any non-dead object must ultimately be

traceable back to a reference that lives either on the stack or in static storage.

The chain might go through several layers of objects. Thus, if you start in the

stack and in the static storage area and walk through all the references, you’ll

find all the live objects. For each reference that you find, you must trace into

the object that it points to and then follow all the references in that object,

tracing into the objects they point to, etc., until you’ve moved through the

entire Web that originated with the reference on the stack or in static storage.

Each object that you move through must still be alive. Note that there is no

problem with detached self-referential groups—these are simply not found,

and are therefore automatically garbage.

In the approach described here, the JVM uses an adaptive garbage-collection

scheme, and what it does with the live objects that it locates depends on the

variant currently being used. One of these variants is stop-and-copy. This

means that—for reasons that will become apparent—the program is first

stopped (this is not a background collection scheme). Then, each live object is

copied from one heap to another, leaving behind all the garbage. In addition,

as the objects are copied into the new heap, they are packed end-to-end, thus

compacting the new heap (and allowing new storage to simply be reeled off

the end as previously described).

Of course, when an object is moved from one place to another, all references

that point at the object must be changed. The reference that goes from the

stack or the static storage area to the object can be changed right away, but

there can be other references pointing to this object that will be encountered

later during the “walk.” These are fixed up as they are found (you could

imagine a table that maps old addresses to new ones).

There are two issues that make these so-called “copy collectors” inefficient.

The first is the idea that you have two heaps and you slosh all the memory

back and forth between these two separate heaps, maintaining twice as much

176 Thinking in Java Bruce Eckel

memory as you actually need. Some JVMs deal with this by allocating the

heap in chunks as needed and simply copying from one chunk to another.

The second issue is the copying process itself. Once your program becomes

stable, it might be generating little or no garbage. Despite that, a copy

collector will still copy all the memory from one place to another, which is

wasteful. To prevent this, some JVMs detect that no new garbage is being

generated and switch to a different scheme (this is the “adaptive” part). This

other scheme is called mark-and-sweep, and it’s what earlier versions of the

JVM used all the time. For general use, mark-and-sweep is fairly slow, but

when you know you’re generating little or no garbage, it’s fast.

Mark-and-sweep follows the same logic of starting from the stack and static

storage, and tracing through all the references to find live objects. However,

each time it finds a live object, that object is marked by setting a flag in it, but

the object isn’t collected yet. Only when the marking process is finished does

the sweep occur. During the sweep, the dead objects are released. However,

no copying happens, so if the collector chooses to compact a fragmented

heap, it does so by shuffling objects around.

“Stop-and-copy” refers to the idea that this type of garbage collection is not

done in the background; instead, the program is stopped while the garbage

collection occurs. In the literature you’ll find many references to garbage

collection as a low-priority background process, but it turns out that the

garbage collection was not implemented that way in earlier versions of the

JVM. Instead, the garbage collector stopped the program when memory got

low. Mark-and-sweep also requires that the program be stopped.

As previously mentioned, in the JVM described here memory is allocated in

big blocks. If you allocate a large object, it gets its own block. Strict stop-and-

copy requires copying every live object from the source heap to a new heap

before you can free the old one, which translates to lots of memory. With

blocks, the garbage collection can typically copy objects to dead blocks as it

collects. Each block has a generation count to keep track of whether it’s alive.

In the normal case, only the blocks created since the last garbage collection

are compacted; all other blocks get their generation count bumped if they

have been referenced from somewhere. This handles the normal case of lots

of short-lived temporary objects. Periodically, a full sweep is made—large

objects are still not copied (they just get their generation count bumped), and

blocks containing small objects are copied and compacted. The JVM

monitors the efficiency of garbage collection and if it becomes a waste of time

Initialization & Cleanup 177

because all objects are long-lived, then it switches to mark-and-sweep.

Similarly, the JVM keeps track of how successful mark-and-sweep is, and if

the heap starts to become fragmented, it switches back to stop-and-copy. This

is where the “adaptive” part comes in, so you end up with a mouthful:

“Adaptive generational stop-and-copy mark-and-sweep.”

There are a number of additional speedups possible in a JVM. An especially

important one involves the operation of the loader and what is called a just-

in-time (JIT) compiler. A JIT compiler partially or fully converts a program

into native machine code so that it doesn’t need to be interpreted by the JVM

and thus runs much faster. When a class must be loaded (typically, the first

time you want to create an object of that class), the .class file is located, and

the bytecodes for that class are brought into memory. At this point, one

approach is to simply JIT compile all the code, but this has two drawbacks: It

takes a little more time, which, compounded throughout the life of the

program, can add up; and it increases the size of the executable (bytecodes

are significantly more compact than expanded JIT code), and this might

cause paging, which definitely slows down a program. An alternative

approach is lazy evaluation, which means that the code is not JIT compiled

until necessary. Thus, code that never gets executed might never be JIT

compiled. The Java HotSpot technologies in recent JDKs take a similar

approach by increasingly optimizing a piece of code each time it is executed,

so the more the code is executed, the faster it gets.

Member initialization
Java goes out of its way to guarantee that variables are properly initialized

before they are used. In the case of a method’s local variables, this guarantee

comes in the form of a compile-time error. So if you say:

 void f() {

 int i;

 i++; // Error -- i not initialized

 }

you’ll get an error message that says that i might not have been initialized. Of

course, the compiler could have given i a default value, but an uninitialized

local variable is probably a programmer error, and a default value would have

covered that up. Forcing the programmer to provide an initialization value is

more likely to catch a bug.

178 Thinking in Java Bruce Eckel

If a primitive is a field in a class, however, things are a bit different. As you

saw in the Everything Is an Object chapter, each primitive field of a class is

guaranteed to get an initial value. Here’s a program that verifies this, and

shows the values:

//: initialization/InitialValues.java

// Shows default initial values.

import static net.mindview.util.Print.*;

public class InitialValues {

 boolean t;

 char c;

 byte b;

 short s;

 int i;

 long l;

 float f;

 double d;

 InitialValues reference;

 void printInitialValues() {

 print("Data type Initial value");

 print("boolean " + t);

 print("char [" + c + "]");

 print("byte " + b);

 print("short " + s);

 print("int " + i);

 print("long " + l);

 print("float " + f);

 print("double " + d);

 print("reference " + reference);

 }

 public static void main(String[] args) {

 InitialValues iv = new InitialValues();

 iv.printInitialValues();

 /* You could also say:

 new InitialValues().printInitialValues();

 */

 }

} /* Output:

Data type Initial value

boolean false

char []

byte 0

short 0

Initialization & Cleanup 179

int 0

long 0

float 0.0

double 0.0

reference null

*///:~

You can see that even though the values are not specified, they automatically

get initialized (the char value is a zero, which prints as a space). So at least

there’s no threat of working with uninitialized variables.

When you define an object reference inside a class without initializing it to a

new object, that reference is given a special value of null.

Specifying initialization
What happens if you want to give a variable an initial value? One direct way

to do this is simply to assign the value at the point you define the variable in

the class. (Notice you cannot do this in C++, although C++ novices always

try.) Here the field definitions in class InitialValues are changed to provide

initial values:

//: initialization/InitialValues2.java

// Providing explicit initial values.

public class InitialValues2 {

 boolean bool = true;

 char ch = 'x';

 byte b = 47;

 short s = 0xff;

 int i = 999;

 long lng = 1;

 float f = 3.14f;

 double d = 3.14159;

} ///:~

You can also initialize non-primitive objects in this same way. If Depth is a

class, you can create a variable and initialize it like so:

//: initialization/Measurement.java

class Depth {}

public class Measurement {

 Depth d = new Depth();

 // ...

180 Thinking in Java Bruce Eckel

} ///:~

If you haven’t given d an initial value and you try to use it anyway, you’ll get a

runtime error called an exception (covered in the Error Handling with

Exceptions chapter).

You can even call a method to provide an initialization value:

//: initialization/MethodInit.java

public class MethodInit {

 int i = f();

 int f() { return 11; }

} ///:~

This method can have arguments, of course, but those arguments cannot be

other class members that haven’t been initialized yet. Thus, you can do this:

//: initialization/MethodInit2.java

public class MethodInit2 {

 int i = f();

 int j = g(i);

 int f() { return 11; }

 int g(int n) { return n * 10; }

} ///:~

But you cannot do this:

//: initialization/MethodInit3.java

public class MethodInit3 {

 //! int j = g(i); // Illegal forward reference

 int i = f();

 int f() { return 11; }

 int g(int n) { return n * 10; }

} ///:~

This is one place in which the compiler, appropriately, does complain about

forward referencing, since this has to do with the order of initialization and

not the way the program is compiled.

This approach to initialization is simple and straightforward. It has the

limitation that every object of type InitialValues will get these same

initialization values. Sometimes this is exactly what you need, but at other

times you need more flexibility.

Initialization & Cleanup 181

Constructor initialization
The constructor can be used to perform initialization, and this gives you

greater flexibility in your programming because you can call methods and

perform actions at run time to determine the initial values. There’s one thing

to keep in mind, however: You aren’t precluding the automatic initialization,

which happens before the constructor is entered. So, for example, if you say:

//: initialization/Counter.java

public class Counter {

 int i;

 Counter() { i = 7; }

 // ...

} ///:~

then i will first be initialized to 0, then to 7. This is true with all the primitive

types and with object references, including those that are given explicit

initialization at the point of definition. For this reason, the compiler doesn’t

try to force you to initialize elements in the constructor at any particular

place, or before they are used—initialization is already guaranteed.

Order of initialization
Within a class, the order of initialization is determined by the order that the

variables are defined within the class. The variable definitions may be

scattered throughout and in between method definitions, but the variables

are initialized before any methods can be called—even the constructor. For

example:

//: initialization/OrderOfInitialization.java

// Demonstrates initialization order.

import static net.mindview.util.Print.*;

// When the constructor is called to create a

// Window object, you'll see a message:

class Window {

 Window(int marker) { print("Window(" + marker + ")"); }

}

class House {

 Window w1 = new Window(1); // Before constructor

 House() {

 // Show that we're in the constructor:

182 Thinking in Java Bruce Eckel

 print("House()");

 w3 = new Window(33); // Reinitialize w3

 }

 Window w2 = new Window(2); // After constructor

 void f() { print("f()"); }

 Window w3 = new Window(3); // At end

}

public class OrderOfInitialization {

 public static void main(String[] args) {

 House h = new House();

 h.f(); // Shows that construction is done

 }

} /* Output:

Window(1)

Window(2)

Window(3)

House()

Window(33)

f()

*///:~

In House, the definitions of the Window objects are intentionally scattered

about to prove that they’ll all get initialized before the constructor is entered

or anything else can happen. In addition, w3 is reinitialized inside the

constructor.

From the output, you can see that the w3 reference gets initialized twice:

once before and once during the constructor call. (The first object is dropped,

so it can be garbage collected later.) This might not seem efficient at first, but

it guarantees proper initialization—what would happen if an overloaded

constructor were defined that did not initialize w3 and there wasn’t a

“default” initialization for w3 in its definition?

static data initialization
There’s only a single piece of storage for a static, regardless of how many

objects are created. You can’t apply the static keyword to local variables, so it

only applies to fields. If a field is a static primitive and you don’t initialize it,

it gets the standard initial value for its type. If it’s a reference to an object, the

default initialization value is null.

Initialization & Cleanup 183

If you want to place initialization at the point of definition, it looks the same

as for non-statics.

To see when the static storage gets initialized, here’s an example:

//: initialization/StaticInitialization.java

// Specifying initial values in a class definition.

import static net.mindview.util.Print.*;

class Bowl {

 Bowl(int marker) {

 print("Bowl(" + marker + ")");

 }

 void f1(int marker) {

 print("f1(" + marker + ")");

 }

}

class Table {

 static Bowl bowl1 = new Bowl(1);

 Table() {

 print("Table()");

 bowl2.f1(1);

 }

 void f2(int marker) {

 print("f2(" + marker + ")");

 }

 static Bowl bowl2 = new Bowl(2);

}

class Cupboard {

 Bowl bowl3 = new Bowl(3);

 static Bowl bowl4 = new Bowl(4);

 Cupboard() {

 print("Cupboard()");

 bowl4.f1(2);

 }

 void f3(int marker) {

 print("f3(" + marker + ")");

 }

 static Bowl bowl5 = new Bowl(5);

}

public class StaticInitialization {

 public static void main(String[] args) {

184 Thinking in Java Bruce Eckel

 print("Creating new Cupboard() in main");

 new Cupboard();

 print("Creating new Cupboard() in main");

 new Cupboard();

 table.f2(1);

 cupboard.f3(1);

 }

 static Table table = new Table();

 static Cupboard cupboard = new Cupboard();

} /* Output:

Bowl(1)

Bowl(2)

Table()

f1(1)

Bowl(4)

Bowl(5)

Bowl(3)

Cupboard()

f1(2)

Creating new Cupboard() in main

Bowl(3)

Cupboard()

f1(2)

Creating new Cupboard() in main

Bowl(3)

Cupboard()

f1(2)

f2(1)

f3(1)

*///:~

Bowl allows you to view the creation of a class, and Table and Cupboard

have static members of Bowl scattered through their class definitions. Note

that Cupboard creates a non-static Bowl bowl3 prior to the static

definitions.

From the output, you can see that the static initialization occurs only if it’s

necessary. If you don’t create a Table object and you never refer to

Table.bowl1 or Table.bowl2, the static Bowl bowl1 and bowl2 will

never be created. They are initialized only when the first Table object is

created (or the first static access occurs). After that, the static objects are

not reinitialized.

Initialization & Cleanup 185

The order of initialization is statics first, if they haven’t already been

initialized by a previous object creation, and then the non-static objects. You

can see the evidence of this in the output. To execute main() (a static

method), the StaticInitialization class must be loaded, and its static fields

table and cupboard are then initialized, which causes those classes to be

loaded, and since they both contain static Bowl objects, Bowl is then

loaded. Thus, all the classes in this particular program get loaded before

main() starts. This is usually not the case, because in typical programs you

won’t have everything linked together by statics as you do in this example.

To summarize the process of creating an object, consider a class called Dog:

1. Even though it doesn’t explicitly use the static keyword, the

constructor is actually a static method. So the first time an object

of type Dog is created, or the first time a static method or static

field of class Dog is accessed, the Java interpreter must locate

Dog.class, which it does by searching through the classpath.

2. As Dog.class is loaded (creating a Class object, which you’ll

learn about later), all of its static initializers are run. Thus, static

initialization takes place only once, as the Class object is loaded

for the first time.

3. When you create a new Dog(), the construction process for a

Dog object first allocates enough storage for a Dog object on the

heap.

4. This storage is wiped to zero, automatically setting all the

primitives in that Dog object to their default values (zero for

numbers and the equivalent for boolean and char) and the

references to null.

5. Any initializations that occur at the point of field definition are

executed.

6. Constructors are executed. As you shall see in the Reusing Classes

chapter, this might actually involve a fair amount of activity,

especially when inheritance is involved.

186 Thinking in Java Bruce Eckel

Explicit static initialization
Java allows you to group other static initializations inside a special “static

clause” (sometimes called a static block) in a class. It looks like this:

//: initialization/Spoon.java

public class Spoon {

 static int i;

 static {

 i = 47;

 }

} ///:~

It appears to be a method, but it’s just the static keyword followed by a block

of code. This code, like other static initializations, is executed only once: the

first time you make an object of that class or the first time you access a static

member of that class (even if you never make an object of that class). For

example:

//: initialization/ExplicitStatic.java

// Explicit static initialization with the "static" clause.

import static net.mindview.util.Print.*;

class Cup {

 Cup(int marker) {

 print("Cup(" + marker + ")");

 }

 void f(int marker) {

 print("f(" + marker + ")");

 }

}

class Cups {

 static Cup cup1;

 static Cup cup2;

 static {

 cup1 = new Cup(1);

 cup2 = new Cup(2);

 }

 Cups() {

 print("Cups()");

 }

}

Initialization & Cleanup 187

public class ExplicitStatic {

 public static void main(String[] args) {

 print("Inside main()");

 Cups.cup1.f(99); // (1)

 }

 // static Cups cups1 = new Cups(); // (2)

 // static Cups cups2 = new Cups(); // (2)

} /* Output:

Inside main()

Cup(1)

Cup(2)

f(99)

*///:~

The static initializers for Cups run when either the access of the static

object cup1 occurs on the line marked (1), or if line (1) is commented out

and the lines marked (2) are uncommented. If both (1) and (2) are

commented out, the static initialization for Cups never occurs, as you can

see from the output. Also, it doesn’t matter if one or both of the lines marked

(2) are uncommented; the static initialization only occurs once.

Exercise 13: (1) Verify the statements in the previous paragraph.

Exercise 14: (1) Create a class with a static String field that is
initialized at the point of definition, and another one that is initialized by the
static block. Add a static method that prints both fields and demonstrates
that they are both initialized before they are used.

Non-static instance initialization
Java provides a similar syntax, called instance initialization, for initializing

non-static variables for each object. Here’s an example:

//: initialization/Mugs.java

// Java "Instance Initialization."

import static net.mindview.util.Print.*;

class Mug {

 Mug(int marker) {

 print("Mug(" + marker + ")");

 }

 void f(int marker) {

 print("f(" + marker + ")");

 }

}

188 Thinking in Java Bruce Eckel

public class Mugs {

 Mug mug1;

 Mug mug2;

 {

 mug1 = new Mug(1);

 mug2 = new Mug(2);

 print("mug1 & mug2 initialized");

 }

 Mugs() {

 print("Mugs()");

 }

 Mugs(int i) {

 print("Mugs(int)");

 }

 public static void main(String[] args) {

 print("Inside main()");

 new Mugs();

 print("new Mugs() completed");

 new Mugs(1);

 print("new Mugs(1) completed");

 }

} /* Output:

Inside main()

Mug(1)

Mug(2)

mug1 & mug2 initialized

Mugs()

new Mugs() completed

Mug(1)

Mug(2)

mug1 & mug2 initialized

Mugs(int)

new Mugs(1) completed

*///:~

You can see that the instance initialization clause:

 {

 mug1 = new Mug(1);

 mug2 = new Mug(2);

 print("mug1 & mug2 initialized");

 }

Initialization & Cleanup 189

looks exactly like the static initialization clause except for the missing static

keyword. This syntax is necessary to support the initialization of anonymous

inner classes (see the Inner Classes chapter), but it also allows you to

guarantee that certain operations occur regardless of which explicit

constructor is called. From the output, you can see that the instance

initialization clause is executed before either one of the constructors.

Exercise 15: (1) Create a class with a String that is initialized using
instance initialization.

Array initialization
An array is simply a sequence of either objects or primitives that are all the

same type and are packaged together under one identifier name. Arrays are

defined and used with the square-brackets indexing operator []. To define

an array reference, you simply follow your type name with empty square

brackets:

int[] a1;

You can also put the square brackets after the identifier to produce exactly

the same meaning:

int a1[];

This conforms to expectations from C and C++ programmers. The former

style, however, is probably a more sensible syntax, since it says that the type

is “an int array.” That style will be used in this book.

The compiler doesn’t allow you to tell it how big the array is. This brings us

back to that issue of “references.” All that you have at this point is a reference

to an array (you’ve allocated enough storage for that reference), and there’s

been no space allocated for the array object itself. To create storage for the

array, you must write an initialization expression. For arrays, initialization

can appear anywhere in your code, but you can also use a special kind of

initialization expression that must occur at the point where the array is

created. This special initialization is a set of values surrounded by curly

braces. The storage allocation (the equivalent of using new) is taken care of

by the compiler in this case. For example:

int[] a1 = { 1, 2, 3, 4, 5 };

So why would you ever define an array reference without an array?

190 Thinking in Java Bruce Eckel

int[] a2;

Well, it’s possible to assign one array to another in Java, so you can say:

a2 = a1;

What you’re really doing is copying a reference, as demonstrated here:

//: initialization/ArraysOfPrimitives.java

import static net.mindview.util.Print.*;

public class ArraysOfPrimitives {

 public static void main(String[] args) {

 int[] a1 = { 1, 2, 3, 4, 5 };

 int[] a2;

 a2 = a1;

 for(int i = 0; i < a2.length; i++)

 a2[i] = a2[i] + 1;

 for(int i = 0; i < a1.length; i++)

 print("a1[" + i + "] = " + a1[i]);

 }

} /* Output:

a1[0] = 2

a1[1] = 3

a1[2] = 4

a1[3] = 5

a1[4] = 6

*///:~

You can see that a1 is given an initialization value but a2 is not; a2 is

assigned later—in this case, to another array. Since a2 and a1 are then aliased

to the same array, the changes made via a2 are seen in a1.

All arrays have an intrinsic member (whether they’re arrays of objects or

arrays of primitives) that you can query—but not change—to tell you how

many elements there are in the array. This member is length. Since arrays in

Java, like C and C++, start counting from element zero, the largest element

you can index is length - 1. If you go out of bounds, C and C++ quietly accept

this and allow you to stomp all over your memory, which is the source of

Initialization & Cleanup 191

many infamous bugs. However, Java protects you against such problems by

causing a runtime error (an exception) if you step out of bounds.5

What if you don’t know how many elements you’re going to need in your

array while you’re writing the program? You simply use new to create the

elements in the array. Here, new works even though it’s creating an array of

primitives (new won’t create a non-array primitive):

//: initialization/ArrayNew.java

// Creating arrays with new.

import java.util.*;

import static net.mindview.util.Print.*;

public class ArrayNew {

 public static void main(String[] args) {

 int[] a;

 Random rand = new Random(47);

 a = new int[rand.nextInt(20)];

 print("length of a = " + a.length);

 print(Arrays.toString(a));

 }

} /* Output:

length of a = 18

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

*///:~

The size of the array is chosen at random by using the Random.nextInt()

method, which produces a value between zero and that of its argument.

Because of the randomness, it’s clear that array creation is actually happening

at run time. In addition, the output of this program shows that array

elements of primitive types are automatically initialized to “empty” values.

(For numerics and char, this is zero, and for boolean, it’s false.)

The Arrays.toString() method, which is part of the standard java.util

library, produces a printable version of a one-dimensional array.

5 Of course, checking every array access costs time and code and there’s no way to turn it
off, which means that array accesses might be a source of inefficiency in your program if
they occur at a critical juncture. For Internet security and programmer productivity, the
Java designers saw that this was a worthwhile trade-off. Although you may be tempted to
write code that you think might make array accesses more efficient, this is a waste of time
because automatic compile-time and runtime optimizations will speed array accesses.

192 Thinking in Java Bruce Eckel

Of course, in this case the array could also have been defined and initialized

in the same statement:

int[] a = new int[rand.nextInt(20)];

This is the preferred way to do it, if you can.

If you create a non-primitive array, you create an array of references.

Consider the wrapper type Integer, which is a class and not a primitive:

//: initialization/ArrayClassObj.java

// Creating an array of nonprimitive objects.

import java.util.*;

import static net.mindview.util.Print.*;

public class ArrayClassObj {

 public static void main(String[] args) {

 Random rand = new Random(47);

 Integer[] a = new Integer[rand.nextInt(20)];

 print("length of a = " + a.length);

 for(int i = 0; i < a.length; i++)

 a[i] = rand.nextInt(500); // Autoboxing

 print(Arrays.toString(a));

 }

} /* Output: (Sample)

length of a = 18

[55, 193, 361, 461, 429, 368, 200, 22, 207, 288, 128, 51,

89, 309, 278, 498, 361, 20]

*///:~

Here, even after new is called to create the array:

Integer[] a = new Integer[rand.nextInt(20)];

it’s only an array of references, and the initialization is not complete until the

reference itself is initialized by creating a new Integer object (via

autoboxing, in this case):

a[i] = rand.nextInt(500);

If you forget to create the object, however, you’ll get an exception at run time

when you try to use the empty array location.

It’s also possible to initialize arrays of objects by using the curly brace-

enclosed list. There are two forms:

Initialization & Cleanup 193

//: initialization/ArrayInit.java

// Array initialization.

import java.util.*;

public class ArrayInit {

 public static void main(String[] args) {

 Integer[] a = {

 new Integer(1),

 new Integer(2),

 3, // Autoboxing

 };

 Integer[] b = new Integer[]{

 new Integer(1),

 new Integer(2),

 3, // Autoboxing

 };

 System.out.println(Arrays.toString(a));

 System.out.println(Arrays.toString(b));

 }

} /* Output:

[1, 2, 3]

[1, 2, 3]

*///:~

In both cases, the final comma in the list of initializers is optional. (This

feature makes for easier maintenance of long lists.)

Although the first form is useful, it’s more limited because it can only be used

at the point where the array is defined. You can use the second and third

forms anywhere, even inside a method call. For example, you could create an

array of String objects to pass to the main() of another class, to provide

alternate command-line arguments to that main():

//: initialization/DynamicArray.java

// Array initialization.

public class DynamicArray {

 public static void main(String[] args) {

 Other.main(new String[]{ "fiddle", "de", "dum" });

 }

}

class Other {

 public static void main(String[] args) {

194 Thinking in Java Bruce Eckel

 for(String s : args)

 System.out.print(s + " ");

 }

} /* Output:

fiddle de dum

*///:~

The array created for the argument of Other.main() is created at the point

of the method call, so you can even provide alternate arguments at the time of

the call.

Exercise 16: (1) Create an array of String objects and assign a String to
each element. Print the array by using a for loop.

Exercise 17: (2) Create a class with a constructor that takes a String
argument. During construction, print the argument. Create an array of object
references to this class, but don’t actually create objects to assign into the
array. When you run the program, notice whether the initialization messages
from the constructor calls are printed.

Exercise 18: (1) Complete the previous exercise by creating objects to
attach to the array of references.

Variable argument lists
The second form provides a convenient syntax to create and call methods that

can produce an effect similar to C’s variable argument lists (known as

“varargs” in C). These can include unknown quantities of arguments as well

as unknown types. Since all classes are ultimately inherited from the common

root class Object (a subject you will learn more about as this book

progresses), you can create a method that takes an array of Object and call it

like this:

//: initialization/VarArgs.java

// Using array syntax to create variable argument lists.

class A {}

public class VarArgs {

 static void printArray(Object[] args) {

 for(Object obj : args)

 System.out.print(obj + " ");

 System.out.println();

 }

Initialization & Cleanup 195

 public static void main(String[] args) {

 printArray(new Object[]{

 new Integer(47), new Float(3.14), new Double(11.11)

 });

 printArray(new Object[]{"one", "two", "three" });

 printArray(new Object[]{new A(), new A(), new A()});

 }

} /* Output: (Sample)

47 3.14 11.11

one two three

A@1a46e30 A@3e25a5 A@19821f

*///:~

You can see that printArray() takes an array of Object, then steps through

the array using the foreach syntax and prints each one. The standard Java

library classes produce sensible output, but the objects of the classes created

here print the class name, followed by an ‘@’ sign and hexadecimal digits.

Thus, the default behavior (if you don’t define a toString() method for your

class, which will be described later in the book) is to print the class name and

the address of the object.

You may see pre-Java SE5 code written like the above in order to produce

variable argument lists. In Java SE5, however, this long-requested feature

was finally added, so you can now use ellipses to define a variable argument

list, as you can see in printArray():

//: initialization/NewVarArgs.java

// Using array syntax to create variable argument lists.

public class NewVarArgs {

 static void printArray(Object... args) {

 for(Object obj : args)

 System.out.print(obj + " ");

 System.out.println();

 }

 public static void main(String[] args) {

 // Can take individual elements:

 printArray(new Integer(47), new Float(3.14),

 new Double(11.11));

 printArray(47, 3.14F, 11.11);

 printArray("one", "two", "three");

 printArray(new A(), new A(), new A());

 // Or an array:

 printArray((Object[])new Integer[]{ 1, 2, 3, 4 });

196 Thinking in Java Bruce Eckel

 printArray(); // Empty list is OK

 }

} /* Output: (75% match)

47 3.14 11.11

47 3.14 11.11

one two three

A@1bab50a A@c3c749 A@150bd4d

1 2 3 4

*///:~

With varargs, you no longer have to explicitly write out the array syntax—the

compiler will actually fill it in for you when you specify varargs. You’re still

getting an array, which is why printArray() is able to use foreach to iterate

through the array. However, it’s more than just an automatic conversion from

a list of elements to an array. Notice the second-t0-last line in the program,

where an array of Integer (created using autoboxing) is cast to an Object

array (to remove a compiler warning) and passed to printArray(). Clearly,

the compiler sees that this is already an array and performs no conversion on

it. So if you have a group of items you can pass them in as a list, and if you

already have an array it will accept that as the variable argument list.

The last line of the program shows that it’s possible to pass zero arguments to

a vararg list. This is helpful when you have optional trailing arguments:

//: initialization/OptionalTrailingArguments.java

public class OptionalTrailingArguments {

 static void f(int required, String... trailing) {

 System.out.print("required: " + required + " ");

 for(String s : trailing)

 System.out.print(s + " ");

 System.out.println();

 }

 public static void main(String[] args) {

 f(1, "one");

 f(2, "two", "three");

 f(0);

 }

} /* Output:

required: 1 one

required: 2 two three

required: 0

*///:~

Initialization & Cleanup 197

This also shows how you can use varargs with a specified type other than

Object. Here, all the varargs must be String objects. It’s possible to use any

type of argument in varargs, including a primitive type. The following

example also shows that the vararg list becomes an array, and if there’s

nothing in the list it’s an array of size zero:

//: initialization/VarargType.java

public class VarargType {

 static void f(Character... args) {

 System.out.print(args.getClass());

 System.out.println(" length " + args.length);

 }

 static void g(int... args) {

 System.out.print(args.getClass());

 System.out.println(" length " + args.length);

 }

 public static void main(String[] args) {

 f('a');

 f();

 g(1);

 g();

 System.out.println("int[]: " + new int[0].getClass());

 }

} /* Output:

class [Ljava.lang.Character; length 1

class [Ljava.lang.Character; length 0

class [I length 1

class [I length 0

int[]: class [I

*///:~

The getClass() method is part of Object, and will be explored fully in the

Type Information chapter. It produces the class of an object, and when you

print this class, you see an encoded string representing the class type. The

leading ‘[’ indicates that this is an array of the type that follows. The ‘I’ is for a

primitive int; to double-check, I created an array of int in the last line and

printed its type. This verifies that using varargs does not depend on

autoboxing, but that it actually uses the primitive types.

Varargs do work in harmony with autoboxing, however. For example:

//: initialization/AutoboxingVarargs.java

198 Thinking in Java Bruce Eckel

public class AutoboxingVarargs {

 public static void f(Integer... args) {

 for(Integer i : args)

 System.out.print(i + " ");

 System.out.println();

 }

 public static void main(String[] args) {

 f(new Integer(1), new Integer(2));

 f(4, 5, 6, 7, 8, 9);

 f(10, new Integer(11), 12);

 }

} /* Output:

1 2

4 5 6 7 8 9

10 11 12

*///:~

Notice that you can mix the types together in a single argument list, and

autoboxing selectively promotes the int arguments to Integer.

Varargs complicate the process of overloading, although it seems safe enough

at first:

//: initialization/OverloadingVarargs.java

public class OverloadingVarargs {

 static void f(Character... args) {

 System.out.print("first");

 for(Character c : args)

 System.out.print(" " + c);

 System.out.println();

 }

 static void f(Integer... args) {

 System.out.print("second");

 for(Integer i : args)

 System.out.print(" " + i);

 System.out.println();

 }

 static void f(Long... args) {

 System.out.println("third");

 }

 public static void main(String[] args) {

 f('a', 'b', 'c');

 f(1);

 f(2, 1);

Initialization & Cleanup 199

 f(0);

 f(0L);

 //! f(); // Won't compile -- ambiguous

 }

} /* Output:

first a b c

second 1

second 2 1

second 0

third

*///:~

In each case, the compiler is using autoboxing to match the overloaded

method, and it calls the most specifically matching method.

But when you call f() without arguments, it has no way of knowing which

one to call. Although this error is understandable, it will probably surprise the

client programmer.

You might try solving the problem by adding a non-vararg argument to one of

the methods:

//: initialization/OverloadingVarargs2.java

// {CompileTimeError} (Won't compile)

public class OverloadingVarargs2 {

 static void f(float i, Character... args) {

 System.out.println("first");

 }

 static void f(Character... args) {

 System.out.print("second");

 }

 public static void main(String[] args) {

 f(1, 'a');

 f('a', 'b');

 }

} ///:~

The {CompileTimeError} comment tag excludes the file from this book’s

Ant build. If you compile it by hand you’ll see the error message:

reference to f is ambiguous, both method f(float,java.lang.Character...)

in OverloadingVarargs2 and method f(java.lang.Character...) in

OverloadingVarargs2 match

200 Thinking in Java Bruce Eckel

If you give both methods a non-vararg argument, it works:

//: initialization/OverloadingVarargs3.java

public class OverloadingVarargs3 {

 static void f(float i, Character... args) {

 System.out.println("first");

 }

 static void f(char c, Character... args) {

 System.out.println("second");

 }

 public static void main(String[] args) {

 f(1, 'a');

 f('a', 'b');

 }

} /* Output:

first

second

*///:~

You should generally only use a variable argument list on one version of an

overloaded method. Or consider not doing it at all.

Exercise 19: (2) Write a method that takes a vararg String array. Verify
that you can pass either a comma-separated list of Strings or a String[] into
this method.

Exercise 20: (1) Create a main() that uses varargs instead of the
ordinary main() syntax. Print all the elements in the resulting args array.
Test it with various numbers of command-line arguments.

Enumerated types
An apparently small addition in Java SE5 is the enum keyword, which makes

your life much easier when you need to group together and use a set of

enumerated types. In the past you would have created a set of constant

integral values, but these do not naturally restrict themselves to your set and

thus are riskier and more difficult to use. Enumerated types are a common

enough need that C, C++, and a number of other languages have always had

them. Before Java SE5, Java programmers were forced to know a lot and be

quite careful when they wanted to properly produce the enum effect. Now

Java has enum, too, and it’s much more full-featured than what you find in

C/C++. Here’s a simple example:

Initialization & Cleanup 201

//: initialization/Spiciness.java

public enum Spiciness {

 NOT, MILD, MEDIUM, HOT, FLAMING

} ///:~

This creates an enumerated type called Spiciness with five named values.

Because the instances of enumerated types are constants, they are in all

capital letters by convention (if there are multiple words in a name, they are

separated by underscores).

To use an enum, you create a reference of that type and assign it to an

instance:

//: initialization/SimpleEnumUse.java

public class SimpleEnumUse {

 public static void main(String[] args) {

 Spiciness howHot = Spiciness.MEDIUM;

 System.out.println(howHot);

 }

} /* Output:

MEDIUM

*///:~

The compiler automatically adds useful features when you create an enum.

For example, it creates a toString() so that you can easily display the name

of an enum instance, which is how the print statement above produced its

output. The compiler also creates an ordinal() method to indicate the

declaration order of a particular enum constant, and a static values()

method that produces an array of values of the enum constants in the order

that they were declared:

//: initialization/EnumOrder.java

public class EnumOrder {

 public static void main(String[] args) {

 for(Spiciness s : Spiciness.values())

 System.out.println(s + ", ordinal " + s.ordinal());

 }

} /* Output:

NOT, ordinal 0

MILD, ordinal 1

MEDIUM, ordinal 2

202 Thinking in Java Bruce Eckel

HOT, ordinal 3

FLAMING, ordinal 4

*///:~

Although enums appear to be a new data type, the keyword only produces

some compiler behavior while generating a class for the enum, so in many

ways you can treat an enum as if it were any other class. In fact, enums are

classes and have their own methods.

An especially nice feature is the way that enums can be used inside switch

statements:

//: initialization/Burrito.java

public class Burrito {

 Spiciness degree;

 public Burrito(Spiciness degree) { this.degree = degree;}

 public void describe() {

 System.out.print("This burrito is ");

 switch(degree) {

 case NOT: System.out.println("not spicy at all.");

 break;

 case MILD:

 case MEDIUM: System.out.println("a little hot.");

 break;

 case HOT:

 case FLAMING:

 default: System.out.println("maybe too hot.");

 }

 }

 public static void main(String[] args) {

 Burrito

 plain = new Burrito(Spiciness.NOT),

 greenChile = new Burrito(Spiciness.MEDIUM),

 jalapeno = new Burrito(Spiciness.HOT);

 plain.describe();

 greenChile.describe();

 jalapeno.describe();

 }

} /* Output:

This burrito is not spicy at all.

This burrito is a little hot.

This burrito is maybe too hot.

*///:~

Initialization & Cleanup 203

Since a switch is intended to select from a limited set of possibilities, it’s an

ideal match for an enum. Notice how the enum names can produce a much

clearer indication of what the program means to do.

In general you can use an enum as if it were another way to create a data

type, and then just put the results to work. That’s the point, so you don’t have

to think too hard about them. Before the introduction of enum in Java SE5,

you had to go to a lot of effort to make an equivalent enumerated type that

was safe to use.

This is enough for you to understand and use basic enums, but we’ll look

more deeply at them later in the book—they have their own chapter:

Enumerated Types.

Exercise 21: (1) Create an enum of the least-valuable six types of paper
currency. Loop through the values() and print each value and its
ordinal().

Exercise 22: (2) Write a switch statement for the enum in the previous
example. For each case, output a description of that particular currency.

Summary
This seemingly elaborate mechanism for initialization, the constructor,

should give you a strong hint about the critical importance placed on

initialization in the language. As Bjarne Stroustrup, the inventor of C++, was

designing that language, one of the first observations he made about

productivity in C was that improper initialization of variables causes a

significant portion of programming problems. These kinds of bugs are hard to

find, and similar issues apply to improper cleanup. Because constructors

allow you to guarantee proper initialization and cleanup (the compiler will

not allow an object to be created without the proper constructor calls), you

get complete control and safety.

In C++, destruction is quite important because objects created with new

must be explicitly destroyed. In Java, the garbage collector automatically

releases the memory for all objects, so the equivalent cleanup method in Java

isn’t necessary much of the time (but when it is, you must do it yourself). In

cases where you don’t need destructor-like behavior, Java’s garbage collector

greatly simplifies programming and adds much-needed safety in managing

memory. Some garbage collectors can even clean up other resources like

graphics and file handles. However, the garbage collector does add a runtime

204 Thinking in Java Bruce Eckel

cost, the expense of which is difficult to put into perspective because of the

historical slowness of Java interpreters. Although Java has had significant

performance increases over time, the speed problem has taken its toll on the

adoption of the language for certain types of programming problems.

Because of the guarantee that all objects will be constructed, there’s actually

more to the constructor than what is shown here. In particular, when you

create new classes using either composition or inheritance, the guarantee of

construction also holds, and some additional syntax is necessary to support

this. You’ll learn about composition, inheritance, and how they affect

constructors in future chapters.

Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for sale from www.MindViewLLC.com.

 205

Access Control
Access control (or implementation hiding) is about “not
getting it right the first time.”

All good writers—including those who write software—know that a piece of

work isn’t good until it’s been rewritten, often many times. If you leave a

piece of code in a drawer for a while and come back to it, you may see a much

better way to do it. This is one of the prime motivations for refactoring,

which rewrites working code in order to make it more readable,

understandable, and thus maintainable.1

There is a tension, however, in this desire to change and improve your code.

There are often consumers (client programmers) who rely on some aspect of

your code staying the same. So you want to change it; they want it to stay the

same. Thus a primary consideration in object-oriented design is to “separate

the things that change from the things that stay the same.”

This is particularly important for libraries. Consumers of that library must

rely on the part they use, and know that they won’t need to rewrite code if a

new version of the library comes out. On the flip side, the library creator must

have the freedom to make modifications and improvements with the

certainty that the client code won’t be affected by those changes.

This can be achieved through convention. For example, the library

programmer must agree not to remove existing methods when modifying a

class in the library, since that would break the client programmer’s code. The

reverse situation is thornier, however. In the case of a field, how can the

library creator know which fields have been accessed by client programmers?

This is also true with methods that are only part of the implementation of a

class, and not meant to be used directly by the client programmer. What if the

1 See Refactoring: Improving the Design of Existing Code, by Martin Fowler, et al.
(Addison-Wesley, 1999). Occasionally someone will argue against refactoring, suggesting
that code which works is perfectly good and it’s a waste of time to refactor it. The problem
with this way of thinking is that the lion’s share of a project’s time and money is not in the
initial writing of the code, but in maintaining it. Making code easier to understand
translates into very significant dollars.

206 Thinking in Java Bruce Eckel

library creator wants to rip out an old implementation and put in a new one?

Changing any of those members might break a client programmer’s code.

Thus the library creator is in a strait jacket and can’t change anything.

To solve this problem, Java provides access specifiers to allow the library

creator to say what is available to the client programmer and what is not. The

levels of access control from “most access” to “least access” are public,

protected, package access (which has no keyword), and private. From the

previous paragraph you might think that, as a library designer, you’ll want to

keep everything as “private” as possible, and expose only the methods that

you want the client programmer to use. This is exactly right, even though it’s

often counterintuitive for people who program in other languages (especially

C) and who are used to accessing everything without restriction. By the end of

this chapter you should be convinced of the value of access control in Java.

The concept of a library of components and the control over who can access

the components of that library is not complete, however. There’s still the

question of how the components are bundled together into a cohesive library

unit. This is controlled with the package keyword in Java, and the access

specifiers are affected by whether a class is in the same package or in a

separate package. So to begin this chapter, you’ll learn how library

components are placed into packages. Then you’ll be able to understand the

complete meaning of the access specifiers.

package: the library unit
A package contains a group of classes, organized together under a single

namespace.

For example, there’s a utility library that’s part of the standard Java

distribution, organized under the namespace java.util. One of the classes in

java.util is called ArrayList. One way to use an ArrayList is to specify the

full name java.util.ArrayList.

//: access/FullQualification.java

public class FullQualification {

 public static void main(String[] args) {

 java.util.ArrayList list = new java.util.ArrayList();

 }

} ///:~

Access Control 207

This rapidly becomes tedious, so you’ll probably want to use the import

keyword instead. If you want to import a single class, you can name that class

in the import statement:

//: access/SingleImport.java

import java.util.ArrayList;

public class SingleImport {

 public static void main(String[] args) {

 ArrayList list = new ArrayList();

 }

} ///:~

Now you can use ArrayList with no qualification. However, none of the

other classes in java.util are available. To import everything, you simply use

the ‘*’ as you’ve been seeing in the rest of the examples in this book:

import java.util.*;

The reason for all this importing is to provide a mechanism to manage

namespaces. The names of all your class members are insulated from each

other. A method f() inside a class A will not clash with an f() that has the

same signature in class B. But what about the class names? Suppose you

create a Stack class that is installed on a machine that already has a Stack

class that’s written by someone else? This potential clashing of names is why

it’s important to have complete control over the namespaces in Java, and to

create a unique identifier combination for each class.

Most of the examples thus far in this book have existed in a single file and

have been designed for local use, so they haven’t bothered with package

names. These examples have actually been in packages: the “unnamed” or

default package. This is certainly an option, and for simplicity’s sake this

approach will be used whenever possible throughout the rest of this book.

However, if you’re planning to create libraries or programs that are friendly

to other Java programs on the same machine, you must think about

preventing class name clashes.

When you create a source-code file for Java, it’s commonly called a

compilation unit (sometimes a translation unit). Each compilation unit must

have a name ending in .java, and inside the compilation unit there can be a

public class that must have the same name as the file (including

capitalization, but excluding the .java file name extension). There can be

only one public class in each compilation unit; otherwise, the compiler will

208 Thinking in Java Bruce Eckel

complain. If there are additional classes in that compilation unit, they are

hidden from the world outside that package because they’re not public, and

they comprise “support” classes for the main public class.

Code organization
When you compile a .java file, you get an output file for each class in the

.java file. Each output file has the name of a class in the .java file, but with

an extension of .class. Thus you can end up with quite a few .class files from

a small number of .java files. If you’ve programmed with a compiled

language, you might be used to the compiler spitting out an intermediate

form (usually an “obj” file) that is then packaged together with others of its

kind using a linker (to create an executable file) or a librarian (to create a

library). That’s not how Java works. A working program is a bunch of .class

files, which can be packaged and compressed into a Java ARchive (JAR) file

(using Java’s jar archiver). The Java interpreter is responsible for finding,

loading, and interpreting2 these files.

A library is a group of these class files. Each source file usually has a public

class and any number of non-public classes, so there’s one public

component for each source file. If you want to say that all these components

(each in its own separate .java and .class files) belong together, that’s where

the package keyword comes in.

If you use a package statement, it must appear as the first non-comment in

the file. When you say:

package access;

you’re stating that this compilation unit is part of a library named access.

Put another way, you’re saying that the public class name within this

compilation unit is under the umbrella of the name access, and anyone who

wants to use that name must either fully specify the name or use the import

keyword in combination with access, using the choices given previously.

(Note that the convention for Java package names is to use all lowercase

letters, even for intermediate words.)

2 There’s nothing in Java that forces the use of an interpreter. There exist native-code Java
compilers that generate a single executable file.

Access Control 209

For example, suppose the name of the file is MyClass.java. This means

there can be one and only one public class in that file, and the name of that

class must be MyClass (including the capitalization):

//: access/mypackage/MyClass.java

package access.mypackage;

public class MyClass {

 // ...

} ///:~

Now, if someone wants to use MyClass or, for that matter, any of the other

public classes in access, they must use the import keyword to make the

name or names in access available. The alternative is to give the fully

qualified name:

//: access/QualifiedMyClass.java

public class QualifiedMyClass {

 public static void main(String[] args) {

 access.mypackage.MyClass m =

 new access.mypackage.MyClass();

 }

} ///:~

The import keyword can make this much cleaner:

//: access/ImportedMyClass.java

import access.mypackage.*;

public class ImportedMyClass {

 public static void main(String[] args) {

 MyClass m = new MyClass();

 }

} ///:~

It’s worth keeping in mind that what the package and import keywords

allow you to do, as a library designer, is to divide up the single global

namespace so you won’t have clashing names, no matter how many people

get on the Internet and start writing classes in Java.

Creating unique package names
You might observe that, since a package never really gets “packaged” into a

single file, a package can be made up of many .class files, and things could

210 Thinking in Java Bruce Eckel

get a bit cluttered. To prevent this, a logical thing to do is to place all the

.class files for a particular package into a single directory; that is, use the

hierarchical file structure of the operating system to your advantage. This is

one way that Java references the problem of clutter; you’ll see the other way

later when the jar utility is introduced.

Collecting the package files into a single subdirectory solves two other

problems: creating unique package names, and finding those classes that

might be buried in a directory structure someplace. This is accomplished by

encoding the path of the location of the .class file into the name of the

package. By convention, the first part of the package name is the reversed

Internet domain name of the creator of the class. Since Internet domain

names are guaranteed to be unique, if you follow this convention, your

package name will be unique and you’ll never have a name clash. (That is,

until you lose the domain name to someone else who starts writing Java code

with the same path names as you did.) Of course, if you don’t have your own

domain name, then you must fabricate an unlikely combination (such as your

first and last name) to create unique package names. If you’ve decided to start

publishing Java code, it’s worth the relatively small effort to get a domain

name.

The second part of this trick is resolving the package name into a directory

on your machine, so that when the Java program runs and it needs to load

the .class file, it can locate the directory where the .class file resides.

The Java interpreter proceeds as follows. First, it finds the environment

variable CLASSPATH3 (set via the operating system, and sometimes by the

installation program that installs Java or a Java-based tool on your machine).

CLASSPATH contains one or more directories that are used as roots in a

search for .class files. Starting at that root, the interpreter will take the

package name and replace each dot with a slash to generate a path name off

of the CLASSPATH root (so package foo.bar.baz becomes foo\bar\baz

or foo/bar/baz or possibly something else, depending on your operating

system). This is then concatenated to the various entries in the CLASSPATH.

That’s where it looks for the .class file with the name corresponding to the

class you’re trying to create. (It also searches some standard directories

relative to where the Java interpreter resides.)

3 When referring to the environment variable, capital letters will be used (CLASSPATH).

Access Control 211

To understand this, consider my domain name, which was originally

MindView.net. By reversing this and making it all lowercase,

net.mindview establishes my unique global name for my classes. (The com,

edu, org, etc., extensions were formerly capitalized in Java packages, but this

was changed in Java 2 so the entire package name is lowercase.) I can further

subdivide this by deciding that I want to create a library named simple, so

I’ll end up with a package name:

package net.mindview.simple;

Now this package name can be used as an umbrella namespace for the

following two files:

//: net/mindview/simple/Vector.java

// Creating a package.

package net.mindview.simple;

public class Vector {

 public Vector() {

 System.out.println("net.mindview.simple.Vector");

 }

} ///:~

As mentioned before, the package statement must be the first non-comment

code in the file. The second file looks much the same:

//: net/mindview/simple/List.java

// Creating a package.

package net.mindview.simple;

public class List {

 public List() {

 System.out.println("net.mindview.simple.List");

 }

} ///:~

Both of these files are placed in the subdirectory on my system:

C:\DOC\JavaT\net\mindview\simple

(Notice that the first comment line in every file in this book establishes the

directory location of that file in the source-code tree—this is used by the

automatic code-extraction tool for this book.)

212 Thinking in Java Bruce Eckel

If you walk back through this path, you can see the package name

net.mindview.simple, but what about the first portion of the path? That’s

taken care of by the CLASSPATH environment variable, which is, on my

machine:

CLASSPATH=.;D:\JAVA\LIB;C:\DOC\JavaT

You can see that the CLASSPATH can contain a number of alternative search

paths.

There’s a variation when using JAR files, however. You must put the actual

name of the JAR file in the classpath, not just the path where it’s located. So

for a JAR named grape.jar your classpath would include:

CLASSPATH=.;D:\JAVA\LIB;C:\flavors\grape.jar

Once the classpath is set up properly, the following file can be placed in any

directory:

//: access/LibTest.java

// Uses the library.

import net.mindview.simple.*;

public class LibTest {

 public static void main(String[] args) {

 Vector v = new Vector();

 List l = new List();

 }

} /* Output:

net.mindview.simple.Vector

net.mindview.simple.List

*///:~

When the compiler encounters the import statement for the simple library,

it begins searching at the directories specified by CLASSPATH, looking for

subdirectory net/mindview/simple, then seeking the compiled files of the

appropriate names (Vector.class for Vector, and List.class for List).

Note that both the classes and the desired methods in Vector and List must

be public.

Setting the CLASSPATH has been such a trial for beginning Java users (it was

for me, when I started) that the JDK in later versions of Java got a bit

smarter. You’ll find that when you install it, even if you don’t set the

CLASSPATH, you’ll be able to compile and run basic Java programs. To

Access Control 213

compile and run the source-code package for this book (available at

www.MindViewLLC.com), however, you will need to add the base directory

of the book’s code tree to your CLASSPATH.

Exercise 1: (1) Create a class in a package. Create an instance of your class
outside of that package.

Collisions
What happens if two libraries are imported via ‘*’ and they include the same

names? For example, suppose a program does this:

import net.mindview.simple.*;

import java.util.*;

Since java.util.* also contains a Vector class, this causes a potential

collision. However, as long as you don’t write the code that actually causes the

collision, everything is OK—this is good, because otherwise you might end up

doing a lot of typing to prevent collisions that would never happen.

The collision does occur if you now try to make a Vector:

Vector v = new Vector();

Which Vector class does this refer to? The compiler can’t know, and the

reader can’t know either. So the compiler complains and forces you to be

explicit. If I want the standard Java Vector, for example, I must say:

java.util.Vector v = new java.util.Vector();

Since this (along with the CLASSPATH) completely specifies the location of

that Vector, there’s no need for the import java.util.* statement unless

I’m using something else from java.util.

Alternatively, you can use the single-class import form to prevent clashes—as

long as you don’t use both colliding names in the same program (in which

case you must fall back to fully specifying the names).

Exercise 2: (1) Take the code fragments in this section and turn them into
a program, and verify that collisions do in fact occur.

A custom tool library
With this knowledge, you can now create your own libraries of tools to reduce

or eliminate duplicate code. Consider, for example, the alias we’ve been using

214 Thinking in Java Bruce Eckel

for System.out.println(), to reduce typing. This can be part of a class

called Print so that you end up with a readable static import:

//: net/mindview/util/Print.java

// Print methods that can be used without

// qualifiers, using Java SE5 static imports:

package net.mindview.util;

import java.io.*;

public class Print {

 // Print with a newline:

 public static void print(Object obj) {

 System.out.println(obj);

 }

 // Print a newline by itself:

 public static void print() {

 System.out.println();

 }

 // Print with no line break:

 public static void printnb(Object obj) {

 System.out.print(obj);

 }

 // The new Java SE5 printf() (from C):

 public static PrintStream

 printf(String format, Object... args) {

 return System.out.printf(format, args);

 }

} ///:~

You can use the printing shorthand to print anything, either with a newline

(print()) or without a newline (printnb()).

You can guess that the location of this file must be in a directory that starts at

one of the CLASSPATH locations, then continues into net/mindview. After

compiling, the static print() and printnb() methods can be used

anywhere on your system with an import static statement:

//: access/PrintTest.java

// Uses the static printing methods in Print.java.

import static net.mindview.util.Print.*;

public class PrintTest {

 public static void main(String[] args) {

 print("Available from now on!");

 print(100);

Access Control 215

 print(100L);

 print(3.14159);

 }

} /* Output:

Available from now on!

100

100

3.14159

*///:~

A second component of this library can be the range() methods, introduced

in the Controlling Execution chapter, that allow the use of the foreach syntax

for simple integer sequences:

//: net/mindview/util/Range.java

// Array creation methods that can be used without

// qualifiers, using Java SE5 static imports:

package net.mindview.util;

public class Range {

 // Produce a sequence [0..n)

 public static int[] range(int n) {

 int[] result = new int[n];

 for(int i = 0; i < n; i++)

 result[i] = i;

 return result;

 }

 // Produce a sequence [start..end)

 public static int[] range(int start, int end) {

 int sz = end - start;

 int[] result = new int[sz];

 for(int i = 0; i < sz; i++)

 result[i] = start + i;

 return result;

 }

 // Produce a sequence [start..end) incrementing by step

 public static int[] range(int start, int end, int step) {

 int sz = (end - start)/step;

 int[] result = new int[sz];

 for(int i = 0; i < sz; i++)

 result[i] = start + (i * step);

 return result;

 }

} ///:~

216 Thinking in Java Bruce Eckel

From now on, whenever you come up with a useful new utility, you can add it

to your own library. You’ll see more components added to the

net.mindview.util library throughout the book.

Using imports to change behavior
A feature that is missing from Java is C’s conditional compilation, which

allows you to change a switch and get different behavior without changing

any other code. The reason such a feature was left out of Java is probably

because it is most often used in C to solve cross-platform issues: Different

portions of the code are compiled depending on the target platform. Since

Java is intended to be automatically cross-platform, such a feature should not

be necessary.

However, there are other valuable uses for conditional compilation. A very

common use is for debugging code. The debugging features are enabled

during development and disabled in the shipping product. You can

accomplish this by changing the package that’s imported in order to change

the code used in your program from the debug version to the production

version. This technique can be used for any kind of conditional code.

Exercise 3: (2) Create two packages: debug and debugoff, containing
an identical class with a debug() method. The first version displays its
String argument to the console, the second does nothing. Use a static
import line to import the class into a test program, and demonstrate the
conditional compilation effect.

Package caveat
It’s worth remembering that anytime you create a package, you implicitly

specify a directory structure when you give the package a name. The package

must live in the directory indicated by its name, which must be a directory

that is searchable starting from the CLASSPATH. Experimenting with the

package keyword can be a bit frustrating at first, because unless you adhere

to the package-name to directory-path rule, you’ll get a lot of mysterious

runtime messages about not being able to find a particular class, even if that

class is sitting there in the same directory. If you get a message like this, try

commenting out the package statement, and if it runs, you’ll know where

the problem lies.

Access Control 217

Note that compiled code is often placed in a different directory than source

code, but the path to the compiled code must still be found by the JVM using

the CLASSPATH.

Java access specifiers
The Java access specifiers public, protected, and private are placed in

front of each definition for each member in your class, whether it’s a field or a

method. Each access specifier only controls the access for that particular

definition.

If you don’t provide an access specifier, it means “package access.” So one

way or another, everything has some kind of access control. In the following

sections, you’ll learn about the various types of access.

Package access
All the examples before this chapter used no access specifiers. The default

access has no keyword, but it is commonly referred to as package access (and

sometimes “friendly”). It means that all the other classes in the current

package have access to that member, but to all the classes outside of this

package, the member appears to be private. Since a compilation unit—a

file—can belong only to a single package, all the classes within a single

compilation unit are automatically available to each other via package access.

Package access allows you to group related classes together in a package so

that they can easily interact with each other. When you put classes together in

a package, thus granting mutual access to their package-access members, you

“own” the code in that package. It makes sense that only code that you own

should have package access to other code that you own. You could say that

package access gives a meaning or a reason for grouping classes together in a

package. In many languages the way you organize your definitions in files can

be arbitrary, but in Java you’re compelled to organize them in a sensible

fashion. In addition, you’ll probably want to exclude classes that shouldn’t

have access to the classes being defined in the current package.

The class controls the code that has access to its members. Code from another

package can’t just come around and say, “Hi, I’m a friend of Bob’s!” and

expect to be shown the protected, package-access, and private members of

Bob. The only way to grant access to a member is to:

218 Thinking in Java Bruce Eckel

1. Make the member public. Then everybody, everywhere, can

access it.

2. Give the member package access by leaving off any access

specifier, and put the other classes in the same package. Then the

other classes in that package can access the member.

3. As you’ll see in the Reusing Classes chapter, when inheritance is

introduced, an inherited class can access a protected member as

well as a public member (but not private members). It can

access package-access members only if the two classes are in the

same package. But don’t worry about inheritance and protected

right now.

4. Provide “accessor/mutator” methods (also known as “get/set”

methods) that read and change the value. This is the most civilized

approach in terms of OOP, and it is fundamental to JavaBeans, as

you’ll see in the Graphical User Interfaces chapter.

public: interface access
When you use the public keyword, it means that the member declaration

that immediately follows public is available to everyone, in particular to the

client programmer who uses the library. Suppose you define a package

dessert containing the following compilation unit:

//: access/dessert/Cookie.java

// Creates a library.

package access.dessert;

public class Cookie {

 public Cookie() {

 System.out.println("Cookie constructor");

 }

 void bite() { System.out.println("bite"); }

} ///:~

Remember, the class file produced by Cookie.java must reside in a

subdirectory called dessert, in a directory under access (indicating the

Access Control chapter of this book) that must be under one of the

CLASSPATH directories. Don’t make the mistake of thinking that Java will

always look at the current directory as one of the starting points for

Access Control 219

searching. If you don’t have a ‘.’ as one of the paths in your CLASSPATH,

Java won’t look there.

Now if you create a program that uses Cookie:

//: access/Dinner.java

// Uses the library.

import access.dessert.*;

public class Dinner {

 public static void main(String[] args) {

 Cookie x = new Cookie();

 //! x.bite(); // Can't access

 }

} /* Output:

Cookie constructor

*///:~

you can create a Cookie object, since its constructor is public and the class

is public. (We’ll look more at the concept of a public class later.) However,

the bite() member is inaccessible inside Dinner.java since bite()

provides access only within package dessert, so the compiler prevents you

from using it.

The default package

You might be surprised to discover that the following code compiles, even

though it would appear that it breaks the rules:

//: access/Cake.java

// Accesses a class in a separate compilation unit.

class Cake {

 public static void main(String[] args) {

 Pie x = new Pie();

 x.f();

 }

} /* Output:

Pie.f()

*///:~

In a second file in the same directory:

//: access/Pie.java

// The other class.

220 Thinking in Java Bruce Eckel

class Pie {

 void f() { System.out.println("Pie.f()"); }

} ///:~

You might initially view these as completely foreign files, and yet Cake is able

to create a Pie object and call its f() method. (Note that you must have ‘.’ in

your CLASSPATH in order for the files to compile.) You’d typically think that

Pie and f() have package access and are therefore not available to Cake.

They do have package access—that part is correct. The reason that they are

available in Cake.java is because they are in the same directory and have no

explicit package name. Java treats files like this as implicitly part of the

“default package” for that directory, and thus they provide package access to

all the other files in that directory.

private: you can’t touch that!
The private keyword means that no one can access that member except the

class that contains that member, inside methods of that class. Other classes in

the same package cannot access private members, so it’s as if you’re even

insulating the class against yourself. On the other hand, it’s not unlikely that a

package might be created by several people collaborating together, so

private allows you to freely change that member without concern that it will

affect another class in the same package.

The default package access often provides an adequate amount of hiding;

remember, a package-access member is inaccessible to the client programmer

using the class. This is nice, since the default access is the one that you

normally use (and the one that you’ll get if you forget to add any access

control). Thus, you’ll typically think about access for the members that you

explicitly want to make public for the client programmer, and as a result,

you might initially think that you won’t use the private keyword very often,

since it’s tolerable to get away without it. However, it turns out that the

consistent use of private is very important, especially where multithreading

is concerned. (As you’ll see in the Concurrency chapter.)

Here’s an example of the use of private:

//: access/IceCream.java

// Demonstrates "private" keyword.

class Sundae {

Access Control 221

 private Sundae() {}

 static Sundae makeASundae() {

 return new Sundae();

 }

}

public class IceCream {

 public static void main(String[] args) {

 //! Sundae x = new Sundae();

 Sundae x = Sundae.makeASundae();

 }

} ///:~

This shows an example in which private comes in handy: You might want to

control how an object is created and prevent someone from directly accessing

a particular constructor (or all of them). In the preceding example, you

cannot create a Sundae object via its constructor; instead, you must call the

makeASundae() method to do it for you.4

Any method that you’re certain is only a “helper” method for that class can be

made private, to ensure that you don’t accidentally use it elsewhere in the

package and thus prohibit yourself from changing or removing the method.

Making a method private guarantees that you retain this option.

The same is true for a private field inside a class. Unless you must expose

the underlying implementation (which is less likely than you might think),

you should make all fields private. However, just because a reference to an

object is private inside a class doesn’t mean that some other object can’t

have a public reference to the same object. (See the online supplements for

this book to learn about aliasing issues.)

protected: inheritance access
Understanding the protected access specifier requires a jump ahead. First,

you should be aware that you don’t need to understand this section to

continue through this book up through inheritance (the Reusing Classes

chapter). But for completeness, here is a brief description and example using

protected.

4 There’s another effect in this case: Since the default constructor is the only one defined,
and it’s private, it will prevent inheritance of this class. (A subject that will be introduced
later.)

222 Thinking in Java Bruce Eckel

The protected keyword deals with a concept called inheritance, which takes

an existing class—which we refer to as the base class—and adds new

members to that class without touching the existing class. You can also

change the behavior of existing members of the class. To inherit from a class,

you say that your new class extends an existing class, like this:

class Foo extends Bar {

The rest of the class definition looks the same.

If you create a new package and inherit from a class in another package, the

only members you have access to are the public members of the original

package. (Of course, if you perform the inheritance in the same package, you

can manipulate all the members that have package access.) Sometimes the

creator of the base class would like to take a particular member and grant

access to derived classes but not the world in general. That’s what protected

does. protected also gives package access—that is, other classes in the same

package may access protected elements.

If you refer back to the file Cookie.java, the following class cannot call the

package-access member bite():

//: access/ChocolateChip.java

// Can't use package-access member from another package.

import access.dessert.*;

public class ChocolateChip extends Cookie {

 public ChocolateChip() {

 System.out.println("ChocolateChip constructor");

 }

 public void chomp() {

 //! bite(); // Can't access bite

 }

 public static void main(String[] args) {

 ChocolateChip x = new ChocolateChip();

 x.chomp();

 }

} /* Output:

Cookie constructor

ChocolateChip constructor

*///:~

One of the interesting things about inheritance is that if a method bite()

exists in class Cookie, then it also exists in any class inherited from Cookie.

Access Control 223

But since bite() has package access and is in a foreign package, it’s

unavailable to us in this one. Of course, you could make it public, but then

everyone would have access, and maybe that’s not what you want. If you

change the class Cookie as follows:

//: access/cookie2/Cookie.java

package access.cookie2;

public class Cookie {

 public Cookie() {

 System.out.println("Cookie constructor");

 }

 protected void bite() {

 System.out.println("bite");

 }

} ///:~

now bite() becomes accessible to anyone inheriting from Cookie:

//: access/ChocolateChip2.java

import access.cookie2.*;

public class ChocolateChip2 extends Cookie {

 public ChocolateChip2() {

 System.out.println("ChocolateChip2 constructor");

 }

 public void chomp() { bite(); } // Protected method

 public static void main(String[] args) {

 ChocolateChip2 x = new ChocolateChip2();

 x.chomp();

 }

} /* Output:

Cookie constructor

ChocolateChip2 constructor

bite

*///:~

Note that, although bite() also has package access, it is not public.

Exercise 4: (2) Show that protected methods have package access but
are not public.

Exercise 5: (2) Create a class with public, private, protected, and
package-access fields and method members. Create an object of this class and
see what kind of compiler messages you get when you try to access all the

224 Thinking in Java Bruce Eckel

class members. Be aware that classes in the same directory are part of the
“default” package.

Exercise 6: (1) Create a class with protected data. Create a second class
in the same file with a method that manipulates the protected data in the
first class.

Interface and implementation
Access control is often referred to as implementation hiding. Wrapping data

and methods within classes in combination with implementation hiding is

often called encapsulation.5 The result is a data type with characteristics and

behaviors.

Access control puts boundaries within a data type for two important reasons.

The first is to establish what the client programmers can and can’t use. You

can build your internal mechanisms into the structure without worrying that

the client programmers will accidentally treat the internals as part of the

interface that they should be using.

This feeds directly into the second reason, which is to separate the interface

from the implementation. If the structure is used in a set of programs, but

client programmers can’t do anything but send messages to the public

interface, then you are free to change anything that’s not public (e.g.,

package access, protected, or private) without breaking client code.

For clarity, you might prefer a style of creating classes that puts the public

members at the beginning, followed by the protected, package-access, and

private members. The advantage is that the user of the class can then read

down from the top and see first what’s important to them (the public

members, because they can be accessed outside the file), and stop reading

when they encounter the non-public members, which are part of the internal

implementation:

//: access/OrganizedByAccess.java

public class OrganizedByAccess {

 public void pub1() { /* ... */ }

 public void pub2() { /* ... */ }

5 However, people often refer to implementation hiding alone as encapsulation.

Access Control 225

 public void pub3() { /* ... */ }

 private void priv1() { /* ... */ }

 private void priv2() { /* ... */ }

 private void priv3() { /* ... */ }

 private int i;

 // ...

} ///:~

This will make it only partially easier to read, because the interface and

implementation are still mixed together. That is, you still see the source

code—the implementation—because it’s right there in the class. In addition,

the comment documentation supported by Javadoc lessens the importance of

code readability by the client programmer. Displaying the interface to the

consumer of a class is really the job of the class browser, a tool whose job is

to look at all the available classes and show you what you can do with them

(i.e., what members are available) in a useful fashion. In Java, viewing the

JDK documentation with a Web browser gives you the same effect as a class

browser.

Class access
In Java, the access specifiers can also be used to determine which classes

within a library will be available to the users of that library. If you want a

class to be available to a client programmer, you use the public keyword on

the entire class definition. This controls whether the client programmer can

even create an object of the class.

To control the access of a class, the specifier must appear before the keyword

class. Thus you can say:

public class Widget {

Now if the name of your library is access, any client programmer can access

Widget by saying

import access.Widget;

or

import access.*;

However, there’s an extra set of constraints:

226 Thinking in Java Bruce Eckel

1. There can be only one public class per compilation unit (file). The

idea is that each compilation unit has a single public interface

represented by that public class. It can have as many supporting

package-access classes as you want. If you have more than one

public class inside a compilation unit, the compiler will give you

an error message.

2. The name of the public class must exactly match the name of the

file containing the compilation unit, including capitalization. So

for Widget, the name of the file must be Widget.java, not

widget.java or WIDGET.java. Again, you’ll get a compile-time

error if they don’t agree.

3. It is possible, though not typical, to have a compilation unit with

no public class at all. In this case, you can name the file whatever

you like (although naming it arbitrarily will be confusing to people

reading and maintaining the code).

What if you’ve got a class inside access that you’re only using to accomplish

the tasks performed by Widget or some other public class in access? You

don’t want to go to the bother of creating documentation for the client

programmer, and you think that sometime later you might want to

completely change things and rip out your class altogether, substituting a

different one. To give you this flexibility, you need to ensure that no client

programmers become dependent on your particular implementation details

hidden inside access. To accomplish this, you just leave the public keyword

off the class, in which case it has package access. (That class can be used only

within that package.)

Exercise 7: (1) Create the library according to the code fragments
describing access and Widget. Create a Widget in a class that is not part of
the access package.

When you create a package-access class, it still makes sense to make the fields

of the class private—you should always make fields as private as possible—

but it’s generally reasonable to give the methods the same access as the class

(package access). Since a package-access class is usually used only within the

package, you only need to make the methods of such a class public if you’re

forced to, and in those cases, the compiler will tell you.

Access Control 227

Note that a class cannot be private (that would make it inaccessible to

anyone but the class) or protected.6 So you have only two choices for class

access: package access or public. If you don’t want anyone else to have

access to that class, you can make all the constructors private, thereby

preventing anyone but you, inside a static member of the class, from creating

an object of that class. Here’s an example:

//: access/Lunch.java

// Demonstrates class access specifiers. Make a class

// effectively private with private constructors:

class Soup1 {

 private Soup1() {}

 // (1) Allow creation via static method:

 public static Soup1 makeSoup() {

 return new Soup1();

 }

}

class Soup2 {

 private Soup2() {}

 // (2) Create a static object and return a reference

 // upon request.(The "Singleton" pattern):

 private static Soup2 ps1 = new Soup2();

 public static Soup2 access() {

 return ps1;

 }

 public void f() {}

}

// Only one public class allowed per file:

public class Lunch {

 void testPrivate() {

 // Can't do this! Private constructor:

 //! Soup1 soup = new Soup1();

 }

 void testStatic() {

 Soup1 soup = Soup1.makeSoup();

 }

6 Actually, an inner class can be private or protected, but that’s a special case. These will
be introduced in the Inner Classes chapter.

228 Thinking in Java Bruce Eckel

 void testSingleton() {

 Soup2.access().f();

 }

} ///:~

Up to now, most of the methods have been returning either void or a

primitive type, so the definition:

 public static Soup1 makeSoup() {

 return new Soup1();

 }

might look a little confusing at first. The word Soup1 before the method

name (makeSoup) tells what the method returns. So far in this book, this

has usually been void, which means it returns nothing. But you can also

return a reference to an object, which is what happens here. This method

returns a reference to an object of class Soup1.

The classes Soup1 and Soup2 show how to prevent direct creation of a class

by making all the constructors private. Remember that if you don’t explicitly

create at least one constructor, the default constructor (a constructor with no

arguments) will be created for you. By writing the default constructor, it

won’t be created automatically. By making it private, no one can create an

object of that class. But now how does anyone use this class? The preceding

example shows two options. In Soup1, a static method is created that

creates a new Soup1 and returns a reference to it. This can be useful if you

want to do some extra operations on the Soup1 before returning it, or if you

want to keep count of how many Soup1 objects to create (perhaps to restrict

their population).

Soup2 uses what’s called a design pattern, which is covered in On Java 8 at

www.MindViewLLC.com. This particular pattern is called a Singleton,

because it allows only a single object to ever be created. The object of class

Soup2 is created as a static private member of Soup2, so there’s one and

only one, and you can’t get at it except through the public method access().

As previously mentioned, if you don’t put an access specifier for class access,

it defaults to package access. This means that an object of that class can be

created by any other class in the package, but not outside the package.

(Remember, all the files within the same directory that don’t have explicit

package declarations are implicitly part of the default package for that

directory.)

Access Control 229

Exercise 8: (4) Following the form of the example Lunch.java, create a
class called ConnectionManager that manages a fixed array of
Connection objects. The client programmer must not be able to explicitly
create Connection objects, but can only get them via a static method in
ConnectionManager. When the ConnectionManager runs out of
objects, it returns a null reference. Test the classes in main().

Exercise 9: (2) Create the following file in the access/local directory
(presumably in your CLASSPATH):

// access/local/PackagedClass.java

package access.local;

class PackagedClass {

 public PackagedClass() {

 System.out.println("Creating a packaged class");

 }

}

Then create the following file in a directory other than access/local:

// access/foreign/Foreign.java

package access.foreign;

import access.local.*;

public class Foreign {

 public static void main(String[] args) {

 PackagedClass pc = new PackagedClass();

 }

}

Explain why the compiler generates an error. Would making the Foreign

class part of the access.local package change anything?

Summary
In any relationship it’s important to have boundaries that are respected by all

parties involved. When you create a library, you establish a relationship with

the user of that library—the client programmer—who is another programmer,

but one using your library to build an application or a bigger library.

Without rules, client programmers can do anything they want with all the

members of a class, even if you might prefer they don’t directly manipulate

some of the members. Everything’s naked to the world.

230 Thinking in Java Bruce Eckel

This chapter looked at how classes are built to form libraries: first, the way a

group of classes is packaged within a library, and second, the way the class

controls access to its members.

It is estimated that a C programming project begins to break down

somewhere between 50K and 100K lines of code because C has a single

namespace, and names begin to collide, causing extra management overhead.

In Java, the package keyword, the package naming scheme, and the import

keyword give you complete control over names, so the issue of name collision

is easily avoided.

There are two reasons for controlling access to members. The first is to keep

users’ hands off portions that they shouldn’t touch. These pieces are

necessary for the internal operations of the class, but not part of the interface

that the client programmer needs. So making methods and fields private is a

service to client programmers, because they can easily see what’s important

to them and what they can ignore. It simplifies their understanding of the

class.

The second and most important reason for access control is to allow the

library designer to change the internal workings of the class without worrying

about how it will affect the client programmer. You might, for example, build

a class one way at first, and then discover that restructuring your code will

provide much greater speed. If the interface and implementation are clearly

separated and protected, you can accomplish this without forcing client

programmers to rewrite their code. Access control ensures that no client

programmer becomes dependent on any part of the underlying

implementation of a class.

When you have the ability to change the underlying implementation, you not

only have the freedom to improve your design, you also have the freedom to

make mistakes. No matter how carefully you plan and design, you’ll make

mistakes. Knowing that it’s relatively safe to make these mistakes means

you’ll be more experimental, you’ll learn more quickly, and you’ll finish your

project sooner.

The public interface to a class is what the user does see, so that is the most

important part of the class to get “right” during analysis and design. Even

that allows you some leeway for change. If you don’t get the interface right

the first time, you can add more methods, as long as you don’t remove any

that client programmers have already used in their code.

Access Control 231

Notice that access control focuses on a relationship—and a kind of

communication—between a library creator and the external clients of that

library. There are many situations where this is not the case. For example,

you are writing all the code yourself, or you are working in close quarters with

a small team and everything goes into the same package. These situations

have a different kind of communication, and rigid adherence to access rules

may not be optimal. Default (package) access may be just fine.

Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for sale from www.MindViewLLC.com.

 233

Reusing Classes
One of the most compelling features about Java is code
reuse. But to be revolutionary, you’ve got to be able to do
a lot more than copy code and change it.

That’s the approach used in procedural languages like C, and it hasn’t worked

very well. Like everything in Java, the solution revolves around the class. You

reuse code by creating new classes, but instead of creating them from scratch,

you use existing classes that someone has already built and debugged.

The trick is to use the classes without soiling the existing code. In this chapter

you’ll see two ways to accomplish this. The first is quite straightforward: You

simply create objects of your existing class inside the new class. This is called

composition, because the new class is composed of objects of existing classes.

You’re simply reusing the functionality of the code, not its form.

The second approach is more subtle. It creates a new class as a type of an

existing class. You literally take the form of the existing class and add code to

it without modifying the existing class. This technique is called inheritance,

and the compiler does most of the work. Inheritance is one of the

cornerstones of object-oriented programming, and has additional

implications that will be explored in the Polymorphism chapter.

It turns out that much of the syntax and behavior are similar for both

composition and inheritance (which makes sense because they are both ways

of making new types from existing types). In this chapter, you’ll learn about

these code reuse mechanisms.

Composition syntax
Composition has been used quite frequently up to this point in the book. You

simply place object references inside new classes. For example, suppose you’d

like an object that holds several String objects, a couple of primitives, and an

object of another class. For the non-primitive objects, you put references

inside your new class, but you define the primitives directly:

//: reusing/SprinklerSystem.java

234 Thinking in Java Bruce Eckel

// Composition for code reuse.

class WaterSource {

 private String s;

 WaterSource() {

 System.out.println("WaterSource()");

 s = "Constructed";

 }

 public String toString() { return s; }

}

public class SprinklerSystem {

 private String valve1, valve2, valve3, valve4;

 private WaterSource source = new WaterSource();

 private int i;

 private float f;

 public String toString() {

 return

 "valve1 = " + valve1 + " " +

 "valve2 = " + valve2 + " " +

 "valve3 = " + valve3 + " " +

 "valve4 = " + valve4 + "\n" +

 "i = " + i + " " + "f = " + f + " " +

 "source = " + source;

 }

 public static void main(String[] args) {

 SprinklerSystem sprinklers = new SprinklerSystem();

 System.out.println(sprinklers);

 }

} /* Output:

WaterSource()

valve1 = null valve2 = null valve3 = null valve4 = null

i = 0 f = 0.0 source = Constructed

*///:~

One of the methods defined in both classes is special: toString(). Every

non-primitive object has a toString() method, and it’s called in special

situations when the compiler wants a String but it has an object. So in the

expression in SprinklerSystem.toString():

"source = " + source;

the compiler sees you trying to add a String object ("source = ") to a

WaterSource. Because you can only “add” a String to another String, it

says, “I’ll turn source into a String by calling toString()!” After doing this

Reusing Classes 235

it can combine the two Strings and pass the resulting String to

System.out.println() (or equivalently, this book’s print() and

printnb() static methods). Anytime you want to allow this behavior with a

class you create, you need only write a toString() method.

Primitives that are fields in a class are automatically initialized to zero, as

noted in the Everything Is an Object chapter. But the object references are

initialized to null, and if you try to call methods for any of them, you’ll get an

exception—a runtime error. Conveniently, you can still print a null reference

without throwing an exception.

It makes sense that the compiler doesn’t just create a default object for every

reference, because that would incur unnecessary overhead in many cases. If

you want the references initialized, you can do it:

1. At the point the objects are defined. This means that they’ll always

be initialized before the constructor is called.

2. In the constructor for that class.

3. Right before you actually need to use the object. This is often

called lazy initialization. It can reduce overhead in situations

where object creation is expensive and the object doesn’t need to

be created every time.

4. Using instance initialization.

All four approaches are shown here:

//: reusing/Bath.java

// Constructor initialization with composition.

import static net.mindview.util.Print.*;

class Soap {

 private String s;

 Soap() {

 print("Soap()");

 s = "Constructed";

 }

 public String toString() { return s; }

}

public class Bath {

 private String // Initializing at point of definition:

236 Thinking in Java Bruce Eckel

 s1 = "Happy",

 s2 = "Happy",

 s3, s4;

 private Soap castille;

 private int i;

 private float toy;

 public Bath() {

 print("Inside Bath()");

 s3 = "Joy";

 toy = 3.14f;

 castille = new Soap();

 }

 // Instance initialization:

 { i = 47; }

 public String toString() {

 if(s4 == null) // Delayed initialization:

 s4 = "Joy";

 return

 "s1 = " + s1 + "\n" +

 "s2 = " + s2 + "\n" +

 "s3 = " + s3 + "\n" +

 "s4 = " + s4 + "\n" +

 "i = " + i + "\n" +

 "toy = " + toy + "\n" +

 "castille = " + castille;

 }

 public static void main(String[] args) {

 Bath b = new Bath();

 print(b);

 }

} /* Output:

Inside Bath()

Soap()

s1 = Happy

s2 = Happy

s3 = Joy

s4 = Joy

i = 47

toy = 3.14

castille = Constructed

*///:~

Note that in the Bath constructor, a statement is executed before any of the

initializations take place. When you don’t initialize at the point of definition,

Reusing Classes 237

there’s still no guarantee that you’ll perform any initialization before you send

a message to an object reference—except for the inevitable runtime exception.

When toString() is called it fills in s4 so that all the fields are properly

initialized by the time they are used.

Exercise 1: (2) Create a simple class. Inside a second class, define a
reference to an object of the first class. Use lazy initialization to instantiate
this object.

Inheritance syntax
Inheritance is an integral part of Java (and all OOP languages). It turns out

that you’re always doing inheritance when you create a class, because unless

you explicitly inherit from some other class, you implicitly inherit from Java’s

standard root class Object.

The syntax for composition is obvious, but inheritance uses a special syntax.

When you inherit, you say, “This new class is like that old class.” You state

this in code before the opening brace of the class body, using the keyword

extends followed by the name of the base class. When you do this, you

automatically get all the fields and methods in the base class. Here’s an

example:

//: reusing/Detergent.java

// Inheritance syntax & properties.

import static net.mindview.util.Print.*;

class Cleanser {

 private String s = "Cleanser";

 public void append(String a) { s += a; }

 public void dilute() { append(" dilute()"); }

 public void apply() { append(" apply()"); }

 public void scrub() { append(" scrub()"); }

 public String toString() { return s; }

 public static void main(String[] args) {

 Cleanser x = new Cleanser();

 x.dilute(); x.apply(); x.scrub();

 print(x);

 }

}

public class Detergent extends Cleanser {

238 Thinking in Java Bruce Eckel

 // Change a method:

 public void scrub() {

 append(" Detergent.scrub()");

 super.scrub(); // Call base-class version

 }

 // Add methods to the interface:

 public void foam() { append(" foam()"); }

 // Test the new class:

 public static void main(String[] args) {

 Detergent x = new Detergent();

 x.dilute();

 x.apply();

 x.scrub();

 x.foam();

 print(x);

 print("Testing base class:");

 Cleanser.main(args);

 }

} /* Output:

Cleanser dilute() apply() Detergent.scrub() scrub() foam()

Testing base class:

Cleanser dilute() apply() scrub()

*///:~

This demonstrates a number of features. First, in the Cleanser append()

method, Strings are concatenated to s using the += operator, which is one of

the operators (along with ‘+’) that the Java designers “overloaded” to work

with Strings.

Second, both Cleanser and Detergent contain a main() method. You can

create a main() for each one of your classes; this technique of putting a

main() in each class allows easy testing for each class. And you don’t need

to remove the main() when you’re finished; you can leave it in for later

testing.

Even if you have a lot of classes in a program, only the main() for the class

invoked on the command line will be called. So in this case, when you say

java Detergent, Detergent.main() will be called. But you can also say

java Cleanser to invoke Cleanser.main(), even though Cleanser is not a

public class. Even if a class has package access, a public main() is

accessible.

Reusing Classes 239

Here, you can see that Detergent.main() calls Cleanser.main()

explicitly, passing it the same arguments from the command line (however,

you could pass it any String array).

It’s important that all of the methods in Cleanser are public. Remember

that if you leave off any access specifier, the member defaults to package

access, which allows access only to package members. Thus, within this

package, anyone could use those methods if there were no access specifier.

Detergent would have no trouble, for example. However, if a class from

some other package were to inherit from Cleanser, it could access only

public members. So to allow for inheritance, as a general rule make all fields

private and all methods public. (protected members also allow access by

derived classes; you’ll learn about this later.) Of course, in particular cases

you must make adjustments, but this is a useful guideline.

Cleanser has a set of methods in its interface: append(), dilute(),

apply(), scrub(), and toString(). Because Detergent is derived from

Cleanser (via the extends keyword), it automatically gets all these methods

in its interface, even though you don’t see them all explicitly defined in

Detergent. You can think of inheritance, then, as reusing the class.

As seen in scrub(), it’s possible to take a method that’s been defined in the

base class and modify it. In this case, you might want to call the method from

the base class inside the new version. But inside scrub(), you cannot simply

call scrub(), since that would produce a recursive call, which isn’t what you

want. To solve this problem, Java’s super keyword refers to the “superclass”

that the current class inherits. Thus the expression super.scrub() calls the

base-class version of the method scrub().

When inheriting, you’re not restricted to using the methods of the base class.

You can also add new methods to the derived class exactly the way you add

any method to a class: Just define it. The method foam() is an example of

this.

In Detergent.main() you can see that for a Detergent object, you can call

all the methods that are available in Cleanser as well as in Detergent (i.e.,

foam()).

Exercise 2: (2) Inherit a new class from class Detergent. Override
scrub() and add a new method called sterilize().

240 Thinking in Java Bruce Eckel

Initializing the base class
Since there are now two classes involved—the base class and the derived

class—instead of just one, it can be a bit confusing to try to imagine the

resulting object produced by a derived class. From the outside, it looks like

the new class has the same interface as the base class and maybe some

additional methods and fields. But inheritance doesn’t just copy the interface

of the base class. When you create an object of the derived class, it contains

within it a subobject of the base class. This subobject is the same as if you had

created an object of the base class by itself. It’s just that from the outside, the

subobject of the base class is wrapped within the derived-class object.

Of course, it’s essential that the base-class subobject be initialized correctly,

and there’s only one way to guarantee this: Perform the initialization in the

constructor by calling the base-class constructor, which has all the

appropriate knowledge and privileges to perform the base-class initialization.

Java automatically inserts calls to the base-class constructor in the derived-

class constructor. The following example shows this working with three levels

of inheritance:

//: reusing/Cartoon.java

// Constructor calls during inheritance.

import static net.mindview.util.Print.*;

class Art {

 Art() { print("Art constructor"); }

}

class Drawing extends Art {

 Drawing() { print("Drawing constructor"); }

}

public class Cartoon extends Drawing {

 public Cartoon() { print("Cartoon constructor"); }

 public static void main(String[] args) {

 Cartoon x = new Cartoon();

 }

} /* Output:

Art constructor

Drawing constructor

Cartoon constructor

*///:~

Reusing Classes 241

You can see that the construction happens from the base “outward,” so the

base class is initialized before the derived-class constructors can access it.

Even if you don’t create a constructor for Cartoon(), the compiler will

synthesize a default constructor for you that calls the base-class constructor.

Exercise 3: (2) Prove the previous sentence.

Exercise 4: (2) Prove that base-class constructors are (a) always called
and (b) called before derived-class constructors.

Exercise 5: (1) Create two classes, A and B, with default constructors
(empty argument lists) that announce themselves. Inherit a new class called
C from A, and create a member of class B inside C. Do not create a
constructor for C. Create an object of class C and observe the results.

Constructors with arguments

The preceding example has default constructors; that is, they don’t have any

arguments. It’s easy for the compiler to call these because there’s no question

about what arguments to pass. If there is no default base-class constructor, or

if you want to call a base-class constructor that has arguments, you must

explicitly write a call to the base-class constructor using the super keyword

and the appropriate argument list:

//: reusing/Chess.java

// Inheritance, constructors and arguments.

import static net.mindview.util.Print.*;

class Game {

 Game(int i) {

 print("Game constructor");

 }

}

class BoardGame extends Game {

 BoardGame(int i) {

 super(i);

 print("BoardGame constructor");

 }

}

public class Chess extends BoardGame {

 Chess() {

 super(11);

242 Thinking in Java Bruce Eckel

 print("Chess constructor");

 }

 public static void main(String[] args) {

 Chess x = new Chess();

 }

} /* Output:

Game constructor

BoardGame constructor

Chess constructor

*///:~

If you don’t call the base-class constructor in BoardGame(), the compiler

will complain that it can’t find a constructor of the form Game(). In

addition, the call to the base-class constructor must be the first thing you do

in the derived-class constructor. (The compiler will remind you if you get it

wrong.)

Exercise 6: (1) Using Chess.java, prove the statements in the previous
paragraph.

Exercise 7: (1) Modify Exercise 5 so that A and B have constructors with
arguments instead of default constructors. Write a constructor for C and
perform all initialization within C’s constructor.

Exercise 8: (1) Create a base class with only a non-default constructor,
and a derived class with both a default (no-arg) and non-default constructor.
In the derived-class constructors, call the base-class constructor.

Exercise 9: (2) Create a class called Root that contains an instance of
each of the classes (that you also create) named Component1,
Component2, and Component3. Derive a class Stem from Root that also
contains an instance of each “component.” All classes should have default
constructors that print a message about that class.

Exercise 10: (1) Modify the previous exercise so that each class only has
non-default constructors.

Delegation
A third relationship, which is not directly supported by Java, is called

delegation. This is midway between inheritance and composition, because

you place a member object in the class you’re building (like composition), but

at the same time you expose all the methods from the member object in your

Reusing Classes 243

new class (like inheritance). For example, a spaceship needs a control

module:

//: reusing/SpaceShipControls.java

public class SpaceShipControls {

 void up(int velocity) {}

 void down(int velocity) {}

 void left(int velocity) {}

 void right(int velocity) {}

 void forward(int velocity) {}

 void back(int velocity) {}

 void turboBoost() {}

} ///:~

One way to build a spaceship is to use inheritance:

//: reusing/SpaceShip.java

public class SpaceShip extends SpaceShipControls {

 private String name;

 public SpaceShip(String name) { this.name = name; }

 public String toString() { return name; }

 public static void main(String[] args) {

 SpaceShip protector = new SpaceShip("NSEA Protector");

 protector.forward(100);

 }

} ///:~

However, a SpaceShip isn’t really “a type of” SpaceShipControls, even if,

for example, you “tell” a SpaceShip to go forward(). It’s more accurate to

say that a SpaceShip contains SpaceShipControls, and at the same time

all the methods in SpaceShipControls are exposed in a SpaceShip.

Delegation solves the dilemma:

//: reusing/SpaceShipDelegation.java

public class SpaceShipDelegation {

 private String name;

 private SpaceShipControls controls =

 new SpaceShipControls();

 public SpaceShipDelegation(String name) {

 this.name = name;

 }

 // Delegated methods:

244 Thinking in Java Bruce Eckel

 public void back(int velocity) {

 controls.back(velocity);

 }

 public void down(int velocity) {

 controls.down(velocity);

 }

 public void forward(int velocity) {

 controls.forward(velocity);

 }

 public void left(int velocity) {

 controls.left(velocity);

 }

 public void right(int velocity) {

 controls.right(velocity);

 }

 public void turboBoost() {

 controls.turboBoost();

 }

 public void up(int velocity) {

 controls.up(velocity);

 }

 public static void main(String[] args) {

 SpaceShipDelegation protector =

 new SpaceShipDelegation("NSEA Protector");

 protector.forward(100);

 }

} ///:~

You can see how the methods are forwarded to the underlying controls

object, and the interface is thus the same as it is with inheritance. However,

you have more control with delegation because you can choose to provide

only a subset of the methods in the member object.

Although the Java language doesn’t support delegation, development tools

often do. The above example, for instance, was automatically generated using

the JetBrains Idea IDE.

Exercise 11: (3) Modify Detergent.java so that it uses delegation.

Reusing Classes 245

Combining composition
and inheritance

It is very common to use composition and inheritance together. The following

example shows the creation of a more complex class, using both inheritance

and composition, along with the necessary constructor initialization:

//: reusing/PlaceSetting.java

// Combining composition & inheritance.

import static net.mindview.util.Print.*;

class Plate {

 Plate(int i) {

 print("Plate constructor");

 }

}

class DinnerPlate extends Plate {

 DinnerPlate(int i) {

 super(i);

 print("DinnerPlate constructor");

 }

}

class Utensil {

 Utensil(int i) {

 print("Utensil constructor");

 }

}

class Spoon extends Utensil {

 Spoon(int i) {

 super(i);

 print("Spoon constructor");

 }

}

class Fork extends Utensil {

 Fork(int i) {

 super(i);

 print("Fork constructor");

 }

}

246 Thinking in Java Bruce Eckel

class Knife extends Utensil {

 Knife(int i) {

 super(i);

 print("Knife constructor");

 }

}

// A cultural way of doing something:

class Custom {

 Custom(int i) {

 print("Custom constructor");

 }

}

public class PlaceSetting extends Custom {

 private Spoon sp;

 private Fork frk;

 private Knife kn;

 private DinnerPlate pl;

 public PlaceSetting(int i) {

 super(i + 1);

 sp = new Spoon(i + 2);

 frk = new Fork(i + 3);

 kn = new Knife(i + 4);

 pl = new DinnerPlate(i + 5);

 print("PlaceSetting constructor");

 }

 public static void main(String[] args) {

 PlaceSetting x = new PlaceSetting(9);

 }

} /* Output:

Custom constructor

Utensil constructor

Spoon constructor

Utensil constructor

Fork constructor

Utensil constructor

Knife constructor

Plate constructor

DinnerPlate constructor

PlaceSetting constructor

*///:~

Reusing Classes 247

Although the compiler forces you to initialize the base classes, and requires

that you do it right at the beginning of the constructor, it doesn’t watch over

you to make sure that you initialize the member objects, so you must

remember to pay attention to that.

It’s rather amazing how cleanly the classes are separated. You don’t even

need the source code for the methods in order to reuse the code. At most, you

just import a package. (This is true for both inheritance and composition.)

Guaranteeing proper cleanup
Java doesn’t have the C++ concept of a destructor, a method that is

automatically called when an object is destroyed. The reason is probably that

in Java, the practice is simply to forget about objects rather than to destroy

them, allowing the garbage collector to reclaim the memory as necessary.

Often this is fine, but there are times when your class might perform some

activities during its lifetime that require cleanup. As mentioned in the

Initialization & Cleanup chapter, you can’t know when the garbage collector

will be called, or if it will be called. So if you want something cleaned up for a

class, you must explicitly write a special method to do it, and make sure that

the client programmer knows that they must call this method. On top of

this—as described in the Error Handling with Exceptions chapter—you must

guard against an exception by putting such cleanup in a finally clause.

Consider an example of a computer-aided design system that draws pictures

on the screen:

//: reusing/CADSystem.java

// Ensuring proper cleanup.

package reusing;

import static net.mindview.util.Print.*;

class Shape {

 Shape(int i) { print("Shape constructor"); }

 void dispose() { print("Shape dispose"); }

}

class Circle extends Shape {

 Circle(int i) {

 super(i);

 print("Drawing Circle");

 }

248 Thinking in Java Bruce Eckel

 void dispose() {

 print("Erasing Circle");

 super.dispose();

 }

}

class Triangle extends Shape {

 Triangle(int i) {

 super(i);

 print("Drawing Triangle");

 }

 void dispose() {

 print("Erasing Triangle");

 super.dispose();

 }

}

class Line extends Shape {

 private int start, end;

 Line(int start, int end) {

 super(start);

 this.start = start;

 this.end = end;

 print("Drawing Line: " + start + ", " + end);

 }

 void dispose() {

 print("Erasing Line: " + start + ", " + end);

 super.dispose();

 }

}

public class CADSystem extends Shape {

 private Circle c;

 private Triangle t;

 private Line[] lines = new Line[3];

 public CADSystem(int i) {

 super(i + 1);

 for(int j = 0; j < lines.length; j++)

 lines[j] = new Line(j, j*j);

 c = new Circle(1);

 t = new Triangle(1);

 print("Combined constructor");

 }

 public void dispose() {

Reusing Classes 249

 print("CADSystem.dispose()");

 // The order of cleanup is the reverse

 // of the order of initialization:

 t.dispose();

 c.dispose();

 for(int i = lines.length - 1; i >= 0; i--)

 lines[i].dispose();

 super.dispose();

 }

 public static void main(String[] args) {

 CADSystem x = new CADSystem(47);

 try {

 // Code and exception handling...

 } finally {

 x.dispose();

 }

 }

} /* Output:

Shape constructor

Shape constructor

Drawing Line: 0, 0

Shape constructor

Drawing Line: 1, 1

Shape constructor

Drawing Line: 2, 4

Shape constructor

Drawing Circle

Shape constructor

Drawing Triangle

Combined constructor

CADSystem.dispose()

Erasing Triangle

Shape dispose

Erasing Circle

Shape dispose

Erasing Line: 2, 4

Shape dispose

Erasing Line: 1, 1

Shape dispose

Erasing Line: 0, 0

Shape dispose

Shape dispose

*///:~

250 Thinking in Java Bruce Eckel

Everything in this system is some kind of Shape (which is itself a kind of

Object, since it’s implicitly inherited from the root class). Each class

overrides Shape’s dispose() method in addition to calling the base-class

version of that method using super. The specific Shape classes—Circle,

Triangle, and Line—all have constructors that “draw,” although any method

called during the lifetime of the object can be responsible for doing

something that needs cleanup. Each class has its own dispose() method to

restore non-memory things back to the way they were before the object

existed.

In main(), there are two keywords that you haven’t seen before, and won’t

be explained in detail until the Error Handling with Exceptions chapter: try

and finally. The try keyword indicates that the block that follows (delimited

by curly braces) is a guarded region, which means that it is given special

treatment. One of these special treatments is that the code in the finally

clause following this guarded region is always executed, no matter how the

try block exits. (With exception handling, it’s possible to leave a try block in

a number of non-ordinary ways.) Here, the finally clause is saying, “Always

call dispose() for x, no matter what happens.”

In your cleanup method (dispose(), in this case), you must also pay

attention to the calling order for the base-class and member-object cleanup

methods in case one subobject depends on another. In general, you should

follow the same form that is imposed by a C++ compiler on its destructors:

First perform all of the cleanup work specific to your class, in the reverse

order of creation. (In general, this requires that base-class elements still be

viable.) Then call the base-class cleanup method, as demonstrated here.

There are many cases in which the cleanup issue is not a problem; you just let

the garbage collector do the work. But when you must perform explicit

cleanup, diligence and attention are required, because there’s not much you

can rely on when it comes to garbage collection. The garbage collector might

never be called. If it is, it can reclaim objects in any order it wants. You can’t

rely on garbage collection for anything but memory reclamation. If you want

cleanup to take place, make your own cleanup methods and don’t use

finalize().

Exercise 12: (3) Add a proper hierarchy of dispose() methods to all the
classes in Exercise 9.

Reusing Classes 251

Name hiding
If a Java base class has a method name that’s overloaded several times,

redefining that method name in the derived class will not hide any of the

base-class versions (unlike C++). Thus overloading works regardless of

whether the method was defined at this level or in a base class:

//: reusing/Hide.java

// Overloading a base-class method name in a derived

// class does not hide the base-class versions.

import static net.mindview.util.Print.*;

class Homer {

 char doh(char c) {

 print("doh(char)");

 return 'd';

 }

 float doh(float f) {

 print("doh(float)");

 return 1.0f;

 }

}

class Milhouse {}

class Bart extends Homer {

 void doh(Milhouse m) {

 print("doh(Milhouse)");

 }

}

public class Hide {

 public static void main(String[] args) {

 Bart b = new Bart();

 b.doh(1);

 b.doh('x');

 b.doh(1.0f);

 b.doh(new Milhouse());

 }

} /* Output:

doh(float)

doh(char)

doh(float)

doh(Milhouse)

252 Thinking in Java Bruce Eckel

*///:~

You can see that all the overloaded methods of Homer are available in Bart,

even though Bart introduces a new overloaded method (doing this in C++

would hide the base-class methods). As you’ll see in the next chapter, it’s far

more common to override methods of the same name, using exactly the same

signature and return type as in the base class. It can be confusing otherwise

(which is why C++ disallows it—so you don’t make what is probably a

mistake).

Java SE5 has added the @Override annotation, which is not a keyword but

can be used as if it were. When you mean to override a method, you can

choose to add this annotation and the compiler will produce an error message

if you accidentally overload instead of overriding:

//: reusing/Lisa.java

// {CompileTimeError} (Won't compile)

class Lisa extends Homer {

 @Override void doh(Milhouse m) {

 System.out.println("doh(Milhouse)");

 }

} ///:~

The {CompileTimeError} tag excludes the file from this book’s Ant build,

but if you compile it by hand you’ll see the error message:

method does not override a method from its superclass

The @Override annotation will thus prevent you from accidentally

overloading when you don’t mean to.

Exercise 13: (2) Create a class with a method that is overloaded three
times. Inherit a new class, add a new overloading of the method, and show
that all four methods are available in the derived class.

Choosing composition
vs. inheritance

Both composition and inheritance allow you to place subobjects inside your

new class (composition explicitly does this—with inheritance it’s implicit).

You might wonder about the difference between the two, and when to choose

one over the other.

Reusing Classes 253

Composition is generally used when you want the functionality of an existing

class inside your new class, but not its interface. That is, you embed an object

so that you can use it to implement features in your new class, but the user of

your new class sees the interface you’ve defined for the new class rather than

the interface from the embedded object. For this effect, you embed private

objects of existing classes inside your new class.

Sometimes it makes sense to allow the class user to directly access the

composition of your new class; that is, to make the member objects public.

The member objects use implementation hiding themselves, so this is a safe

thing to do. When the user knows you’re assembling a bunch of parts, it

makes the interface easier to understand. A car object is a good example:

//: reusing/Car.java

// Composition with public objects.

class Engine {

 public void start() {}

 public void rev() {}

 public void stop() {}

}

class Wheel {

 public void inflate(int psi) {}

}

class Window {

 public void rollup() {}

 public void rolldown() {}

}

class Door {

 public Window window = new Window();

 public void open() {}

 public void close() {}

}

public class Car {

 public Engine engine = new Engine();

 public Wheel[] wheel = new Wheel[4];

 public Door

 left = new Door(),

 right = new Door(); // 2-door

 public Car() {

254 Thinking in Java Bruce Eckel

 for(int i = 0; i < 4; i++)

 wheel[i] = new Wheel();

 }

 public static void main(String[] args) {

 Car car = new Car();

 car.left.window.rollup();

 car.wheel[0].inflate(72);

 }

} ///:~

Because in this case the composition of a car is part of the analysis of the

problem (and not simply part of the underlying design), making the members

public assists the client programmer’s understanding of how to use the class

and requires less code complexity for the creator of the class. However, keep

in mind that this is a special case, and that in general you should make fields

private.

When you inherit, you take an existing class and make a special version of it.

In general, this means that you’re taking a general-purpose class and

specializing it for a particular need. With a little thought, you’ll see that it

would make no sense to compose a car using a vehicle object—a car doesn’t

contain a vehicle, it is a vehicle. The is-a relationship is expressed with

inheritance, and the has-a relationship is expressed with composition.

Exercise 14: (1) In Car.java add a service() method to Engine and
call this method in main().

protected
Now that you’ve been introduced to inheritance, the keyword protected

finally has meaning. In an ideal world, the private keyword would be

enough. In real projects, there are times when you want to make something

hidden from the world at large and yet allow access for members of derived

classes.

The protected keyword is a nod to pragmatism. It says, “This is private as

far as the class user is concerned, but available to anyone who inherits from

this class or anyone else in the same package.” (protected also provides

package access.)

Although it’s possible to create protected fields, the best approach is to

leave the fields private; you should always preserve your right to change the

Reusing Classes 255

underlying implementation. You can then allow controlled access to

inheritors of your class through protected methods:

//: reusing/Orc.java

// The protected keyword.

import static net.mindview.util.Print.*;

class Villain {

 private String name;

 protected void set(String nm) { name = nm; }

 public Villain(String name) { this.name = name; }

 public String toString() {

 return "I'm a Villain and my name is " + name;

 }

}

public class Orc extends Villain {

 private int orcNumber;

 public Orc(String name, int orcNumber) {

 super(name);

 this.orcNumber = orcNumber;

 }

 public void change(String name, int orcNumber) {

 set(name); // Available because it's protected

 this.orcNumber = orcNumber;

 }

 public String toString() {

 return "Orc " + orcNumber + ": " + super.toString();

 }

 public static void main(String[] args) {

 Orc orc = new Orc("Limburger", 12);

 print(orc);

 orc.change("Bob", 19);

 print(orc);

 }

} /* Output:

Orc 12: I'm a Villain and my name is Limburger

Orc 19: I'm a Villain and my name is Bob

*///:~

You can see that change() has access to set() because it’s protected. Also

note the way that Orc’s toString() method is defined in terms of the base-

class version of toString().

256 Thinking in Java Bruce Eckel

Exercise 15: (2) Create a class inside a package. Your class should
contain a protected method. Outside of the package, try to call the
protected method and explain the results. Now inherit from your class and
call the protected method from inside a method of your derived class.

Upcasting
The most important aspect of inheritance is not that it provides methods for

the new class. It’s the relationship expressed between the new class and the

base class. This relationship can be summarized by saying, “The new class is a

type of the existing class.”

This description is not just a fanciful way of explaining inheritance—it’s

supported directly by the language. As an example, consider a base class

called Instrument that represents musical instruments, and a derived class

called Wind. Because inheritance guarantees that all of the methods in the

base class are also available in the derived class, any message you can send to

the base class can also be sent to the derived class. If the Instrument class

has a play() method, so will Wind instruments. This means that you can

accurately say that a Wind object is also a type of Instrument. The

following example shows how the compiler supports this notion:

//: reusing/Wind.java

// Inheritance & upcasting.

class Instrument {

 public void play() {}

 static void tune(Instrument i) {

 // ...

 i.play();

 }

}

// Wind objects are instruments

// because they have the same interface:

public class Wind extends Instrument {

 public static void main(String[] args) {

 Wind flute = new Wind();

 Instrument.tune(flute); // Upcasting

 }

} ///:~

Reusing Classes 257

What’s interesting in this example is the tune() method, which accepts an

Instrument reference. However, in Wind.main() the tune() method is

handed a Wind reference. Given that Java is particular about type checking,

it seems strange that a method that accepts one type will readily accept

another type, until you realize that a Wind object is also an Instrument

object, and there’s no method that tune() could call for an Instrument that

isn’t also in Wind. Inside tune(), the code works for Instrument and

anything derived from Instrument, and the act of converting a Wind

reference into an Instrument reference is called upcasting.

Why “upcasting”?
The term is based on the way that class inheritance diagrams have

traditionally been drawn: with the root at the top of the page, growing

downward. (Of course, you can draw your diagrams any way you find

helpful.) The inheritance diagram for Wind.java is then:

Instrument

Wind

Casting from a derived type to a base type moves up on the inheritance

diagram, so it’s commonly referred to as upcasting. Upcasting is always safe

because you’re going from a more specific type to a more general type. That

is, the derived class is a superset of the base class. It might contain more

methods than the base class, but it must contain at least the methods in the

base class. The only thing that can occur to the class interface during the

upcast is that it can lose methods, not gain them. This is why the compiler

allows upcasting without any explicit casts or other special notation.

You can also perform the reverse of upcasting, called downcasting, but this

involves a dilemma that will be examined further in the next chapter, and in

the Type Information chapter.

Composition vs. inheritance revisited
In object-oriented programming, the most likely way that you’ll create and

use code is by simply packaging data and methods together into a class, and

258 Thinking in Java Bruce Eckel

using objects of that class. You’ll also use existing classes to build new classes

with composition. Less frequently, you’ll use inheritance. So although

inheritance gets a lot of emphasis when teaching OOP, it doesn’t mean that

you should use it everywhere you possibly can. On the contrary, you should

use it sparingly, only when it’s clear that inheritance is useful. One of the

clearest ways to determine whether you should use composition or

inheritance is to ask whether you’ll ever need to upcast from your new class to

the base class. If you must upcast, then inheritance is necessary, but if you

don’t need to upcast, then you should look closely at whether you need

inheritance. The Polymorphism chapter provides one of the most compelling

reasons for upcasting, but if you remember to ask, “Do I need to upcast?”

you’ll have a good tool for deciding between composition and inheritance.

Exercise 16: (2) Create a class called Amphibian. From this, inherit a
class called Frog. Put appropriate methods in the base class. In main(),
create a Frog and upcast it to Amphibian, and demonstrate that all the
methods still work.

Exercise 17: (1) Modify Exercise 16 so that Frog overrides the method
definitions from the base class (provides new definitions using the same
method signatures). Note what happens in main().

The final keyword
Java’s final keyword has slightly different meanings depending on the

context, but in general it says, “This cannot be changed.” You might want to

prevent changes for two reasons: design or efficiency. Because these two

reasons are quite different, it’s possible to misuse the final keyword.

The following sections discuss the three places where final can be used: for

data, methods, and classes.

final data
Many programming languages have a way to tell the compiler that a piece of

data is “constant.” A constant is useful for two reasons:

1. It can be a compile-time constant that won’t ever change.

2. It can be a value initialized at run time that you don’t want changed.

In the case of a compile-time constant, the compiler is allowed to “fold” the

constant value into any calculations in which it’s used; that is, the calculation

Reusing Classes 259

can be performed at compile time, eliminating some runtime overhead. In

Java, these sorts of constants must be primitives and are expressed with the

final keyword. A value must be given at the time of definition of such a

constant.

A field that is both static and final has only one piece of storage that cannot

be changed.

When final is used with object references rather than primitives, the

meaning can be confusing. With a primitive, final makes the value a

constant, but with an object reference, final makes the reference a constant.

Once the reference is initialized to an object, it can never be changed to point

to another object. However, the object itself can be modified; Java does not

provide a way to make any arbitrary object a constant. (You can, however,

write your class so that objects have the effect of being constant.) This

restriction includes arrays, which are also objects.

Here’s an example that demonstrates final fields. Note that by convention,

fields that are both static and final (that is, compile-time constants) are

capitalized and use underscores to separate words.

//: reusing/FinalData.java

// The effect of final on fields.

import java.util.*;

import static net.mindview.util.Print.*;

class Value {

 int i; // Package access

 public Value(int i) { this.i = i; }

}

public class FinalData {

 private static Random rand = new Random(47);

 private String id;

 public FinalData(String id) { this.id = id; }

 // Can be compile-time constants:

 private final int valueOne = 9;

 private static final int VALUE_TWO = 99;

 // Typical public constant:

 public static final int VALUE_THREE = 39;

 // Cannot be compile-time constants:

 private final int i4 = rand.nextInt(20);

 static final int INT_5 = rand.nextInt(20);

260 Thinking in Java Bruce Eckel

 private Value v1 = new Value(11);

 private final Value v2 = new Value(22);

 private static final Value VAL_3 = new Value(33);

 // Arrays:

 private final int[] a = { 1, 2, 3, 4, 5, 6 };

 public String toString() {

 return id + ": " + "i4 = " + i4 + ", INT_5 = " + INT_5;

 }

 public static void main(String[] args) {

 FinalData fd1 = new FinalData("fd1");

 //! fd1.valueOne++; // Error: can't change value

 fd1.v2.i++; // Object isn't constant!

 fd1.v1 = new Value(9); // OK -- not final

 for(int i = 0; i < fd1.a.length; i++)

 fd1.a[i]++; // Object isn't constant!

 //! fd1.v2 = new Value(0); // Error: Can't

 //! fd1.VAL_3 = new Value(1); // change reference

 //! fd1.a = new int[3];

 print(fd1);

 print("Creating new FinalData");

 FinalData fd2 = new FinalData("fd2");

 print(fd1);

 print(fd2);

 }

} /* Output:

fd1: i4 = 15, INT_5 = 18

Creating new FinalData

fd1: i4 = 15, INT_5 = 18

fd2: i4 = 13, INT_5 = 18

*///:~

Since valueOne and VALUE_TWO are final primitives with compile-time

values, they can both be used as compile-time constants and are not different

in any important way. VALUE_THREE is the more typical way you’ll see

such constants defined: public so they’re usable outside the package, static

to emphasize that there’s only one, and final to say that it’s a constant. Note

that final static primitives with constant initial values (that is, compile-time

constants) are named with all capitals by convention, with words separated

by underscores. (This is just like C constants, which is where the convention

originated.)

Just because something is final doesn’t mean that its value is known at

compile time. This is demonstrated by initializing i4 and INT_5 at run time

using randomly generated numbers. This portion of the example also shows

Reusing Classes 261

the difference between making a final value static or non-static. This

difference shows up only when the values are initialized at run time, since the

compile-time values are treated the same by the compiler. (And presumably

optimized out of existence.) The difference is shown when you run the

program. Note that the values of i4 for fd1 and fd2 are unique, but the value

for INT_5 is not changed by creating the second FinalData object. That’s

because it’s static and is initialized once upon loading and not each time a

new object is created.

The variables v1 through VAL_3 demonstrate the meaning of a final

reference. As you can see in main(), just because v2 is final doesn’t mean

that you can’t change its value. Because it’s a reference, final means that you

cannot rebind v2 to a new object. You can also see that the same meaning

holds true for an array, which is just another kind of reference. (There is no

way that I know of to make the array references themselves final.) Making

references final seems less useful than making primitives final.

Exercise 18: (2) Create a class with a static final field and a final field
and demonstrate the difference between the two.

Blank finals
Java allows the creation of blank finals, which are fields that are declared as

final but are not given an initialization value. In all cases, the blank final

must be initialized before it is used, and the compiler ensures this. However,

blank finals provide much more flexibility in the use of the final keyword

since, for example, a final field inside a class can now be different for each

object, and yet it retains its immutable quality. Here’s an example:

//: reusing/BlankFinal.java

// "Blank" final fields.

class Poppet {

 private int i;

 Poppet(int ii) { i = ii; }

}

public class BlankFinal {

 private final int i = 0; // Initialized final

 private final int j; // Blank final

 private final Poppet p; // Blank final reference

 // Blank finals MUST be initialized in the constructor:

 public BlankFinal() {

262 Thinking in Java Bruce Eckel

 j = 1; // Initialize blank final

 p = new Poppet(1); // Initialize blank final reference

 }

 public BlankFinal(int x) {

 j = x; // Initialize blank final

 p = new Poppet(x); // Initialize blank final reference

 }

 public static void main(String[] args) {

 new BlankFinal();

 new BlankFinal(47);

 }

} ///:~

You’re forced to perform assignments to finals either with an expression at

the point of definition of the field or in every constructor. That way it’s

guaranteed that the final field is always initialized before use.

Exercise 19: (2) Create a class with a blank final reference to an object.
Perform the initialization of the blank final inside all constructors.
Demonstrate the guarantee that the final must be initialized before use, and
that it cannot be changed once initialized.

final arguments

Java allows you to make arguments final by declaring them as such in the

argument list. This means that inside the method you cannot change what the

argument reference points to:

//: reusing/FinalArguments.java

// Using "final" with method arguments.

class Gizmo {

 public void spin() {}

}

public class FinalArguments {

 void with(final Gizmo g) {

 //! g = new Gizmo(); // Illegal -- g is final

 }

 void without(Gizmo g) {

 g = new Gizmo(); // OK -- g not final

 g.spin();

 }

 // void f(final int i) { i++; } // Can't change

 // You can only read from a final primitive:

Reusing Classes 263

 int g(final int i) { return i + 1; }

 public static void main(String[] args) {

 FinalArguments bf = new FinalArguments();

 bf.without(null);

 bf.with(null);

 }

} ///:~

The methods f() and g() show what happens when primitive arguments are

final: You can read the argument, but you can’t change it. This feature is

primarily used to pass data to anonymous inner classes, which you’ll learn

about in the Inner Classes chapter.

final methods
There are two reasons for final methods. The first is to put a “lock” on the

method to prevent any inheriting class from changing its meaning. This is

done for design reasons when you want to make sure that a method’s

behavior is retained during inheritance and cannot be overridden.

The second reason final methods have been suggested in the past is

efficiency. In earlier implementations of Java, if you made a method final,

you allowed the compiler to turn any calls to that method into inline calls.

When the compiler saw a final method call, it could (at its discretion) skip

the normal approach of inserting code to perform the method call mechanism

(push arguments on the stack, hop over to the method code and execute it,

hop back and clean off the stack arguments, and deal with the return value)

and instead replace the method call with a copy of the actual code in the

method body. This eliminated the overhead of the method call. Of course, if a

method is big, then your code begins to bloat, and you probably wouldn’t see

any performance gains from inlining, since any improvements were dwarfed

by the amount of time spent inside the method.

In more recent versions of Java, the virtual machine (in particular, the

hotspot technologies) can detect these situations and optimize away the extra

indirection, so it is no longer necessary—in fact, it is now generally

discouraged—to use final to try to help the optimizer. With Java SE5/6, you

264 Thinking in Java Bruce Eckel

should let the compiler and JVM handle efficiency issues and make a method

final only if you want to explicitly prevent overriding.1

final and private
Any private methods in a class are implicitly final. Because you can’t access

a private method, you can’t override it. You can add the final specifier to a

private method, but it doesn’t give that method any extra meaning.

This issue can cause confusion, because if you try to override a private

method (which is implicitly final), it seems to work, and the compiler doesn’t

give an error message:

//: reusing/FinalOverridingIllusion.java

// It only looks like you can override

// a private or private final method.

import static net.mindview.util.Print.*;

class WithFinals {

 // Identical to "private" alone:

 private final void f() { print("WithFinals.f()"); }

 // Also automatically "final":

 private void g() { print("WithFinals.g()"); }

}

class OverridingPrivate extends WithFinals {

 private final void f() {

 print("OverridingPrivate.f()");

 }

 private void g() {

 print("OverridingPrivate.g()");

 }

}

class OverridingPrivate2 extends OverridingPrivate {

 public final void f() {

 print("OverridingPrivate2.f()");

 }

 public void g() {

 print("OverridingPrivate2.g()");

1 Don’t fall prey to the urge to prematurely optimize. If you get your system working and
it’s too slow, it’s doubtful that you can fix it with the final keyword.

Reusing Classes 265

 }

}

public class FinalOverridingIllusion {

 public static void main(String[] args) {

 OverridingPrivate2 op2 = new OverridingPrivate2();

 op2.f();

 op2.g();

 // You can upcast:

 OverridingPrivate op = op2;

 // But you can't call the methods:

 //! op.f();

 //! op.g();

 // Same here:

 WithFinals wf = op2;

 //! wf.f();

 //! wf.g();

 }

} /* Output:

OverridingPrivate2.f()

OverridingPrivate2.g()

*///:~

“Overriding” can only occur if something is part of the base-class interface.

That is, you must be able to upcast an object to its base type and call the same

method (the point of this will become clear in the next chapter). If a method

is private, it isn’t part of the base-class interface. It is just some code that’s

hidden away inside the class, and it just happens to have that name, but if you

create a public, protected, or package-access method with the same name

in the derived class, there’s no connection to the method that might happen

to have that name in the base class. You haven’t overridden the method;

you’ve just created a new method. Since a private method is unreachable

and effectively invisible, it doesn’t factor into anything except for the code

organization of the class for which it was defined.

Exercise 20: (1) Show that the @Override annotation solves the
problem in this section.

Exercise 21: (1) Create a class with a final method. Inherit from that
class and attempt to override that method.

266 Thinking in Java Bruce Eckel

final classes
When you say that an entire class is final (by preceding its definition with

the final keyword), you state that you don’t want to inherit from this class or

allow anyone else to do so. In other words, for some reason the design of your

class is such that there is never a need to make any changes, or for safety or

security reasons you don’t want subclassing.

//: reusing/Jurassic.java

// Making an entire class final.

class SmallBrain {}

final class Dinosaur {

 int i = 7;

 int j = 1;

 SmallBrain x = new SmallBrain();

 void f() {}

}

//! class Further extends Dinosaur {}

// error: Cannot extend final class 'Dinosaur'

public class Jurassic {

 public static void main(String[] args) {

 Dinosaur n = new Dinosaur();

 n.f();

 n.i = 40;

 n.j++;

 }

} ///:~

Note that the fields of a final class can be final or not, as you choose. The

same rules apply to final for fields regardless of whether the class is defined

as final. However, because it prevents inheritance, all methods in a final

class are implicitly final, since there’s no way to override them. You can add

the final specifier to a method in a final class, but it doesn’t add any

meaning.

Exercise 22: (1) Create a final class and attempt to inherit from it.

Reusing Classes 267

final caution
It can seem to be sensible to make a method final while you’re designing a

class. You might feel that no one could possibly want to override your

methods. Sometimes this is true.

But be careful with your assumptions. In general, it’s difficult to anticipate

how a class can be reused, especially a general-purpose class. If you define a

method as final, you might prevent the possibility of reusing your class

through inheritance in some other programmer’s project simply because you

couldn’t imagine it being used that way.

The standard Java library is a good example of this. In particular, the Java

1.0/1.1 Vector class was commonly used and might have been even more

useful if, in the name of efficiency (which was almost certainly an illusion), all

the methods hadn’t been made final. It’s easily conceivable that you might

want to inherit and override with such a fundamentally useful class, but the

designers somehow decided this wasn’t appropriate. This is ironic for two

reasons. First, Stack is inherited from Vector, which says that a Stack is a

Vector, which isn’t really true from a logical standpoint. Nonetheless, it’s a

case where the Java designers themselves inherited Vector. At the point they

created Stack this way, they should have realized that final methods were

too restrictive.

Second, many of the most important methods of Vector, such as

addElement() and elementAt(), are synchronized. As you will see in

the Concurrency chapter, this imposes a significant performance overhead

that probably wipes out any gains provided by final. This lends credence to

the theory that programmers are consistently bad at guessing where

optimizations should occur. It’s just too bad that such a clumsy design made

it into the standard library, where everyone had to cope with it. (Fortunately,

the modern Java container library replaces Vector with ArrayList, which

behaves much more civilly. Unfortunately, there’s still new code being written

that uses the old container library.)

It’s also interesting to note that Hashtable, another important Java 1.0/1.1

standard library class, does not have any final methods. As mentioned

elsewhere in this book, it’s quite obvious that some classes were designed by

completely different people than others. (You’ll see that the method names in

Hashtable are much briefer compared to those in Vector, another piece of

evidence.) This is precisely the sort of thing that should not be obvious to

268 Thinking in Java Bruce Eckel

consumers of a class library. When things are inconsistent, it just makes more

work for the user—yet another paean to the value of design and code

walkthroughs. (Note that the modern Java container library replaces

Hashtable with HashMap.)

Initialization and
class loading

In more traditional languages, programs are loaded all at once, as part of the

startup process. This is followed by initialization, and then the program

begins. The process of initialization in these languages must be carefully

controlled so that the order of initialization of statics doesn’t cause trouble.

C++, for example, has problems if one static expects another static to be

valid before the second one has been initialized.

Java doesn’t have this problem because it takes a different approach to

loading. This is one of the activities that become easier because everything in

Java is an object. Remember that the compiled code for each class exists in its

own separate file. That file isn’t loaded until the code is needed. In general,

you can say that “class code is loaded at the point of first use.” This is usually

when the first object of that class is constructed, but loading also occurs when

a static field or static method is accessed.2

The point of first use is also where the static initialization takes place. All the

static objects and the static code block will be initialized in textual order

(that is, the order that you write them down in the class definition) at the

point of loading. The statics, of course, are initialized only once.

Initialization with inheritance
It’s helpful to look at the whole initialization process, including inheritance,

to get a full picture of what happens. Consider the following example:

//: reusing/Beetle.java

// The full process of initialization.

import static net.mindview.util.Print.*;

2 The constructor is also a static method even though the static keyword is not explicit.
So to be precise, a class is first loaded when any one of its static members is accessed.

Reusing Classes 269

class Insect {

 private int i = 9;

 protected int j;

 Insect() {

 print("i = " + i + ", j = " + j);

 j = 39;

 }

 private static int x1 =

 printInit("static Insect.x1 initialized");

 static int printInit(String s) {

 print(s);

 return 47;

 }

}

public class Beetle extends Insect {

 private int k = printInit("Beetle.k initialized");

 public Beetle() {

 print("k = " + k);

 print("j = " + j);

 }

 private static int x2 =

 printInit("static Beetle.x2 initialized");

 public static void main(String[] args) {

 print("Beetle constructor");

 Beetle b = new Beetle();

 }

} /* Output:

static Insect.x1 initialized

static Beetle.x2 initialized

Beetle constructor

i = 9, j = 0

Beetle.k initialized

k = 47

j = 39

*///:~

The first thing that happens when you run Java on Beetle is that you try to

access Beetle.main() (a static method), so the loader goes out and finds

the compiled code for the Beetle class (in a file called Beetle.class). In the

process of loading it, the loader notices that it has a base class (that’s what the

extends keyword says), which it then loads. This will happen whether or not

you’re going to make an object of that base class. (Try commenting out the

object creation to prove it to yourself.)

270 Thinking in Java Bruce Eckel

If the base class has its own base class, that second base class would then be

loaded, and so on. Next, the static initialization in the root base class (in this

case, Insect) is performed, and then the next derived class, and so on. This is

important because the derived-class static initialization might depend on the

base-class member being initialized properly.

At this point, the necessary classes have all been loaded so the object can be

created. First, all the primitives in this object are set to their default values

and the object references are set to null—this happens in one fell swoop by

setting the memory in the object to binary zero. Then the base-class

constructor will be called. In this case the call is automatic, but you can also

specify the base-class constructor call (as the first operation in the Beetle()

constructor) by using super. The base-class constructor goes through the

same process in the same order as the derived-class constructor. After the

base-class constructor completes, the instance variables are initialized in

textual order. Finally, the rest of the body of the constructor is executed.

Exercise 23: (2) Prove that class loading takes place only once. Prove
that loading may be caused by either the creation of the first instance of that
class or by the access of a static member.

Exercise 24: (2) In Beetle.java, inherit a specific type of beetle from
class Beetle, following the same format as the existing classes. Trace and
explain the output.

Summary
Both inheritance and composition allow you to create new types from existing

types. Composition reuses existing types as part of the underlying

implementation of the new type, and inheritance reuses the interface.

With inheritance, the derived class has the base-class interface, so it can be

upcast to the base, which is critical for polymorphism, as you’ll see in the next

chapter.

Despite the strong emphasis on inheritance in object-oriented programming,

when you start a design you should generally prefer composition (or possibly

delegation) during the first cut and use inheritance only when it is clearly

necessary. Composition tends to be more flexible. In addition, by using the

added artifice of inheritance with your member type, you can change the

exact type, and thus the behavior, of those member objects at run time.

Therefore, you can change the behavior of the composed object at run time.

Reusing Classes 271

When designing a system, your goal is to find or create a set of classes in

which each class has a specific use and is neither too big (encompassing so

much functionality that it’s unwieldy to reuse) nor annoyingly small (you

can’t use it by itself or without adding functionality). If your designs become

too complex, it’s often helpful to add more objects by breaking down existing

ones into smaller parts.

When you set out to design a system, it’s important to realize that program

development is an incremental process, just like human learning. It relies on

experimentation; you can do as much analysis as you want, but you still won’t

know all the answers when you set out on a project. You’ll have much more

success—and more immediate feedback—if you start out to “grow” your

project as an organic, evolutionary creature, rather than constructing it all at

once like a glass-box skyscraper. Inheritance and composition are two of the

most fundamental tools in object-oriented programming that allow you to

perform such experiments.

Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for sale from www.MindViewLLC.com.

 273

Polymorphism
“I have been asked, ‘Pray, Mr. Babbage, if you put into
the machine wrong figures, will the right answers
come out?’ I am not able to rightly apprehend the kind
of confusion of ideas that could provoke such a
question.” Charles Babbage (1791-1871)

Polymorphism is the third essential feature of an object-
oriented programming language, after data abstraction
and inheritance.

It provides another dimension of separation of interface from

implementation, to decouple what from how. Polymorphism allows

improved code organization and readability as well as the creation of

extensible programs that can be “grown” not only during the original creation

of the project, but also when new features are desired.

Encapsulation creates new data types by combining characteristics and

behaviors. Implementation hiding separates the interface from the

implementation by making the details private. This sort of mechanical

organization makes ready sense to someone with a procedural programming

background. But polymorphism deals with decoupling in terms of types. In

the last chapter, you saw how inheritance allows the treatment of an object as

its own type or its base type. This ability is critical because it allows many

types (derived from the same base type) to be treated as if they were one type,

and a single piece of code to work on all those different types equally. The

polymorphic method call allows one type to express its distinction from

another, similar type, as long as they’re both derived from the same base

type. This distinction is expressed through differences in behavior of the

methods that you can call through the base class.

In this chapter, you’ll learn about polymorphism (also called dynamic

binding or late binding or runtime binding) starting from the basics, with

simple examples that strip away everything but the polymorphic behavior of

the program.

274 Thinking in Java Bruce Eckel

Upcasting revisited
In the last chapter you saw how an object can be used as its own type or as an

object of its base type. Taking an object reference and treating it as a

reference to its base type is called upcasting because of the way inheritance

trees are drawn with the base class at the top.

You also saw a problem arise, which is embodied in the following example

about musical instruments.

First, since several of these examples play Notes, we should create a separate

Note enumeration, in a package:

//: polymorphism/music/Note.java

// Notes to play on musical instruments.

package polymorphism.music;

public enum Note {

 MIDDLE_C, C_SHARP, B_FLAT; // Etc.

} ///:~

enums were introduced in the Initialization & Cleanup chapter.

Here, Wind is a type of Instrument; therefore, Wind is inherited from

Instrument:

//: polymorphism/music/Instrument.java

package polymorphism.music;

import static net.mindview.util.Print.*;

class Instrument {

 public void play(Note n) {

 print("Instrument.play()");

 }

}

 ///:~

//: polymorphism/music/Wind.java

package polymorphism.music;

// Wind objects are instruments

// because they have the same interface:

public class Wind extends Instrument {

 // Redefine interface method:

 public void play(Note n) {

Polymorphism 275

 System.out.println("Wind.play() " + n);

 }

} ///:~

//: polymorphism/music/Music.java

// Inheritance & upcasting.

package polymorphism.music;

public class Music {

 public static void tune(Instrument i) {

 // ...

 i.play(Note.MIDDLE_C);

 }

 public static void main(String[] args) {

 Wind flute = new Wind();

 tune(flute); // Upcasting

 }

} /* Output:

Wind.play() MIDDLE_C

*///:~

The method Music.tune() accepts an Instrument reference, but also

anything derived from Instrument. In main(), you can see this happening

as a Wind reference is passed to tune(), with no cast necessary. This is

acceptable—the interface in Instrument must exist in Wind, because

Wind is inherited from Instrument. Upcasting from Wind to

Instrument may “narrow” that interface, but it cannot make it anything less

than the full interface to Instrument.

Forgetting the object type
Music.java might seem strange to you. Why should anyone intentionally

forget the type of an object? This is what happens when you upcast, and it

seems like it might be much more straightforward if tune() simply takes a

Wind reference as its argument. This brings up an essential point: If you did

that, you’d need to write a new tune() for every type of Instrument in your

system. Suppose you follow this reasoning and add Stringed and Brass

instruments:

//: polymorphism/music/Music2.java

// Overloading instead of upcasting.

package polymorphism.music;

import static net.mindview.util.Print.*;

276 Thinking in Java Bruce Eckel

class Stringed extends Instrument {

 public void play(Note n) {

 print("Stringed.play() " + n);

 }

}

class Brass extends Instrument {

 public void play(Note n) {

 print("Brass.play() " + n);

 }

}

public class Music2 {

 public static void tune(Wind i) {

 i.play(Note.MIDDLE_C);

 }

 public static void tune(Stringed i) {

 i.play(Note.MIDDLE_C);

 }

 public static void tune(Brass i) {

 i.play(Note.MIDDLE_C);

 }

 public static void main(String[] args) {

 Wind flute = new Wind();

 Stringed violin = new Stringed();

 Brass frenchHorn = new Brass();

 tune(flute); // No upcasting

 tune(violin);

 tune(frenchHorn);

 }

} /* Output:

Wind.play() MIDDLE_C

Stringed.play() MIDDLE_C

Brass.play() MIDDLE_C

*///:~

This works, but there’s a major drawback: You must write type-specific

methods for each new Instrument class you add. This means more

programming in the first place, but it also means that if you want to add a

new method like tune() or a new type of Instrument, you’ve got a lot of

work to do. Add the fact that the compiler won’t give you any error messages

if you forget to overload one of your methods, and the whole process of

working with types becomes unmanageable.

Polymorphism 277

Wouldn’t it be much nicer if you could just write a single method that takes

the base class as its argument, and not any of the specific derived classes?

That is, wouldn’t it be nice if you could forget that there are derived classes,

and write your code to talk only to the base class?

That’s exactly what polymorphism allows you to do. However, most

programmers who come from a procedural programming background have a

bit of trouble with the way polymorphism works.

Exercise 1: (2) Create a Cycle class, with subclasses Unicycle, Bicycle
and Tricycle. Demonstrate that an instance of each type can be upcast to
Cycle via a ride() method.

The twist
The difficulty with Music.java can be seen by running the program. The

output is Wind.play(). This is clearly the desired output, but it doesn’t

seem to make sense that it would work that way. Look at the tune() method:

 public static void tune(Instrument i) {

 // ...

 i.play(Note.MIDDLE_C);

 }

It receives an Instrument reference. So how can the compiler possibly know

that this Instrument reference points to a Wind in this case and not a

Brass or Stringed? The compiler can’t. To get a deeper understanding of

the issue, it’s helpful to examine the subject of binding.

Method-call binding
Connecting a method call to a method body is called binding. When binding

is performed before the program is run (by the compiler and linker, if there is

one), it’s called early binding. You might not have heard the term before

because it has never been an option with procedural languages. C, for

example, has only one kind of method call, and that’s early binding.

The confusing part of the preceding program revolves around early binding,

because the compiler cannot know the correct method to call when it has only

an Instrument reference.

The solution is called late binding, which means that the binding occurs at

run time, based on the type of object. Late binding is also called dynamic

278 Thinking in Java Bruce Eckel

binding or runtime binding. When a language implements late binding, there

must be some mechanism to determine the type of the object at run time and

to call the appropriate method. That is, the compiler still doesn’t know the

object type, but the method-call mechanism finds out and calls the correct

method body. The late-binding mechanism varies from language to language,

but you can imagine that some sort of type information must be installed in

the objects.

All method binding in Java uses late binding unless the method is static or

final (private methods are implicitly final). This means that ordinarily you

don’t need to make any decisions about whether late binding will occur—it

happens automatically.

Why would you declare a method final? As noted in the last chapter, it

prevents anyone from overriding that method. Perhaps more important, it

effectively “turns off” dynamic binding, or rather it tells the compiler that

dynamic binding isn’t necessary. This allows the compiler to generate slightly

more efficient code for final method calls. However, in most cases it won’t

make any overall performance difference in your program, so it’s best to only

use final as a design decision, and not as an attempt to improve

performance.

Producing the right behavior
Once you know that all method binding in Java happens polymorphically via

late binding, you can write your code to talk to the base class and know that

all the derived-class cases will work correctly using the same code. Or to put it

another way, you “send a message to an object and let the object figure out

the right thing to do.”

The classic example in OOP is the “shape” example. This is commonly used

because it is easy to visualize, but unfortunately it can confuse novice

programmers into thinking that OOP is just for graphics programming, which

is of course not the case.

The shape example has a base class called Shape and various derived types:

Circle, Square, Triangle, etc. The reason the example works so well is that

it’s easy to say, “A circle is a type of shape” and be understood. The

inheritance diagram shows the relationships:

Polymorphism 279

Cast "up" the
inheritance

diagram

Circle
Reference

Shape

draw()
erase()

Circle

draw()
erase()

Square

draw()
erase()

Triangle

draw()
erase()

The upcast could occur in a statement as simple as:

Shape s = new Circle();

Here, a Circle object is created, and the resulting reference is immediately

assigned to a Shape, which would seem to be an error (assigning one type to

another); and yet it’s fine because a Circle is a Shape by inheritance. So the

compiler agrees with the statement and doesn’t issue an error message.

Suppose you call one of the base-class methods (that have been overridden in

the derived classes):

s.draw();

Again, you might expect that Shape’s draw() is called because this is, after

all, a Shape reference—so how could the compiler know to do anything else?

And yet the proper Circle.draw() is called because of late binding

(polymorphism).

The following example puts it a slightly different way. First, let’s create a

reusable library of Shape types:

//: polymorphism/shape/Shape.java

package polymorphism.shape;

public class Shape {

 public void draw() {}

 public void erase() {}

} ///:~

280 Thinking in Java Bruce Eckel

//: polymorphism/shape/Circle.java

package polymorphism.shape;

import static net.mindview.util.Print.*;

public class Circle extends Shape {

 public void draw() { print("Circle.draw()"); }

 public void erase() { print("Circle.erase()"); }

} ///:~

//: polymorphism/shape/Square.java

package polymorphism.shape;

import static net.mindview.util.Print.*;

public class Square extends Shape {

 public void draw() { print("Square.draw()"); }

 public void erase() { print("Square.erase()"); }

} ///:~

//: polymorphism/shape/Triangle.java

package polymorphism.shape;

import static net.mindview.util.Print.*;

public class Triangle extends Shape {

 public void draw() { print("Triangle.draw()"); }

 public void erase() { print("Triangle.erase()"); }

} ///:~

//: polymorphism/shape/RandomShapeGenerator.java

// A "factory" that randomly creates shapes.

package polymorphism.shape;

import java.util.*;

public class RandomShapeGenerator {

 private Random rand = new Random(47);

 public Shape next() {

 switch(rand.nextInt(3)) {

 default:

 case 0: return new Circle();

 case 1: return new Square();

 case 2: return new Triangle();

 }

 }

} ///:~

//: polymorphism/Shapes.java

// Polymorphism in Java.

Polymorphism 281

import polymorphism.shape.*;

public class Shapes {

 private static RandomShapeGenerator gen =

 new RandomShapeGenerator();

 public static void main(String[] args) {

 Shape[] s = new Shape[9];

 // Fill up the array with shapes:

 for(int i = 0; i < s.length; i++)

 s[i] = gen.next();

 // Make polymorphic method calls:

 for(Shape shp : s)

 shp.draw();

 }

} /* Output:

Triangle.draw()

Triangle.draw()

Square.draw()

Triangle.draw()

Square.draw()

Triangle.draw()

Square.draw()

Triangle.draw()

Circle.draw()

*///:~

The base class Shape establishes the common interface to anything inherited

from Shape—that is, all shapes can be drawn and erased. The derived classes

override these definitions to provide unique behavior for each specific type of

shape.

RandomShapeGenerator is a kind of “factory” that produces a reference

to a randomly selected Shape object each time you call its next() method.

Note that the upcasting happens in the return statements, each of which

takes a reference to a Circle, Square, or Triangle and sends it out of

next() as the return type, Shape. So whenever you call next(), you never

get a chance to see what specific type it is, since you always get back a plain

Shape reference.

main() contains an array of Shape references filled through calls to

RandomShapeGenerator.next(). At this point you know you have

Shapes, but you don’t know anything more specific than that (and neither

does the compiler). However, when you step through this array and call

282 Thinking in Java Bruce Eckel

draw() for each one, the correct type-specific behavior magically occurs, as

you can see from the output when you run the program.

The point of creating the shapes randomly is to drive home the

understanding that the compiler can have no special knowledge that allows it

to make the correct calls at compile time. All the calls to draw() must be

made through dynamic binding.

Exercise 2: (1) Add the @Override annotation to the shapes example.

Exercise 3: (1) Add a new method in the base class of Shapes.java that
prints a message, but don’t override it in the derived classes. Explain what
happens. Now override it in one of the derived classes but not the others, and
see what happens. Finally, override it in all the derived classes.

Exercise 4: (2) Add a new type of Shape to Shapes.java and verify in
main() that polymorphism works for your new type as it does in the old
types.

Exercise 5: (1) Starting from Exercise 1, add a wheels() method in
Cycle, which returns the number of wheels. Modify ride() to call wheels()
and verify that polymorphism works.

Extensibility
Now let’s return to the musical instrument example. Because of

polymorphism, you can add as many new types as you want to the system

without changing the tune() method. In a well-designed OOP program,

most or all of your methods will follow the model of tune() and

communicate only with the base-class interface. Such a program is extensible

because you can add new functionality by inheriting new data types from the

common base class. The methods that manipulate the base-class interface

will not need to be changed at all to accommodate the new classes.

Consider what happens if you take the instrument example and add more

methods in the base class and a number of new classes. Here’s the diagram:

Polymorphism 283

Instrument

void play()
String what()
void adjust()

Wind

void play()
String what()
void adjust()

Stringed

void play()
String what()
void adjust()

Woodwind

void play()
String what()

Brass

void play()
void adjust()

Percussion

void play()
String what()
void adjust()

All these new classes work correctly with the old, unchanged tune() method.

Even if tune() is in a separate file and new methods are added to the

interface of Instrument, tune() will still work correctly, even without

recompiling it. Here is the implementation of the diagram:

//: polymorphism/music3/Music3.java

// An extensible program.

package polymorphism.music3;

import polymorphism.music.Note;

import static net.mindview.util.Print.*;

class Instrument {

 void play(Note n) { print("Instrument.play() " + n); }

 String what() { return "Instrument"; }

 void adjust() { print("Adjusting Instrument"); }

}

class Wind extends Instrument {

284 Thinking in Java Bruce Eckel

 void play(Note n) { print("Wind.play() " + n); }

 String what() { return "Wind"; }

 void adjust() { print("Adjusting Wind"); }

}

class Percussion extends Instrument {

 void play(Note n) { print("Percussion.play() " + n); }

 String what() { return "Percussion"; }

 void adjust() { print("Adjusting Percussion"); }

}

class Stringed extends Instrument {

 void play(Note n) { print("Stringed.play() " + n); }

 String what() { return "Stringed"; }

 void adjust() { print("Adjusting Stringed"); }

}

class Brass extends Wind {

 void play(Note n) { print("Brass.play() " + n); }

 void adjust() { print("Adjusting Brass"); }

}

class Woodwind extends Wind {

 void play(Note n) { print("Woodwind.play() " + n); }

 String what() { return "Woodwind"; }

}

public class Music3 {

 // Doesn't care about type, so new types

 // added to the system still work right:

 public static void tune(Instrument i) {

 // ...

 i.play(Note.MIDDLE_C);

 }

 public static void tuneAll(Instrument[] e) {

 for(Instrument i : e)

 tune(i);

 }

 public static void main(String[] args) {

 // Upcasting during addition to the array:

 Instrument[] orchestra = {

 new Wind(),

 new Percussion(),

 new Stringed(),

Polymorphism 285

 new Brass(),

 new Woodwind()

 };

 tuneAll(orchestra);

 }

} /* Output:

Wind.play() MIDDLE_C

Percussion.play() MIDDLE_C

Stringed.play() MIDDLE_C

Brass.play() MIDDLE_C

Woodwind.play() MIDDLE_C

*///:~

The new methods are what(), which returns a String reference with a

description of the class, and adjust(), which provides some way to adjust

each instrument.

In main(), when you place something inside the orchestra array, you

automatically upcast to Instrument.

You can see that the tune() method is blissfully ignorant of all the code

changes that have happened around it, and yet it works correctly. This is

exactly what polymorphism is supposed to provide. Changes in your code

don’t cause damage to parts of the program that should not be affected. Put

another way, polymorphism is an important technique for the programmer to

“separate the things that change from the things that stay the same.”

Exercise 6: (1) Change Music3.java so that what() becomes the root
Object method toString(). Try printing the Instrument objects using
System.out.println() (without any casting).

Exercise 7: (2) Add a new type of Instrument to Music3.java and
verify that polymorphism works for your new type.

Exercise 8: (2) Modify Music3.java so that it randomly creates
Instrument objects the way Shapes.java does.

Exercise 9: (3) Create an inheritance hierarchy of Rodent: Mouse,
Gerbil, Hamster, etc. In the base class, provide methods that are common
to all Rodents, and override these in the derived classes to perform different
behaviors depending on the specific type of Rodent. Create an array of
Rodent, fill it with different specific types of Rodents, and call your base-
class methods to see what happens.

286 Thinking in Java Bruce Eckel

Exercise 10: (3) Create a base class with two methods. In the first
method, call the second method. Inherit a class and override the second
method. Create an object of the derived class, upcast it to the base type, and
call the first method. Explain what happens.

Pitfall: “overriding” private methods
Here’s something you might innocently try to do:

//: polymorphism/PrivateOverride.java

// Trying to override a private method.

package polymorphism;

import static net.mindview.util.Print.*;

public class PrivateOverride {

 private void f() { print("private f()"); }

 public static void main(String[] args) {

 PrivateOverride po = new Derived();

 po.f();

 }

}

class Derived extends PrivateOverride {

 public void f() { print("public f()"); }

} /* Output:

private f()

*///:~

You might reasonably expect the output to be “public f()”, but a private

method is automatically final, and is also hidden from the derived class. So

Derived’s f() in this case is a brand new method; it’s not even overloaded,

since the base-class version of f() isn’t visible in Derived.

The result of this is that only non-private methods may be overridden, but

you should watch out for the appearance of overriding private methods,

which generates no compiler warnings, but doesn’t do what you might expect.

To be clear, you should use a different name from a private base-class

method in your derived class.

Pitfall: fields and static methods
Once you learn about polymorphism, you can begin to think that everything

happens polymorphically. However, only ordinary method calls can be

Polymorphism 287

polymorphic. For example, if you access a field directly, that access will be

resolved at compile time, as the following example demonstrates:1

//: polymorphism/FieldAccess.java

// Direct field access is determined at compile time.

class Super {

 public int field = 0;

 public int getField() { return field; }

}

class Sub extends Super {

 public int field = 1;

 public int getField() { return field; }

 public int getSuperField() { return super.field; }

}

public class FieldAccess {

 public static void main(String[] args) {

 Super sup = new Sub(); // Upcast

 System.out.println("sup.field = " + sup.field +

 ", sup.getField() = " + sup.getField());

 Sub sub = new Sub();

 System.out.println("sub.field = " +

 sub.field + ", sub.getField() = " +

 sub.getField() +

 ", sub.getSuperField() = " +

 sub.getSuperField());

 }

} /* Output:

sup.field = 0, sup.getField() = 1

sub.field = 1, sub.getField() = 1, sub.getSuperField() = 0

*///:~

When a Sub object is upcast to a Super reference, any field accesses are

resolved by the compiler, and are thus not polymorphic. In this example,

different storage is allocated for Super.field and Sub.field. Thus, Sub

actually contains two fields called field: its own and the one that it gets from

Super. However, the Super version is not the default that is produced when

1 Thanks to Randy Nichols for asking this question.

288 Thinking in Java Bruce Eckel

you refer to field in Sub; in order to get the Super field you must explicitly

say super.field.

Although this seems like it could be a confusing issue, in practice it virtually

never comes up. For one thing, you’ll generally make all fields private and so

you won’t access them directly, but only as side effects of calling methods. In

addition, you probably won’t give the same name to a base-class field and a

derived-class field, because it is confusing.

If a method is static, it doesn’t behave polymorphically:

//: polymorphism/StaticPolymorphism.java

// Static methods are not polymorphic.

class StaticSuper {

 public static String staticGet() {

 return "Base staticGet()";

 }

 public String dynamicGet() {

 return "Base dynamicGet()";

 }

}

class StaticSub extends StaticSuper {

 public static String staticGet() {

 return "Derived staticGet()";

 }

 public String dynamicGet() {

 return "Derived dynamicGet()";

 }

}

public class StaticPolymorphism {

 public static void main(String[] args) {

 StaticSuper sup = new StaticSub(); // Upcast

 System.out.println(sup.staticGet());

 System.out.println(sup.dynamicGet());

 }

} /* Output:

Base staticGet()

Derived dynamicGet()

*///:~

static methods are associated with the class, and not the individual objects.

Polymorphism 289

Constructors and polymorphism
As usual, constructors are different from other kinds of methods. This is also

true when polymorphism is involved. Even though constructors are not

polymorphic (they’re actually static methods, but the static declaration is

implicit), it’s important to understand the way constructors work in complex

hierarchies and with polymorphism. This understanding will help you avoid

unpleasant entanglements.

Order of constructor calls
The order of constructor calls was briefly discussed in the Initialization &

Cleanup chapter and again in the Reusing Classes chapter, but that was

before polymorphism was introduced.

A constructor for the base class is always called during the construction

process for a derived class. This call automatically moves up the inheritance

hierarchy so that a constructor for every base class is called. This makes sense

because the constructor has a special job: to see that the object is built

properly. Since fields are usually private, you must generally assume that a

derived class has access to its own members only, and not to those of the base

class. Only the base-class constructor has the proper knowledge and access to

initialize its own elements. Therefore, it’s essential that all constructors get

called; otherwise, the entire object wouldn’t be constructed. That’s why the

compiler enforces a constructor call for every portion of a derived class. It will

silently call the default constructor if you don’t explicitly call a base-class

constructor in the derived-class constructor body. If there is no default

constructor, the compiler will complain. (In the case where a class has no

constructors, the compiler will automatically synthesize a default

constructor.)

Let’s take a look at an example that shows the effects of composition,

inheritance, and polymorphism on the order of construction:

//: polymorphism/Sandwich.java

// Order of constructor calls.

package polymorphism;

import static net.mindview.util.Print.*;

class Meal {

 Meal() { print("Meal()"); }

}

290 Thinking in Java Bruce Eckel

class Bread {

 Bread() { print("Bread()"); }

}

class Cheese {

 Cheese() { print("Cheese()"); }

}

class Lettuce {

 Lettuce() { print("Lettuce()"); }

}

class Lunch extends Meal {

 Lunch() { print("Lunch()"); }

}

class PortableLunch extends Lunch {

 PortableLunch() { print("PortableLunch()");}

}

public class Sandwich extends PortableLunch {

 private Bread b = new Bread();

 private Cheese c = new Cheese();

 private Lettuce l = new Lettuce();

 public Sandwich() { print("Sandwich()"); }

 public static void main(String[] args) {

 new Sandwich();

 }

} /* Output:

Meal()

Lunch()

PortableLunch()

Bread()

Cheese()

Lettuce()

Sandwich()

*///:~

This example creates a complex class out of other classes, and each class has a

constructor that announces itself. The important class is Sandwich, which

reflects three levels of inheritance (four, if you count the implicit inheritance

from Object) and three member objects. You can see the output when a

andwich object is created in main(). This means that the order of

constructor calls for a complex object is as follows:

Polymorphism 291

1. The base-class constructor is called. This step is repeated

recursively such that the root of the hierarchy is constructed first,

followed by the next-derived class, etc., until the most-derived

class is reached.

2. Member initializers are called in the order of declaration.

3. The body of the derived-class constructor is called.

The order of the constructor calls is important. When you inherit, you know

all about the base class and can access any public and protected members

of the base class. This means that you must be able to assume that all the

members of the base class are valid when you’re in the derived class. In a

normal method, construction has already taken place, so all the members of

all parts of the object have been built. Inside the constructor, however, you

must be able to know that all members that you use have been built. The only

way to guarantee this is for the base-class constructor to be called first. Then

when you’re in the derived-class constructor, all the members you can access

in the base class have been initialized. Knowing that all members are valid

inside the constructor is also the reason that, whenever possible, you should

initialize all member objects (that is, objects placed in the class using

composition) at their point of definition in the class (e.g., b, c, and l in the

preceding example). If you follow this practice, you will help ensure that all

base-class members and member objects of the current object have been

initialized. Unfortunately, this doesn’t handle every case, as you will see in

the next section.

Exercise 11: (1) Add class Pickle to Sandwich.java.

Inheritance and cleanup
When using composition and inheritance to create a new class, most of the

time you won’t have to worry about cleaning up; subobjects can usually be left

to the garbage collector. If you do have cleanup issues, you must be diligent

and create a dispose() method (the name I have chosen to use here; you

may come up with something better) for your new class. And with

inheritance, you must override dispose() in the derived class if you have

any special cleanup that must happen as part of garbage collection. When you

override dispose() in an inherited class, it’s important to remember to call

the base-class version of dispose(), since otherwise the base-class cleanup

will not happen. The following example demonstrates this:

292 Thinking in Java Bruce Eckel

//: polymorphism/Frog.java

// Cleanup and inheritance.

package polymorphism;

import static net.mindview.util.Print.*;

class Characteristic {

 private String s;

 Characteristic(String s) {

 this.s = s;

 print("Creating Characteristic " + s);

 }

 protected void dispose() {

 print("disposing Characteristic " + s);

 }

}

class Description {

 private String s;

 Description(String s) {

 this.s = s;

 print("Creating Description " + s);

 }

 protected void dispose() {

 print("disposing Description " + s);

 }

}

class LivingCreature {

 private Characteristic p =

 new Characteristic("is alive");

 private Description t =

 new Description("Basic Living Creature");

 LivingCreature() {

 print("LivingCreature()");

 }

 protected void dispose() {

 print("LivingCreature dispose");

 t.dispose();

 p.dispose();

 }

}

class Animal extends LivingCreature {

 private Characteristic p =

Polymorphism 293

 new Characteristic("has heart");

 private Description t =

 new Description("Animal not Vegetable");

 Animal() { print("Animal()"); }

 protected void dispose() {

 print("Animal dispose");

 t.dispose();

 p.dispose();

 super.dispose();

 }

}

class Amphibian extends Animal {

 private Characteristic p =

 new Characteristic("can live in water");

 private Description t =

 new Description("Both water and land");

 Amphibian() {

 print("Amphibian()");

 }

 protected void dispose() {

 print("Amphibian dispose");

 t.dispose();

 p.dispose();

 super.dispose();

 }

}

public class Frog extends Amphibian {

 private Characteristic p = new Characteristic("Croaks");

 private Description t = new Description("Eats Bugs");

 public Frog() { print("Frog()"); }

 protected void dispose() {

 print("Frog dispose");

 t.dispose();

 p.dispose();

 super.dispose();

 }

 public static void main(String[] args) {

 Frog frog = new Frog();

 print("Bye!");

 frog.dispose();

 }

} /* Output:

294 Thinking in Java Bruce Eckel

Creating Characteristic is alive

Creating Description Basic Living Creature

LivingCreature()

Creating Characteristic has heart

Creating Description Animal not Vegetable

Animal()

Creating Characteristic can live in water

Creating Description Both water and land

Amphibian()

Creating Characteristic Croaks

Creating Description Eats Bugs

Frog()

Bye!

Frog dispose

disposing Description Eats Bugs

disposing Characteristic Croaks

Amphibian dispose

disposing Description Both water and land

disposing Characteristic can live in water

Animal dispose

disposing Description Animal not Vegetable

disposing Characteristic has heart

LivingCreature dispose

disposing Description Basic Living Creature

disposing Characteristic is alive

*///:~

Each class in the hierarchy also contains member objects of types

Characteristic and Description, which must also be disposed. The order

of disposal should be the reverse of the order of initialization, in case one

subobject is dependent on another. For fields, this means the reverse of the

order of declaration (since fields are initialized in declaration order). For base

classes (following the form that’s used in C++ for destructors), you should

perform the derived-class cleanup first, then the base-class cleanup. That’s

because the derived-class cleanup could call some methods in the base class

that require the base-class components to be alive, so you must not destroy

them prematurely. From the output you can see that all parts of the Frog

object are disposed in reverse order of creation.

From this example, you can see that although you don’t always need to

perform cleanup, when you do, the process requires care and awareness.

Exercise 12: (3) Modify Exercise 9 so that it demonstrates the order of
initialization of the base classes and derived classes. Now add member

Polymorphism 295

objects to both the base and derived classes, and show the order in which
their initialization occurs during construction.

Also note that in the above example, a Frog object “owns” its member

objects. It creates them, and it knows how long they should live (as long as

the Frog does), so it knows when to dispose() the member objects.

However, if one of these member objects is shared with one or more other

objects, the problem becomes more complex and you cannot simply assume

that you can call dispose(). In this case, reference counting may be

necessary to keep track of the number of objects that are still accessing a

shared object. Here’s what it looks like:

//: polymorphism/ReferenceCounting.java

// Cleaning up shared member objects.

import static net.mindview.util.Print.*;

class Shared {

 private int refcount = 0;

 private static long counter = 0;

 private final long id = counter++;

 public Shared() {

 print("Creating " + this);

 }

 public void addRef() { refcount++; }

 protected void dispose() {

 if(--refcount == 0)

 print("Disposing " + this);

 }

 public String toString() { return "Shared " + id; }

}

class Composing {

 private Shared shared;

 private static long counter = 0;

 private final long id = counter++;

 public Composing(Shared shared) {

 print("Creating " + this);

 this.shared = shared;

 this.shared.addRef();

 }

 protected void dispose() {

 print("disposing " + this);

 shared.dispose();

 }

296 Thinking in Java Bruce Eckel

 public String toString() { return "Composing " + id; }

}

public class ReferenceCounting {

 public static void main(String[] args) {

 Shared shared = new Shared();

 Composing[] composing = { new Composing(shared),

 new Composing(shared), new Composing(shared),

 new Composing(shared), new Composing(shared) };

 for(Composing c : composing)

 c.dispose();

 }

} /* Output:

Creating Shared 0

Creating Composing 0

Creating Composing 1

Creating Composing 2

Creating Composing 3

Creating Composing 4

disposing Composing 0

disposing Composing 1

disposing Composing 2

disposing Composing 3

disposing Composing 4

Disposing Shared 0

*///:~

The static long counter keeps track of the number of instances of Shared

that are created, and it also provides a value for id. The type of counter is

long rather than int, to prevent overflow (this is just good practice;

overflowing such a counter is not likely to happen in any of the examples in

this book). The id is final because we do not expect it to change its value

during the lifetime of the object.

When you attach a shared object to your class, you must remember to call

addRef(), but the dispose() method will keep track of the reference count

and decide when to actually perform the cleanup. This technique requires

extra diligence to use, but if you are sharing objects that require cleanup you

don’t have much choice.

Exercise 13: (3) Add a finalize() method to
ReferenceCounting.java to verify the termination condition (see the
Initialization & Cleanup chapter).

Polymorphism 297

Exercise 14: (4) Modify Exercise 12 so that one of the member objects is
a shared object with reference counting, and demonstrate that it works
properly.

Behavior of polymorphic methods

inside constructors
The hierarchy of constructor calls brings up an interesting dilemma. What

happens if you’re inside a constructor and you call a dynamically bound

method of the object that’s being constructed?

Inside an ordinary method, the dynamically bound call is resolved at run

time, because the object cannot know whether it belongs to the class that the

method is in or some class derived from it.

If you call a dynamically bound method inside a constructor, the overridden

definition for that method is also used. However, the effect of this call can be

rather unexpected because the overridden method will be called before the

object is fully constructed. This can conceal some difficult-to-find bugs.

Conceptually, the constructor’s job is to bring the object into existence (which

is hardly an ordinary feat). Inside any constructor, the entire object might be

only partially formed—you can only know that the base-class objects have

been initialized. If the constructor is only one step in building an object of a

class that’s been derived from that constructor’s class, the derived parts have

not yet been initialized at the time that the current constructor is being called.

A dynamically bound method call, however, reaches “outward” into the

inheritance hierarchy. It calls a method in a derived class. If you do this

inside a constructor, you can call a method that might manipulate members

that haven’t been initialized yet—a sure recipe for disaster.

You can see the problem in the following example:

//: polymorphism/PolyConstructors.java

// Constructors and polymorphism

// don't produce what you might expect.

import static net.mindview.util.Print.*;

class Glyph {

 void draw() { print("Glyph.draw()"); }

 Glyph() {

 print("Glyph() before draw()");

298 Thinking in Java Bruce Eckel

 draw();

 print("Glyph() after draw()");

 }

}

class RoundGlyph extends Glyph {

 private int radius = 1;

 RoundGlyph(int r) {

 radius = r;

 print("RoundGlyph.RoundGlyph(), radius = " + radius);

 }

 void draw() {

 print("RoundGlyph.draw(), radius = " + radius);

 }

}

public class PolyConstructors {

 public static void main(String[] args) {

 new RoundGlyph(5);

 }

} /* Output:

Glyph() before draw()

RoundGlyph.draw(), radius = 0

Glyph() after draw()

RoundGlyph.RoundGlyph(), radius = 5

*///:~

Glyph.draw() is designed to be overridden, which happens in

RoundGlyph. But the Glyph constructor calls this method, and the call

ends up in RoundGlyph.draw(), which would seem to be the intent. But if

you look at the output, you can see that when Glyph’s constructor calls

draw(), the value of radius isn’t even the default initial value 1. It’s 0. This

would probably result in either a dot or nothing at all being drawn on the

screen, and you’d be left staring, trying to figure out why the program won’t

work.

The order of initialization described in the earlier section isn’t quite complete,

and that’s the key to solving the mystery. The actual process of initialization

is:

1. The storage allocated for the object is initialized to binary zero

before anything else happens.

Polymorphism 299

2. The base-class constructors are called as described previously. At

this point, the overridden draw() method is called (yes, before

the RoundGlyph constructor is called), which discovers a

radius value of zero, due to Step 1.

3. Member initializers are called in the order of declaration.

4. The body of the derived-class constructor is called.

There’s an upside to this, which is that everything is at least initialized to zero

(or whatever zero means for that particular data type) and not just left as

garbage. This includes object references that are embedded inside a class via

composition, which become null. So if you forget to initialize that reference,

you’ll get an exception at run time. Everything else gets zero, which is usually

a telltale value when you are looking at output.

On the other hand, you should be pretty horrified at the outcome of this

program. You’ve done a perfectly logical thing, and yet the behavior is

mysteriously wrong, with no complaints from the compiler. (C++ produces

more rational behavior in this situation.) Bugs like this could easily be buried

and take a long time to discover.

As a result, a good guideline for constructors is “Do as little as possible to set

the object into a good state, and if you can possibly avoid it, don’t call any

other methods in this class.” The only safe methods to call inside a

constructor are those that are final in the base class. (This also applies to

private methods, which are automatically final.) These cannot be

overridden and thus cannot produce this kind of surprise. You may not

always be able to follow this guideline, but it’s something to strive towards.

Exercise 15: (2) Add a RectangularGlyph to PolyConstructors.java
and demonstrate the problem described in this section.

Covariant return types
Java SE5 adds covariant return types, which means that an overridden

method in a derived class can return a type derived from the type returned by

the base-class method:

//: polymorphism/CovariantReturn.java

class Grain {

 public String toString() { return "Grain"; }

300 Thinking in Java Bruce Eckel

}

class Wheat extends Grain {

 public String toString() { return "Wheat"; }

}

class Mill {

 Grain process() { return new Grain(); }

}

class WheatMill extends Mill {

 Wheat process() { return new Wheat(); }

}

public class CovariantReturn {

 public static void main(String[] args) {

 Mill m = new Mill();

 Grain g = m.process();

 System.out.println(g);

 m = new WheatMill();

 g = m.process();

 System.out.println(g);

 }

} /* Output:

Grain

Wheat

*///:~

The key difference between Java SE5 and earlier versions of Java is that the

earlier versions would force the overridden version of process() to return

Grain, rather than Wheat, even though Wheat is derived from Grain and

thus is still a legitimate return type. Covariant return types allow the more

specific Wheat return type.

Designing with inheritance
Once you learn about polymorphism, it can seem that everything ought to be

inherited, because polymorphism is such a clever tool. This can burden your

designs; in fact, if you choose inheritance first when you’re using an existing

class to make a new class, things can become needlessly complicated.

A better approach is to choose composition first, especially when it’s not

obvious which one you should use. Composition does not force a design into

Polymorphism 301

an inheritance hierarchy. But composition is also more flexible since it’s

possible to dynamically choose a type (and thus behavior) when using

composition, whereas inheritance requires that an exact type be known at

compile time. The following example illustrates this:

//: polymorphism/Transmogrify.java

// Dynamically changing the behavior of an object

// via composition (the "State" design pattern).

import static net.mindview.util.Print.*;

class Actor {

 public void act() {}

}

class HappyActor extends Actor {

 public void act() { print("HappyActor"); }

}

class SadActor extends Actor {

 public void act() { print("SadActor"); }

}

class Stage {

 private Actor actor = new HappyActor();

 public void change() { actor = new SadActor(); }

 public void performPlay() { actor.act(); }

}

public class Transmogrify {

 public static void main(String[] args) {

 Stage stage = new Stage();

 stage.performPlay();

 stage.change();

 stage.performPlay();

 }

} /* Output:

HappyActor

SadActor

*///:~

A Stage object contains a reference to an Actor, which is initialized to a

HappyActor object. This means performPlay() produces a particular

behavior. But since a reference can be re-bound to a different object at run

time, a reference for a SadActor object can be substituted in actor, and

302 Thinking in Java Bruce Eckel

then the behavior produced by performPlay() changes. Thus you gain

dynamic flexibility at run time. (This is also called the State pattern. See On

Java 8 at www.MindViewLLC.com.) In contrast, you can’t decide to inherit

differently at run time; that must be completely determined at compile time.

A general guideline is “Use inheritance to express differences in behavior, and

fields to express variations in state.” In the preceding example, both are used;

two different classes are inherited to express the difference in the act()

method, and Stage uses composition to allow its state to be changed. In this

case, that change in state happens to produce a change in behavior.

Exercise 16: (3) Following the example in Transmogrify.java, create a
Starship class containing an AlertStatus reference that can indicate three
different states. Include methods to change the states.

Substitution vs. extension
It would seem that the cleanest way to create an inheritance hierarchy is to

take the “pure” approach. That is, only methods that have been established in

the base class are overridden in the derived class, as seen in this diagram:

Shape

draw()
erase()

Circle

draw()
erase()

Square

draw()
erase()

Triangle

draw()
erase()

This can be called a pure “is-a” relationship because the interface of a class

establishes what it is. Inheritance guarantees that any derived class will have

the interface of the base class and nothing less. If you follow this diagram,

derived classes will also have no more than the base-class interface.

This can be thought of as pure substitution, because derived class objects can

be perfectly substituted for the base class, and you never need to know any

extra information about the subclasses when you’re using them:

Polymorphism 303

Circle, Square,
Line, or new type

of Shape

Talks to Shape
Message

"Is-a"
relationship

That is, the base class can receive any message you can send to the derived

class because the two have exactly the same interface. All you need to do is

upcast from the derived class and never look back to see what exact type of

object you’re dealing with. Everything is handled through polymorphism.

When you see it this way, it seems like a pure is-a relationship is the only

sensible way to do things, and any other design indicates muddled thinking

and is by definition broken. This too is a trap. As soon as you start thinking

this way, you’ll turn around and discover that extending the interface (which,

unfortunately, the keyword extends seems to encourage) is the perfect

solution to a particular problem. This can be termed an “is-like-a”

relationship, because the derived class is like the base class—it has the same

fundamental interface—but it has other features that require additional

methods to implement:

Useful

void f()
void g()

void f()

void g()

void u()

void v()

void w()

MoreUseful

}
Assume this

represents a big
interface

"Is-like-a"

} Extending
the interface

While this is also a useful and sensible approach (depending on the

situation), it has a drawback. The extended part of the interface in the derived

class is not available from the base class, so once you upcast, you can’t call the

new methods:

304 Thinking in Java Bruce Eckel

Useful part
Talks to Useful

object Message

MoreUseful
part

If you’re not upcasting in this case, it won’t bother you, but often you’ll get

into a situation in which you need to rediscover the exact type of the object so

you can access the extended methods of that type. The following section

shows how this is done.

Downcasting and runtime

type information
Since you lose the specific type information via an upcast (moving up the

inheritance hierarchy), it makes sense that to retrieve the type information—

that is, to move back down the inheritance hierarchy—you use a downcast.

However, you know an upcast is always safe because the base class cannot

have a bigger interface than the derived class. Therefore, every message you

send through the base-class interface is guaranteed to be accepted. But with a

downcast, you don’t really know that a shape (for example) is actually a circle.

It could also be a triangle or square or some other type.

To solve this problem, there must be some way to guarantee that a downcast

is correct, so that you won’t accidentally cast to the wrong type and then send

a message that the object can’t accept. This would be quite unsafe.

In some languages (like C++) you must perform a special operation in order

to get a type-safe downcast, but in Java, every cast is checked! So even

though it looks like you’re just performing an ordinary parenthesized cast, at

run time this cast is checked to ensure that it is in fact the type you think it is.

If it isn’t, you get a ClassCastException. This act of checking types at run

time is called runtime type information (RTTI). The following example

demonstrates the behavior of RTTI:

//: polymorphism/RTTI.java

// Downcasting & Runtime type information (RTTI).

// {ThrowsException}

class Useful {

 public void f() {}

Polymorphism 305

 public void g() {}

}

class MoreUseful extends Useful {

 public void f() {}

 public void g() {}

 public void u() {}

 public void v() {}

 public void w() {}

}

public class RTTI {

 public static void main(String[] args) {

 Useful[] x = {

 new Useful(),

 new MoreUseful()

 };

 x[0].f();

 x[1].g();

 // Compile time: method not found in Useful:

 //! x[1].u();

 ((MoreUseful)x[1]).u(); // Downcast/RTTI

 ((MoreUseful)x[0]).u(); // Exception thrown

 }

} ///:~

As in the previous diagram, MoreUseful extends the interface of Useful.

But since it’s inherited, it can also be upcast to a Useful. You can see this

happening in the initialization of the array x in main(). Since both objects in

the array are of class Useful, you can send the f() and g() methods to both,

and if you try to call u() (which exists only in MoreUseful), you’ll get a

compile-time error message.

If you want to access the extended interface of a MoreUseful object, you can

try to downcast. If it’s the correct type, it will be successful. Otherwise, you’ll

get a ClassCastException. You don’t need to write any special code for this

exception, since it indicates a programmer error that could happen anywhere

in a program. The {ThrowsException} comment tag tells this book’s build

system to expect this program to throw an exception when it executes.

There’s more to RTTI than a simple cast. For example, there’s a way to see

what type you’re dealing with before you try to downcast it. All of the Type

306 Thinking in Java Bruce Eckel

Information chapter is devoted to the study of different aspects of Java

runtime type information.

Exercise 17: (2) Using the Cycle hierarchy from Exercise 1, add a
balance() method to Unicycle and Bicycle, but not to Tricycle. Create
instances of all three types and upcast them to an array of Cycle. Try to call
balance() on each element of the array and observe the results. Downcast
and call balance() and observe what happens.

Summary
Polymorphism means “different forms.” In object-oriented programming,

you have the same interface from the base class, and different forms using

that interface: the different versions of the dynamically bound methods.

You’ve seen in this chapter that it’s impossible to understand, or even create,

an example of polymorphism without using data abstraction and inheritance.

Polymorphism is a feature that cannot be viewed in isolation (like a switch

statement can, for example), but instead works only in concert, as part of the

larger picture of class relationships.

To use polymorphism—and thus object-oriented techniques—effectively in

your programs, you must expand your view of programming to include not

just members and messages of an individual class, but also the commonality

among classes and their relationships with each other. Although this requires

significant effort, it’s a worthy struggle. The results are faster program

development, better code organization, extensible programs, and easier code

maintenance.

Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for sale from www.MindViewLLC.com.

 307

Interfaces
Interfaces and abstract classes provide a more structured
way to separate interface from implementation.

Such mechanisms are not that common in programming languages. C++, for

example, only has indirect support for these concepts. The fact that language

keywords exist in Java indicates that these ideas were considered important

enough to provide direct support.

First, we’ll look at the abstract class, which is a kind of midway step between

an ordinary class and an interface. Although your first impulse will be to

create an interface, the abstract class is an important and necessary tool for

building classes that have some unimplemented methods. You can’t always

use a pure interface.

Abstract classes
and methods

In all the “instrument” examples in the previous chapter, the methods in the

base class Instrument were always “dummy” methods. If these methods are

ever called, you’ve done something wrong. That’s because the intent of

Instrument is to create a common interface for all the classes derived from

it.

In those examples, the only reason to establish this common interface is so

that it can be expressed differently for each different subtype. It establishes a

basic form, so that you can say what’s common for all the derived classes.

Another way of saying this is to call Instrument an abstract base class, or

simply an abstract class.

If you have an abstract class like Instrument, objects of that specific class

almost always have no meaning. You create an abstract class when you want

to manipulate a set of classes through its common interface. Thus,

Instrument is meant to express only the interface, and not a particular

implementation, so creating an Instrument object makes no sense, and

you’ll probably want to prevent the user from doing it. This can be

308 Thinking in Java Bruce Eckel

accomplished by making all the methods in Instrument generate errors, but

that delays the information until run time and requires reliable exhaustive

testing on the user’s part. It’s usually better to catch problems at compile

time.

Java provides a mechanism for doing this called the abstract method.1 This is

a method that is incomplete; it has only a declaration and no method body.

Here is the syntax for an abstract method declaration:

abstract void f();

A class containing abstract methods is called an abstract class. If a class

contains one or more abstract methods, the class itself must be qualified as

abstract. (Otherwise, the compiler gives you an error message.)

If an abstract class is incomplete, what is the compiler supposed to do when

someone tries to make an object of that class? It cannot safely create an

object of an abstract class, so you get an error message from the compiler.

This way, the compiler ensures the purity of the abstract class, and you don’t

need to worry about misusing it.

If you inherit from an abstract class and you want to make objects of the new

type, you must provide method definitions for all the abstract methods in the

base class. If you don’t (and you may choose not to), then the derived class is

also abstract, and the compiler will force you to qualify that class with the

abstract keyword.

It’s possible to make a class abstract without including any abstract

methods. This is useful when you’ve got a class in which it doesn’t make sense

to have any abstract methods, and yet you want to prevent any instances of

that class.

The Instrument class from the previous chapter can easily be turned into an

abstract class. Only some of the methods will be abstract, since making a

class abstract doesn’t force you to make all the methods abstract. Here’s

what it looks like:

1 For C++ programmers, this is the analogue of C++’s pure virtual function.

Interfaces 309

abstract Instrument

abstract void play();
String what() { /* ... */ }
abstract void adjust();

Wind

void play()
String what()
void adjust()

Stringed

void play()
String what()
void adjust()

Woodwind

void play()
String what()

Brass

void play()
void adjust()

Percussion

void play()
String what()
void adjust()

extendsextends

extends extends extends

Here’s the orchestra example modified to use abstract classes and methods:

//: interfaces/music4/Music4.java

// Abstract classes and methods.

package interfaces.music4;

import polymorphism.music.Note;

import static net.mindview.util.Print.*;

abstract class Instrument {

 private int i; // Storage allocated for each

 public abstract void play(Note n);

 public String what() { return "Instrument"; }

 public abstract void adjust();

}

class Wind extends Instrument {

 public void play(Note n) {

 print("Wind.play() " + n);

 }

310 Thinking in Java Bruce Eckel

 public String what() { return "Wind"; }

 public void adjust() {}

}

class Percussion extends Instrument {

 public void play(Note n) {

 print("Percussion.play() " + n);

 }

 public String what() { return "Percussion"; }

 public void adjust() {}

}

class Stringed extends Instrument {

 public void play(Note n) {

 print("Stringed.play() " + n);

 }

 public String what() { return "Stringed"; }

 public void adjust() {}

}

class Brass extends Wind {

 public void play(Note n) {

 print("Brass.play() " + n);

 }

 public void adjust() { print("Brass.adjust()"); }

}

class Woodwind extends Wind {

 public void play(Note n) {

 print("Woodwind.play() " + n);

 }

 public String what() { return "Woodwind"; }

}

public class Music4 {

 // Doesn't care about type, so new types

 // added to the system still work right:

 static void tune(Instrument i) {

 // ...

 i.play(Note.MIDDLE_C);

 }

 static void tuneAll(Instrument[] e) {

 for(Instrument i : e)

 tune(i);

Interfaces 311

 }

 public static void main(String[] args) {

 // Upcasting during addition to the array:

 Instrument[] orchestra = {

 new Wind(),

 new Percussion(),

 new Stringed(),

 new Brass(),

 new Woodwind()

 };

 tuneAll(orchestra);

 }

} /* Output:

Wind.play() MIDDLE_C

Percussion.play() MIDDLE_C

Stringed.play() MIDDLE_C

Brass.play() MIDDLE_C

Woodwind.play() MIDDLE_C

*///:~

You can see that there’s really no change except in the base class.

It’s helpful to create abstract classes and methods because they make the

abstractness of a class explicit, and tell both the user and the compiler how it

was intended to be used. Abstract classes are also useful refactoring tools,

since they allow you to easily move common methods up the inheritance

hierarchy.

Exercise 1: (1) Modify Exercise 9 in the previous chapter so that Rodent
is an abstract class. Make the methods of Rodent abstract whenever
possible.

Exercise 2: (1) Create a class as abstract without including any abstract
methods, and verify that you cannot create any instances of that class.

Exercise 3: (2) Create a base class with an abstract print() method that
is overridden in a derived class. The overridden version of the method prints
the value of an int variable defined in the derived class. At the point of
definition of this variable, give it a nonzero value. In the base-class
constructor, call this method. In main(), create an object of the derived
type, and then call its print() method. Explain the results.

Exercise 4: (3) Create an abstract class with no methods. Derive a class
and add a method. Create a static method that takes a reference to the base
class, downcasts it to the derived class, and calls the method. In main(),

312 Thinking in Java Bruce Eckel

demonstrate that it works. Now put the abstract declaration for the method
in the base class, thus eliminating the need for the downcast.

Interfaces
The interface keyword takes the concept of abstractness one step further.

The abstract keyword allows you to create one or more undefined methods

in a class—you provide part of the interface without providing a

corresponding implementation (however, an abstract class can still contain

fields). The implementation is provided by inheritors. The interface

keyword produces a completely abstract class, one that provides no

implementation at all. It allows the creator to determine method names,

argument lists, and return types, but no method bodies. An interface provides

only a form, but no implementation.

An interface says, “All classes that implement this particular interface will

look like this.” Thus, any code that uses a particular interface knows what

methods might be called for that interface, and that’s all. So the interface is

used to establish a “protocol” between classes. (Some object-oriented

programming languages have a keyword called protocol to do the same

thing.)

However, an interface is more than just an abstract class taken to the

extreme, since it allows you to perform a variation of “multiple inheritance”

by creating a class that can be upcast to more than one base type.

To create an interface, use the interface keyword instead of the class

keyword. As with a class, you can add the public keyword before the

interface keyword (but only if that interface is defined in a file of the same

name). If you leave off the public keyword, you get package access, so the

interface is only usable within the same package. An interface can also

contain fields, but these are implicitly static and final.

To make a class that conforms to a particular interface (or group of

interfaces), use the implements keyword, which says, “The interface is what

it looks like, but now I’m going to say how it works.” Other than that, it looks

like inheritance. The diagram for the instrument example shows this:

Interfaces 313

interface Instrument

void play();
String what();
void adjust();

Wind

void play()
String what()
void adjust()

Stringed

void play()
String what()
void adjust()

Woodwind

void play()
String what()

Brass

void play()
void adjust()

Percussion

void play()
String what()
void adjust()

extendsextends

implements implements implements

You can see from the Woodwind and Brass classes that once you’ve

implemented an interface, that implementation becomes an ordinary class

that can be extended in the regular way.

You can choose to explicitly declare the methods in an interface as public,

but they are public even if you don’t say it. So when you implement an

interface, the methods from the interface must be defined as public.

Otherwise, they would default to package access, and you’d be reducing the

accessibility of a method during inheritance, which is not allowed by the Java

compiler.

You can see this in the modified version of the Instrument example. Note

that every method in the interface is strictly a declaration, which is the only

thing the compiler allows. In addition, none of the methods in Instrument

are declared as public, but they’re automatically public anyway:

//: interfaces/music5/Music5.java

314 Thinking in Java Bruce Eckel

// Interfaces.

package interfaces.music5;

import polymorphism.music.Note;

import static net.mindview.util.Print.*;

interface Instrument {

 // Compile-time constant:

 int VALUE = 5; // static & final

 // Cannot have method definitions:

 void play(Note n); // Automatically public

 void adjust();

}

class Wind implements Instrument {

 public void play(Note n) {

 print(this + ".play() " + n);

 }

 public String toString() { return "Wind"; }

 public void adjust() { print(this + ".adjust()"); }

}

class Percussion implements Instrument {

 public void play(Note n) {

 print(this + ".play() " + n);

 }

 public String toString() { return "Percussion"; }

 public void adjust() { print(this + ".adjust()"); }

}

class Stringed implements Instrument {

 public void play(Note n) {

 print(this + ".play() " + n);

 }

 public String toString() { return "Stringed"; }

 public void adjust() { print(this + ".adjust()"); }

}

class Brass extends Wind {

 public String toString() { return "Brass"; }

}

class Woodwind extends Wind {

 public String toString() { return "Woodwind"; }

}

Interfaces 315

public class Music5 {

 // Doesn't care about type, so new types

 // added to the system still work right:

 static void tune(Instrument i) {

 // ...

 i.play(Note.MIDDLE_C);

 }

 static void tuneAll(Instrument[] e) {

 for(Instrument i : e)

 tune(i);

 }

 public static void main(String[] args) {

 // Upcasting during addition to the array:

 Instrument[] orchestra = {

 new Wind(),

 new Percussion(),

 new Stringed(),

 new Brass(),

 new Woodwind()

 };

 tuneAll(orchestra);

 }

} /* Output:

Wind.play() MIDDLE_C

Percussion.play() MIDDLE_C

Stringed.play() MIDDLE_C

Brass.play() MIDDLE_C

Woodwind.play() MIDDLE_C

*///:~

One other change has been made to this version of the example: The what()

method has been changed to toString(), since that was how the method was

being used. Since toString() is part of the root class Object, it doesn’t need

to appear in the interface.

The rest of the code works the same. Notice that it doesn’t matter if you are

upcasting to a “regular” class called Instrument, an abstract class called

Instrument, or to an interface called Instrument. The behavior is the

same. In fact, you can see in the tune() method that there isn’t any evidence

about whether Instrument is a “regular” class, an abstract class, or an

interface.

316 Thinking in Java Bruce Eckel

Exercise 5: (2) Create an interface containing three methods, in its own
package. Implement the interface in a different package.

Exercise 6: (2) Prove that all the methods in an interface are
automatically public.

Exercise 7: (1) Change Exercise 9 in the Polymorphism chapter so that
Rodent is an interface.

Exercise 8: (2) In polymorphism.Sandwich.java, create an interface
called FastFood (with appropriate methods) and change Sandwich so that
it also implements FastFood.

Exercise 9: (3) Refactor Music5.java by moving the common methods
in Wind, Percussion and Stringed into an abstract class.

Exercise 10: (3) Modify Music5.java by adding a Playable interface.
Move the play() declaration from Instrument to Playable. Add Playable
to the derived classes by including it in the implements list. Change tune()
so that it takes a Playable instead of an Instrument.

Complete decoupling
Whenever a method works with a class instead of an interface, you are limited

to using that class or its subclasses. If you would like to apply the method to a

class that isn’t in that hierarchy, you’re out of luck. An interface relaxes this

constraint considerably. As a result, it allows you to write more reusable code.

For example, suppose you have a Processor class that has a name() and a

process() method that takes input, modifies it and produces output. The

base class is extended to create different types of Processor. In this case, the

Processor subtypes modify String objects (note that the return types can

be covariant, but not the argument types):

//: interfaces/classprocessor/Apply.java

package interfaces.classprocessor;

import java.util.*;

import static net.mindview.util.Print.*;

class Processor {

 public String name() {

 return getClass().getSimpleName();

 }

 Object process(Object input) { return input; }

Interfaces 317

}

class Upcase extends Processor {

 String process(Object input) { // Covariant return

 return ((String)input).toUpperCase();

 }

}

class Downcase extends Processor {

 String process(Object input) {

 return ((String)input).toLowerCase();

 }

}

class Splitter extends Processor {

 String process(Object input) {

 // The split() argument divides a String into pieces:

 return Arrays.toString(((String)input).split(" "));

 }

}

public class Apply {

 public static void process(Processor p, Object s) {

 print("Using Processor " + p.name());

 print(p.process(s));

 }

 public static String s =

 "Disagreement with beliefs is by definition incorrect";

 public static void main(String[] args) {

 process(new Upcase(), s);

 process(new Downcase(), s);

 process(new Splitter(), s);

 }

} /* Output:

Using Processor Upcase

DISAGREEMENT WITH BELIEFS IS BY DEFINITION INCORRECT

Using Processor Downcase

disagreement with beliefs is by definition incorrect

Using Processor Splitter

[Disagreement, with, beliefs, is, by, definition, incorrect]

*///:~

The Apply.process() method takes any kind of Processor and applies it

to an Object, then prints the results. Creating a method that behaves

318 Thinking in Java Bruce Eckel

differently depending on the argument object that you pass it is called the

Strategy design pattern. The method contains the fixed part of the algorithm

to be performed, and the Strategy contains the part that varies. The Strategy

is the object that you pass in, and it contains code to be executed. Here, the

Processor object is the Strategy, and in main() you can see three different

Strategies applied to the String s.

The split() method is part of the String class. It takes the String object and

splits it using the argument as a boundary, and returns a String[]. It is used

here as a shorter way of creating an array of String.

Now suppose you discover a set of electronic filters that seem like they could

fit into your Apply.process() method:

//: interfaces/filters/Waveform.java

package interfaces.filters;

public class Waveform {

 private static long counter;

 private final long id = counter++;

 public String toString() { return "Waveform " + id; }

} ///:~

//: interfaces/filters/Filter.java

package interfaces.filters;

public class Filter {

 public String name() {

 return getClass().getSimpleName();

 }

 public Waveform process(Waveform input) { return input; }

} ///:~

//: interfaces/filters/LowPass.java

package interfaces.filters;

public class LowPass extends Filter {

 double cutoff;

 public LowPass(double cutoff) { this.cutoff = cutoff; }

 public Waveform process(Waveform input) {

 return input; // Dummy processing

 }

} ///:~

//: interfaces/filters/HighPass.java

Interfaces 319

package interfaces.filters;

public class HighPass extends Filter {

 double cutoff;

 public HighPass(double cutoff) { this.cutoff = cutoff; }

 public Waveform process(Waveform input) { return input; }

} ///:~

//: interfaces/filters/BandPass.java

package interfaces.filters;

public class BandPass extends Filter {

 double lowCutoff, highCutoff;

 public BandPass(double lowCut, double highCut) {

 lowCutoff = lowCut;

 highCutoff = highCut;

 }

 public Waveform process(Waveform input) { return input; }

} ///:~

Filter has the same interface elements as Processor, but because it isn’t

inherited from Processor—because the creator of the Filter class had no

clue you might want to use it as a Processor—you can’t use a Filter with the

Apply.process() method, even though it would work fine. Basically, the

coupling between Apply.process() and Processor is stronger than it

needs to be, and this prevents the Apply.process() code from being reused

when it ought to be. Also notice that the inputs and outputs are both

Waveforms.

If Processor is an interface, however, the constraints are loosened enough

that you can reuse an Apply.process() that takes that interface. Here are

the modified versions of Processor and Apply:

//: interfaces/interfaceprocessor/Processor.java

package interfaces.interfaceprocessor;

public interface Processor {

 String name();

 Object process(Object input);

} ///:~

//: interfaces/interfaceprocessor/Apply.java

package interfaces.interfaceprocessor;

import static net.mindview.util.Print.*;

320 Thinking in Java Bruce Eckel

public class Apply {

 public static void process(Processor p, Object s) {

 print("Using Processor " + p.name());

 print(p.process(s));

 }

} ///:~

The first way you can reuse code is if client programmers can write their

classes to conform to the interface, like this:

//: interfaces/interfaceprocessor/StringProcessor.java

package interfaces.interfaceprocessor;

import java.util.*;

public abstract class StringProcessor implements Processor{

 public String name() {

 return getClass().getSimpleName();

 }

 public abstract String process(Object input);

 public static String s =

 "If she weighs the same as a duck, she's made of wood";

 public static void main(String[] args) {

 Apply.process(new Upcase(), s);

 Apply.process(new Downcase(), s);

 Apply.process(new Splitter(), s);

 }

}

class Upcase extends StringProcessor {

 public String process(Object input) { // Covariant return

 return ((String)input).toUpperCase();

 }

}

class Downcase extends StringProcessor {

 public String process(Object input) {

 return ((String)input).toLowerCase();

 }

}

class Splitter extends StringProcessor {

 public String process(Object input) {

 return Arrays.toString(((String)input).split(" "));

 }

} /* Output:

Interfaces 321

Using Processor Upcase

IF SHE WEIGHS THE SAME AS A DUCK, SHE'S MADE OF WOOD

Using Processor Downcase

if she weighs the same as a duck, she's made of wood

Using Processor Splitter

[If, she, weighs, the, same, as, a, duck,, she's, made, of,

wood]

*///:~

However, you are often in the situation of not being able to modify the classes

that you want to use. In the case of the electronic filters, for example, the

library was discovered rather than created. In these cases, you can use the

Adapter design pattern. In Adapter, you write code to take the interface that

you have and produce the interface that you need, like this:

//: interfaces/interfaceprocessor/FilterProcessor.java

package interfaces.interfaceprocessor;

import interfaces.filters.*;

class FilterAdapter implements Processor {

 Filter filter;

 public FilterAdapter(Filter filter) {

 this.filter = filter;

 }

 public String name() { return filter.name(); }

 public Waveform process(Object input) {

 return filter.process((Waveform)input);

 }

}

public class FilterProcessor {

 public static void main(String[] args) {

 Waveform w = new Waveform();

 Apply.process(new FilterAdapter(new LowPass(1.0)), w);

 Apply.process(new FilterAdapter(new HighPass(2.0)), w);

 Apply.process(

 new FilterAdapter(new BandPass(3.0, 4.0)), w);

 }

} /* Output:

Using Processor LowPass

Waveform 0

Using Processor HighPass

Waveform 0

Using Processor BandPass

322 Thinking in Java Bruce Eckel

Waveform 0

*///:~

In this approach to Adapter, the FilterAdapter constructor takes the

interface that you have—Filter—and produces an object that has the

Processor interface that you need. You may also notice delegation in the

FilterAdapter class.

Decoupling interface from implementation allows an interface to be applied

to multiple different implementations, and thus your code is more reusable.

Exercise 11: (4) Create a class with a method that takes a String
argument and produces a result that swaps each pair of characters in that
argument. Adapt the class so that it works with
interfaceprocessor.Apply.process().

“Multiple inheritance” in Java
Because an interface has no implementation at all—that is, there is no storage

associated with an interface—there’s nothing to prevent many interfaces from

being combined. This is valuable because there are times when you need to

say, “An x is an a and a b and a c.” In C++, this act of combining multiple

class interfaces is called multiple inheritance, and it carries some rather

sticky baggage because each class can have an implementation. In Java, you

can perform the same act, but only one of the classes can have an

implementation, so the C++ problems do not occur with Java when

combining multiple interfaces:

Abstract or Concrete
 Base Class

interface 1

interface 2

interface n

Base Class Methods interface 1 ...interface 2 interface n

......

In a derived class, you aren’t forced to have a base class that is either

abstract or “concrete” (one with no abstract methods). If you do inherit

from a non-interface, you can inherit from only one. All the rest of the base

Interfaces 323

elements must be interfaces. You place all the interface names after the

implements keyword and separate them with commas. You can have as

many interfaces as you want. You can upcast to each interface, because each

interface is an independent type. The following example shows a concrete

class combined with several interfaces to produce a new class:

//: interfaces/Adventure.java

// Multiple interfaces.

interface CanFight {

 void fight();

}

interface CanSwim {

 void swim();

}

interface CanFly {

 void fly();

}

class ActionCharacter {

 public void fight() {}

}

class Hero extends ActionCharacter

 implements CanFight, CanSwim, CanFly {

 public void swim() {}

 public void fly() {}

}

public class Adventure {

 public static void t(CanFight x) { x.fight(); }

 public static void u(CanSwim x) { x.swim(); }

 public static void v(CanFly x) { x.fly(); }

 public static void w(ActionCharacter x) { x.fight(); }

 public static void main(String[] args) {

 Hero h = new Hero();

 t(h); // Treat it as a CanFight

 u(h); // Treat it as a CanSwim

 v(h); // Treat it as a CanFly

 w(h); // Treat it as an ActionCharacter

 }

} ///:~

324 Thinking in Java Bruce Eckel

You can see that Hero combines the concrete class ActionCharacter with

the interfaces CanFight, CanSwim, and CanFly. When you combine a

concrete class with interfaces this way, the concrete class must come first,

then the interfaces. (The compiler gives an error otherwise.)

The signature for fight() is the same in the interface CanFight and the class

ActionCharacter, and that fight() is not provided with a definition in

Hero. You can extend an interface, but then you’ve got another interface.

When you want to create an object, all the definitions must first exist. Even

though Hero does not explicitly provide a definition for fight(), the

definition comes along with ActionCharacter; thus, it’s possible to create

Hero objects.

In class Adventure, you can see that there are four methods that take

arguments of the various interfaces and of the concrete class. When a Hero

object is created, it can be passed to any of these methods, which means it is

being upcast to each interface in turn. Because of the way interfaces are

designed in Java, this works without any particular effort on the part of the

programmer.

Keep in mind that one of the core reasons for interfaces is shown in the

preceding example: to upcast to more than one base type (and the flexibility

that this provides). However, a second reason for using interfaces is the same

as using an abstract base class: to prevent the client programmer from

making an object of this class and to establish that it is only an interface.

This brings up a question: Should you use an interface or an abstract class?

If it’s possible to create your base class without any method definitions or

member variables, you should always prefer interfaces to abstract classes. In

fact, if you know something is going to be a base class, you can consider

making it an interface (this subject will be revisited in the chapter summary).

Exercise 12: (2) In Adventure.java, add an interface called
CanClimb, following the form of the other interfaces.

Exercise 13: (2) Create an interface, and inherit two new interfaces from
that interface. Multiply inherit a third interface from the second two.2

2 This shows how interfaces prevent the “diamond problem” that occurs with C++
multiple inheritance.

Interfaces 325

Extending an interface
with inheritance

You can easily add new method declarations to an interface by using

inheritance, and you can also combine several interfaces into a new interface

with inheritance. In both cases you get a new interface, as seen in this

example:

//: interfaces/HorrorShow.java

// Extending an interface with inheritance.

interface Monster {

 void menace();

}

interface DangerousMonster extends Monster {

 void destroy();

}

interface Lethal {

 void kill();

}

class DragonZilla implements DangerousMonster {

 public void menace() {}

 public void destroy() {}

}

interface Vampire extends DangerousMonster, Lethal {

 void drinkBlood();

}

class VeryBadVampire implements Vampire {

 public void menace() {}

 public void destroy() {}

 public void kill() {}

 public void drinkBlood() {}

}

public class HorrorShow {

 static void u(Monster b) { b.menace(); }

 static void v(DangerousMonster d) {

 d.menace();

326 Thinking in Java Bruce Eckel

 d.destroy();

 }

 static void w(Lethal l) { l.kill(); }

 public static void main(String[] args) {

 DangerousMonster barney = new DragonZilla();

 u(barney);

 v(barney);

 Vampire vlad = new VeryBadVampire();

 u(vlad);

 v(vlad);

 w(vlad);

 }

} ///:~

DangerousMonster is a simple extension to Monster that produces a new

interface. This is implemented in DragonZilla.

The syntax used in Vampire works only when inheriting interfaces.

Normally, you can use extends with only a single class, but extends can

refer to multiple base interfaces when building a new interface. As you can

see, the interface names are simply separated with commas.

Exercise 14: (2) Create three interfaces, each with two methods. Inherit a
new interface that combines the three, adding a new method. Create a class
by implementing the new interface and also inheriting from a concrete class.
Now write four methods, each of which takes one of the four interfaces as an
argument. In main(), create an object of your class and pass it to each of the
methods.

Exercise 15: (2) Modify the previous exercise by creating an abstract
class and inheriting that into the derived class.

Name collisions when combining

interfaces
You can encounter a small pitfall when implementing multiple interfaces. In

the preceding example, both CanFight and ActionCharacter have

identical void fight() methods. An identical method is not a problem, but

what if the method differs by signature or return type? Here’s an example:

//: interfaces/InterfaceCollision.java

package interfaces;

interface I1 { void f(); }

Interfaces 327

interface I2 { int f(int i); }

interface I3 { int f(); }

class C { public int f() { return 1; } }

class C2 implements I1, I2 {

 public void f() {}

 public int f(int i) { return 1; } // overloaded

}

class C3 extends C implements I2 {

 public int f(int i) { return 1; } // overloaded

}

class C4 extends C implements I3 {

 // Identical, no problem:

 public int f() { return 1; }

}

// Methods differ only by return type:

//! class C5 extends C implements I1 {}

//! interface I4 extends I1, I3 {} ///:~

The difficulty occurs because overriding, implementation, and overloading

get unpleasantly mixed together. Also, overloaded methods cannot differ only

by return type. When the last two lines are uncommented, the error messages

say it all:

InterfaceCollision.java:23: f() in C cannot implement f() in I1; attempting

to use incompatible return type

found : int

required: void

InterfaceCollision.java:24: Interfaces I3 and I1 are incompatible; both

define f(), but with different return type

Using the same method names in different interfaces that are intended to be

combined generally causes confusion in the readability of the code, as well.

Strive to avoid it.

Adapting to an interface
One of the most compelling reasons for interfaces is to allow multiple

implementations for the same interface. In simple cases this is in the form of

328 Thinking in Java Bruce Eckel

a method that accepts an interface, leaving it up to you to implement that

interface and pass your object to the method.

Thus, a common use for interfaces is the aforementioned Strategy design

pattern. You write a method that performs certain operations, and that

method takes an interface that you also specify. You’re basically saying, “You

can use my method with any object you like, as long as your object conforms

to my interface.” This makes your method more flexible, general and

reusable.

For example, the constructor for the Java SE5 Scanner class (which you’ll

learn more about in the Strings chapter) takes a Readable interface. You’ll

find that Readable is not an argument for any other method in the Java

standard library—it was created solely for Scanner, so that Scanner doesn’t

have to constrain its argument to be a particular class. This way, Scanner

can be made to work with more types. If you create a new class and you want

it to be usable with Scanner, you make it Readable, like this:

//: interfaces/RandomWords.java

// Implementing an interface to conform to a method.

import java.nio.*;

import java.util.*;

public class RandomWords implements Readable {

 private static Random rand = new Random(47);

 private static final char[] capitals =

 "ABCDEFGHIJKLMNOPQRSTUVWXYZ".toCharArray();

 private static final char[] lowers =

 "abcdefghijklmnopqrstuvwxyz".toCharArray();

 private static final char[] vowels =

 "aeiou".toCharArray();

 private int count;

 public RandomWords(int count) { this.count = count; }

 public int read(CharBuffer cb) {

 if(count-- == 0)

 return -1; // Indicates end of input

 cb.append(capitals[rand.nextInt(capitals.length)]);

 for(int i = 0; i < 4; i++) {

 cb.append(vowels[rand.nextInt(vowels.length)]);

 cb.append(lowers[rand.nextInt(lowers.length)]);

 }

 cb.append(" ");

 return 10; // Number of characters appended

Interfaces 329

 }

 public static void main(String[] args) {

 Scanner s = new Scanner(new RandomWords(10));

 while(s.hasNext())

 System.out.println(s.next());

 }

} /* Output:

Yazeruyac

Fowenucor

Goeazimom

Raeuuacio

Nuoadesiw

Hageaikux

Ruqicibui

Numasetih

Kuuuuozog

Waqizeyoy

*///:~

The Readable interface only requires the implementation of a read()

method. Inside read(), you add to the CharBuffer argument (there are

several ways to do this; see the CharBuffer documentation), or return -1

when you have no more input.

Suppose you have a class that does not already implement Readable—how

do you make it work with Scanner? Here’s an example of a class that

produces random floating point numbers:

//: interfaces/RandomDoubles.java

import java.util.*;

public class RandomDoubles {

 private static Random rand = new Random(47);

 public double next() { return rand.nextDouble(); }

 public static void main(String[] args) {

 RandomDoubles rd = new RandomDoubles();

 for(int i = 0; i < 7; i ++)

 System.out.print(rd.next() + " ");

 }

} /* Output:

0.7271157860730044 0.5309454508634242 0.16020656493302599

0.18847866977771732 0.5166020801268457 0.2678662084200585

0.2613610344283964

*///:~

330 Thinking in Java Bruce Eckel

Again, we can use the Adapter pattern, but in this case the adapted class can

be created by inheriting and implementing the Readable interface. So, using

the pseudo multiple inheritance provided by the interface keyword, we

produce a new class which is both RandomDoubles and Readable:

//: interfaces/AdaptedRandomDoubles.java

// Creating an adapter with inheritance.

import java.nio.*;

import java.util.*;

public class AdaptedRandomDoubles extends RandomDoubles

implements Readable {

 private int count;

 public AdaptedRandomDoubles(int count) {

 this.count = count;

 }

 public int read(CharBuffer cb) {

 if(count-- == 0)

 return -1;

 String result = Double.toString(next()) + " ";

 cb.append(result);

 return result.length();

 }

 public static void main(String[] args) {

 Scanner s = new Scanner(new AdaptedRandomDoubles(7));

 while(s.hasNextDouble())

 System.out.print(s.nextDouble() + " ");

 }

} /* Output:

0.7271157860730044 0.5309454508634242 0.16020656493302599

0.18847866977771732 0.5166020801268457 0.2678662084200585

0.2613610344283964

*///:~

Because you can add an interface onto any existing class in this way, it means

that a method that takes an interface provides a way for any class to be

adapted to work with that method. This is the power of using interfaces

instead of classes.

Exercise 16: (3) Create a class that produces a sequence of chars. Adapt
this class so that it can be an input to a Scanner object.

Interfaces 331

Fields in interfaces
Because any fields you put into an interface are automatically static and

final, the interface is a convenient tool for creating groups of constant values.

Before Java SE5, this was the only way to produce the same effect as an

enum in C or C++. So you will see pre-Java SE5 code like this:

//: interfaces/Months.java

// Using interfaces to create groups of constants.

package interfaces;

public interface Months {

 int

 JANUARY = 1, FEBRUARY = 2, MARCH = 3,

 APRIL = 4, MAY = 5, JUNE = 6, JULY = 7,

 AUGUST = 8, SEPTEMBER = 9, OCTOBER = 10,

 NOVEMBER = 11, DECEMBER = 12;

} ///:~

Notice the Java style of using all uppercase letters (with underscores to

separate multiple words in a single identifier) for static finals that have

constant initializers. The fields in an interface are automatically public, so

that is not explicitly specified.

With Java SE5, you now have the much more powerful and flexible enum

keyword, so it rarely makes sense to use interfaces for constants anymore.

However, you will probably run across the old idiom on many occasions when

reading legacy code. You can find more details about using enums in the

Enumerated Types chapter.

Exercise 17: (2) Prove that the fields in an interface are implicitly static
and final.

Initializing fields in interfaces
Fields defined in interfaces cannot be “blank finals,” but they can be

initialized with non-constant expressions. For example:

//: interfaces/RandVals.java

// Initializing interface fields with

// non-constant initializers.

import java.util.*;

public interface RandVals {

332 Thinking in Java Bruce Eckel

 Random RAND = new Random(47);

 int RANDOM_INT = RAND.nextInt(10);

 long RANDOM_LONG = RAND.nextLong() * 10;

 float RANDOM_FLOAT = RAND.nextLong() * 10;

 double RANDOM_DOUBLE = RAND.nextDouble() * 10;

} ///:~

Since the fields are static, they are initialized when the class is first loaded,

which happens when any of the fields are accessed for the first time. Here’s a

simple test:

//: interfaces/TestRandVals.java

import static net.mindview.util.Print.*;

public class TestRandVals {

 public static void main(String[] args) {

 print(RandVals.RANDOM_INT);

 print(RandVals.RANDOM_LONG);

 print(RandVals.RANDOM_FLOAT);

 print(RandVals.RANDOM_DOUBLE);

 }

} /* Output:

8

-32032247016559954

-8.5939291E18

5.779976127815049

*///:~

The fields, of course, are not part of the interface. The values are stored in the

static storage area for that interface.

Nesting interfaces
Interfaces may be nested within classes and within other interfaces.3 This

reveals a number of interesting features:

//: interfaces/nesting/NestingInterfaces.java

package interfaces.nesting;

class A {

 interface B {

3 Thanks to Martin Danner for asking about this during a seminar.

Interfaces 333

 void f();

 }

 public class BImp implements B {

 public void f() {}

 }

 private class BImp2 implements B {

 public void f() {}

 }

 public interface C {

 void f();

 }

 class CImp implements C {

 public void f() {}

 }

 private class CImp2 implements C {

 public void f() {}

 }

 private interface D {

 void f();

 }

 private class DImp implements D {

 public void f() {}

 }

 public class DImp2 implements D {

 public void f() {}

 }

 public D getD() { return new DImp2(); }

 private D dRef;

 public void receiveD(D d) {

 dRef = d;

 dRef.f();

 }

}

interface E {

 interface G {

 void f();

 }

 // Redundant "public":

 public interface H {

 void f();

 }

 void g();

 // Cannot be private within an interface:

334 Thinking in Java Bruce Eckel

 //! private interface I {}

}

public class NestingInterfaces {

 public class BImp implements A.B {

 public void f() {}

 }

 class CImp implements A.C {

 public void f() {}

 }

 // Cannot implement a private interface except

 // within that interface's defining class:

 //! class DImp implements A.D {

 //! public void f() {}

 //! }

 class EImp implements E {

 public void g() {}

 }

 class EGImp implements E.G {

 public void f() {}

 }

 class EImp2 implements E {

 public void g() {}

 class EG implements E.G {

 public void f() {}

 }

 }

 public static void main(String[] args) {

 A a = new A();

 // Can't access A.D:

 //! A.D ad = a.getD();

 // Doesn't return anything but A.D:

 //! A.DImp2 di2 = a.getD();

 // Cannot access a member of the interface:

 //! a.getD().f();

 // Only another A can do anything with getD():

 A a2 = new A();

 a2.receiveD(a.getD());

 }

} ///:~

The syntax for nesting an interface within a class is reasonably obvious. Just

like non-nested interfaces, these can have public or package-access visibility.

Interfaces 335

As an added twist, interfaces can also be private, as seen in A.D (the same

qualification syntax is used for nested interfaces as for nested classes). What

good is a private nested interface? You might guess that it can only be

implemented as a private inner class as in DImp, but A.DImp2 shows that

it can also be implemented as a public class. However, A.DImp2 can only

be used as itself. You are not allowed to mention the fact that it implements

the private interface D, so implementing a private interface is a way to

force the definition of the methods in that interface without adding any type

information (that is, without allowing any upcasting).

The method getD() produces a further quandary concerning the private

interface: It’s a public method that returns a reference to a private

interface. What can you do with the return value of this method? In main(),

you can see several attempts to use the return value, all of which fail. The only

thing that works is if the return value is handed to an object that has

permission to use it—in this case, another A, via the receiveD() method.

Interface E shows that interfaces can be nested within each other. However,

the rules about interfaces—in particular, that all interface elements must be

public—are strictly enforced here, so an interface nested within another

interface is automatically public and cannot be made private.

NestingInterfaces shows the various ways that nested interfaces can be

implemented. In particular, notice that when you implement an interface,

you are not required to implement any interfaces nested within. Also,

private interfaces cannot be implemented outside of their defining classes.

Initially, these features may seem like they are added strictly for syntactic

consistency, but I generally find that once you know about a feature, you

often discover places where it is useful.

Interfaces and factories
An interface is intended to be a gateway to multiple implementations, and a

typical way to produce objects that fit the interface is the Factory Method

design pattern. Instead of calling a constructor directly, you call a creation

method on a factory object which produces an implementation of the

interface—this way, in theory, your code is completely isolated from the

implementation of the interface, thus making it possible to transparently

swap one implementation for another. Here’s a demonstration showing the

structure of the Factory Method:

336 Thinking in Java Bruce Eckel

//: interfaces/Factories.java

import static net.mindview.util.Print.*;

interface Service {

 void method1();

 void method2();

}

interface ServiceFactory {

 Service getService();

}

class Implementation1 implements Service {

 Implementation1() {} // Package access

 public void method1() {print("Implementation1 method1");}

 public void method2() {print("Implementation1 method2");}

}

class Implementation1Factory implements ServiceFactory {

 public Service getService() {

 return new Implementation1();

 }

}

class Implementation2 implements Service {

 Implementation2() {} // Package access

 public void method1() {print("Implementation2 method1");}

 public void method2() {print("Implementation2 method2");}

}

class Implementation2Factory implements ServiceFactory {

 public Service getService() {

 return new Implementation2();

 }

}

public class Factories {

 public static void serviceConsumer(ServiceFactory fact) {

 Service s = fact.getService();

 s.method1();

 s.method2();

 }

 public static void main(String[] args) {

 serviceConsumer(new Implementation1Factory());

Interfaces 337

 // Implementations are completely interchangeable:

 serviceConsumer(new Implementation2Factory());

 }

} /* Output:

Implementation1 method1

Implementation1 method2

Implementation2 method1

Implementation2 method2

*///:~

Without the Factory Method, your code would somewhere have to specify the

exact type of Service being created, so that it could call the appropriate

constructor.

Why would you want to add this extra level of indirection? One common

reason is to create a framework. Suppose you are creating a system to play

games; for example, to play both chess and checkers on the same board:

//: interfaces/Games.java

// A Game framework using Factory Methods.

import static net.mindview.util.Print.*;

interface Game { boolean move(); }

interface GameFactory { Game getGame(); }

class Checkers implements Game {

 private int moves = 0;

 private static final int MOVES = 3;

 public boolean move() {

 print("Checkers move " + moves);

 return ++moves != MOVES;

 }

}

class CheckersFactory implements GameFactory {

 public Game getGame() { return new Checkers(); }

}

class Chess implements Game {

 private int moves = 0;

 private static final int MOVES = 4;

 public boolean move() {

 print("Chess move " + moves);

 return ++moves != MOVES;

 }

338 Thinking in Java Bruce Eckel

}

class ChessFactory implements GameFactory {

 public Game getGame() { return new Chess(); }

}

public class Games {

 public static void playGame(GameFactory factory) {

 Game s = factory.getGame();

 while(s.move())

 ;

 }

 public static void main(String[] args) {

 playGame(new CheckersFactory());

 playGame(new ChessFactory());

 }

} /* Output:

Checkers move 0

Checkers move 1

Checkers move 2

Chess move 0

Chess move 1

Chess move 2

Chess move 3

*///:~

If the Games class represents a complex piece of code, this approach allows

you to reuse that code with different types of games. You can imagine more

elaborate games that can benefit from this pattern.

In the next chapter, you’ll see a more elegant way to implement the factories

using anonymous inner classes.

Exercise 18: (2) Create a Cycle interface, with implementations
Unicycle, Bicycle and Tricycle. Create factories for each type of Cycle,
and code that uses these factories.

Exercise 19: (3) Create a framework using Factory Methods that
performs both coin tossing and dice tossing.

Interfaces 339

Summary
It is tempting to decide that interfaces are good, and therefore you should

always choose interfaces over concrete classes. Of course, almost anytime you

create a class, you could instead create an interface and a factory.

Many people have fallen to this temptation, creating interfaces and factories

wherever it’s possible. The logic seems to be that you might need to use a

different implementation, so you should always add that abstraction. It has

become a kind of premature design optimization.

Any abstraction should be motivated by a real need. Interfaces should be

something you refactor to when necessary, rather than installing the extra

level of indirection everywhere, along with the extra complexity. That extra

complexity is significant, and if you make someone work through that

complexity only to realize that you’ve added interfaces “just in case” and for

no compelling reason—well, if I see such a thing I begin to question all the

designs that this particular person has done.

An appropriate guideline is to prefer classes to interfaces. Start with classes,

and if it becomes clear that interfaces are necessary, then refactor. Interfaces

are a great tool, but they can easily be overused.

Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for sale from www.MindViewLLC.com.

 341

Inner Classes
It’s possible to place a class definition within another class
definition. This is called an inner class.

The inner class is a valuable feature because it allows you to group classes

that logically belong together and to control the visibility of one within the

other. However, it’s important to understand that inner classes are distinctly

different from composition.

At first, inner classes look like a simple code-hiding mechanism: You place

classes inside other classes. You’ll learn, however, that the inner class does

more than that—it knows about and can communicate with the surrounding

class—and the kind of code you can write with inner classes is more elegant

and clear, although there’s certainly no guarantee of this.

Initially, inner classes may seem odd, and it will take some time to become

comfortable using them in your designs. The need for inner classes isn’t

always obvious, but after the basic syntax and semantics of inner classes have

been described, the section “Why inner classes?” should begin to make clear

the benefits of inner classes.

After that section, the remainder of the chapter contains more detailed

explorations of the syntax of inner classes. These features are provided for

language completeness, but you might not need to use them, at least not at

first. So the initial parts of the chapter might be all you need for now, and you

can leave the more detailed explorations as reference material.

Creating inner classes
You create an inner class just as you’d expect—by placing the class definition

inside a surrounding class:

//: innerclasses/Parcel1.java

// Creating inner classes.

public class Parcel1 {

 class Contents {

 private int i = 11;

342 Thinking in Java Bruce Eckel

 public int value() { return i; }

 }

 class Destination {

 private String label;

 Destination(String whereTo) {

 label = whereTo;

 }

 String readLabel() { return label; }

 }

 // Using inner classes looks just like

 // using any other class, within Parcel1:

 public void ship(String dest) {

 Contents c = new Contents();

 Destination d = new Destination(dest);

 System.out.println(d.readLabel());

 }

 public static void main(String[] args) {

 Parcel1 p = new Parcel1();

 p.ship("Tasmania");

 }

} /* Output:

Tasmania

*///:~

The inner classes used inside ship() look just like ordinary classes. Here, the

only practical difference is that the names are nested within Parcel1. You’ll

see in a while that this isn’t the only difference.

More typically, an outer class will have a method that returns a reference to

an inner class, as you can see in the to() and contents() methods:

//: innerclasses/Parcel2.java

// Returning a reference to an inner class.

public class Parcel2 {

 class Contents {

 private int i = 11;

 public int value() { return i; }

 }

 class Destination {

 private String label;

 Destination(String whereTo) {

 label = whereTo;

 }

 String readLabel() { return label; }

Inner Classes 343

 }

 public Destination to(String s) {

 return new Destination(s);

 }

 public Contents contents() {

 return new Contents();

 }

 public void ship(String dest) {

 Contents c = contents();

 Destination d = to(dest);

 System.out.println(d.readLabel());

 }

 public static void main(String[] args) {

 Parcel2 p = new Parcel2();

 p.ship("Tasmania");

 Parcel2 q = new Parcel2();

 // Defining references to inner classes:

 Parcel2.Contents c = q.contents();

 Parcel2.Destination d = q.to("Borneo");

 }

} /* Output:

Tasmania

*///:~

If you want to make an object of the inner class anywhere except from within

a non-static method of the outer class, you must specify the type of that

object as OuterClassName.InnerClassName, as seen in main().

Exercise 1: (1) Write a class named Outer that contains an inner class
named Inner. Add a method to Outer that returns an object of type Inner.
In main(), create and initialize a reference to an Inner.

The link to the outer class
So far, it appears that inner classes are just a name-hiding and code

organization scheme, which is helpful but not totally compelling. However,

there’s another twist. When you create an inner class, an object of that inner

class has a link to the enclosing object that made it, and so it can access the

members of that enclosing object—without any special qualifications. In

344 Thinking in Java Bruce Eckel

addition, inner classes have access rights to all the elements in the enclosing

class.1 The following example demonstrates this:

//: innerclasses/Sequence.java

// Holds a sequence of Objects.

interface Selector {

 boolean end();

 Object current();

 void next();

}

public class Sequence {

 private Object[] items;

 private int next = 0;

 public Sequence(int size) { items = new Object[size]; }

 public void add(Object x) {

 if(next < items.length)

 items[next++] = x;

 }

 private class SequenceSelector implements Selector {

 private int i = 0;

 public boolean end() { return i == items.length; }

 public Object current() { return items[i]; }

 public void next() { if(i < items.length) i++; }

 }

 public Selector selector() {

 return new SequenceSelector();

 }

 public static void main(String[] args) {

 Sequence sequence = new Sequence(10);

 for(int i = 0; i < 10; i++)

 sequence.add(Integer.toString(i));

 Selector selector = sequence.selector();

 while(!selector.end()) {

 System.out.print(selector.current() + " ");

 selector.next();

 }

 }

1 This is very different from the design of nested classes in C++, which is simply a name-
hiding mechanism. There is no link to an enclosing object and no implied permissions in
C++.

Inner Classes 345

} /* Output:

0 1 2 3 4 5 6 7 8 9

*///:~

The Sequence is simply a fixed-sized array of Object with a class wrapped

around it. You call add() to add a new Object to the end of the sequence (if

there’s room left). To fetch each of the objects in a Sequence, there’s an

interface called Selector. This is an example of the Iterator design pattern

that you shall learn more about later in the book. A Selector allows you to

see if you’re at the end(), to access the current() Object, and to move to

the next() Object in the Sequence. Because Selector is an interface,

other classes can implement the interface in their own ways, and other

methods can take the interface as an argument, in order to create more

general-purpose code.

Here, the SequenceSelector is a private class that provides Selector

functionality. In main(), you can see the creation of a Sequence, followed

by the addition of a number of String objects. Then, a Selector is produced

with a call to selector(), and this is used to move through the Sequence

and select each item.

At first, the creation of SequenceSelector looks like just another inner

class. But examine it closely. Note that each of the methods—end(),

current(), and next()—refers to items, which is a reference that isn’t part

of SequenceSelector, but is instead a private field in the enclosing class.

However, the inner class can access methods and fields from the enclosing

class as if it owned them. This turns out to be very convenient, as you can see

in the preceding example.

So an inner class has automatic access to the members of the enclosing class.

How can this happen? The inner class secretly captures a reference to the

particular object of the enclosing class that was responsible for creating it.

Then, when you refer to a member of the enclosing class, that reference is

used to select that member. Fortunately, the compiler takes care of all these

details for you, but now you can see that an object of an inner class can be

created only in association with an object of the enclosing class (when, as you

shall see, the inner class is non-static). Construction of the inner-class object

requires the reference to the object of the enclosing class, and the compiler

will complain if it cannot access that reference. Most of the time this occurs

without any intervention on the part of the programmer.

346 Thinking in Java Bruce Eckel

Exercise 2: (1) Create a class that holds a String, and has a toString()
method that displays this String. Add several instances of your new class to a
Sequence object, then display them.

Exercise 3: (1) Modify Exercise 1 so that Outer has a private String
field (initialized by the constructor), and Inner has a toString() that
displays this field. Create an object of type Inner and display it.

Using .this and .new
If you need to produce the reference to the outer-class object, you name the

outer class followed by a dot and this. The resulting reference is

automatically the correct type, which is known and checked at compile time,

so there is no runtime overhead. Here’s an example that shows how to use

.this:

//: innerclasses/DotThis.java

// Qualifying access to the outer-class object.

public class DotThis {

 void f() { System.out.println("DotThis.f()"); }

 public class Inner {

 public DotThis outer() {

 return DotThis.this;

 // A plain "this" would be Inner's "this"

 }

 }

 public Inner inner() { return new Inner(); }

 public static void main(String[] args) {

 DotThis dt = new DotThis();

 DotThis.Inner dti = dt.inner();

 dti.outer().f();

 }

} /* Output:

DotThis.f()

*///:~

Sometimes you want to tell some other object to create an object of one of its

inner classes. To do this you must provide a reference to the other outer-class

object in the new expression, using the .new syntax, like this:

//: innerclasses/DotNew.java

// Creating an inner class directly using the .new syntax.

Inner Classes 347

public class DotNew {

 public class Inner {}

 public static void main(String[] args) {

 DotNew dn = new DotNew();

 DotNew.Inner dni = dn.new Inner();

 }

} ///:~

To create an object of the inner class directly, you don’t follow the same form

and refer to the outer class name DotNew as you might expect, but instead

you must use an object of the outer class to make an object of the inner class,

as you can see above. This also resolves the name scoping issues for the inner

class, so you don’t say (indeed, you can’t say) dn.new DotNew.Inner().

It’s not possible to create an object of the inner class unless you already have

an object of the outer class. This is because the object of the inner class is

quietly connected to the object of the outer class that it was made from.

However, if you make a nested class (a static inner class), then it doesn’t

need a reference to the outer-class object.

Here, you see the use of .new applied to the “Parcel” example:

//: innerclasses/Parcel3.java

// Using .new to create instances of inner classes.

public class Parcel3 {

 class Contents {

 private int i = 11;

 public int value() { return i; }

 }

 class Destination {

 private String label;

 Destination(String whereTo) { label = whereTo; }

 String readLabel() { return label; }

 }

 public static void main(String[] args) {

 Parcel3 p = new Parcel3();

 // Must use instance of outer class

 // to create an instance of the inner class:

 Parcel3.Contents c = p.new Contents();

 Parcel3.Destination d = p.new Destination("Tasmania");

 }

} ///:~

348 Thinking in Java Bruce Eckel

Exercise 4: (2) Add a method to the class
Sequence.SequenceSelector that produces the reference to the outer
class Sequence.

Exercise 5: (1) Create a class with an inner class. In a separate class, make
an instance of the inner class.

Inner classes and upcasting
Inner classes really come into their own when you start upcasting to a base

class, and in particular to an interface. (The effect of producing an interface

reference from an object that implements it is essentially the same as

upcasting to a base class.) That’s because the inner class—the implementation

of the interface—can then be unseen and unavailable, which is convenient for

hiding the implementation. All you get back is a reference to the base class or

the interface.

We can create interfaces for the previous examples:

//: innerclasses/Destination.java

public interface Destination {

 String readLabel();

} ///:~

//: innerclasses/Contents.java

public interface Contents {

 int value();

} ///:~

Now Contents and Destination represent interfaces available to the client

programmer. Remember that an interface automatically makes all of its

members public.

When you get a reference to the base class or the interface, it’s possible that

you can’t even find out the exact type, as shown here:

//: innerclasses/TestParcel.java

class Parcel4 {

 private class PContents implements Contents {

 private int i = 11;

 public int value() { return i; }

 }

 protected class PDestination implements Destination {

Inner Classes 349

 private String label;

 private PDestination(String whereTo) {

 label = whereTo;

 }

 public String readLabel() { return label; }

 }

 public Destination destination(String s) {

 return new PDestination(s);

 }

 public Contents contents() {

 return new PContents();

 }

}

public class TestParcel {

 public static void main(String[] args) {

 Parcel4 p = new Parcel4();

 Contents c = p.contents();

 Destination d = p.destination("Tasmania");

 // Illegal -- can't access private class:

 //! Parcel4.PContents pc = p.new PContents();

 }

} ///:~

In Parcel4, something new has been added: The inner class PContents is

private, so nothing but Parcel4 can access it. Normal (non-inner) classes

cannot be made private or protected; they may only be given public or

package access. PDestination is protected, so nothing but Parcel4,

classes in the same package (since protected also gives package access), and

the inheritors of Parcel4 can access PDestination. This means that the

client programmer has restricted knowledge and access to these members. In

fact, you can’t even downcast to a private inner class (or a protected inner

class unless you’re an inheritor), because you can’t access the name, as you

can see in class TestParcel. Thus, the private inner class provides a way

for the class designer to completely prevent any type-coding dependencies

and to completely hide details about implementation. In addition, extension

of an interface is useless from the client programmer’s perspective since the

client programmer cannot access any additional methods that aren’t part of

the public interface. This also provides an opportunity for the Java compiler

to generate more efficient code.

Exercise 6: (2) Create an interface with at least one method, in its own
package. Create a class in a separate package. Add a protected inner class

350 Thinking in Java Bruce Eckel

that implements the interface. In a third package, inherit from your class and,
inside a method, return an object of the protected inner class, upcasting to
the interface during the return.

Exercise 7: (2) Create a class with a private field and a private method.
Create an inner class with a method that modifies the outer-class field and
calls the outer-class method. In a second outer-class method, create an object
of the inner class and call its method, then show the effect on the outer-class
object.

Exercise 8: (2) Determine whether an outer class has access to the
private elements of its inner class.

Inner classes
in methods and scopes

What you’ve seen so far encompasses the typical use for inner classes. In

general, the code that you’ll write and read involving inner classes will be

“plain” inner classes that are simple and easy to understand. However, the

syntax for inner classes covers a number of other, more obscure techniques.

Inner classes can be created within a method or even an arbitrary scope.

There are two reasons for doing this:

1. As shown previously, you’re implementing an interface of some

kind so that you can create and return a reference.

2. You’re solving a complicated problem and you want to create a

class to aid in your solution, but you don’t want it publicly

available.

In the following examples, the previous code will be modified to use:

1. A class defined within a method

2. A class defined within a scope inside a method

3. An anonymous class implementing an interface

4. An anonymous class extending a class that has a non-default

constructor

5. An anonymous class that performs field initialization

Inner Classes 351

6. An anonymous class that performs construction using instance

initialization (anonymous inner classes cannot have constructors)

The first example shows the creation of an entire class within the scope of a

method (instead of the scope of another class). This is called a local inner

class:

//: innerclasses/Parcel5.java

// Nesting a class within a method.

public class Parcel5 {

 public Destination destination(String s) {

 class PDestination implements Destination {

 private String label;

 private PDestination(String whereTo) {

 label = whereTo;

 }

 public String readLabel() { return label; }

 }

 return new PDestination(s);

 }

 public static void main(String[] args) {

 Parcel5 p = new Parcel5();

 Destination d = p.destination("Tasmania");

 }

} ///:~

The class PDestination is part of destination() rather than being part of

Parcel5. Therefore, PDestination cannot be accessed outside of

destination(). Notice the upcasting that occurs in the return statement—

nothing comes out of destination() except a reference to a Destination

interface. Of course, the fact that the name of the class PDestination is

placed inside destination() doesn’t mean that PDestination is not a valid

object once destination() returns.

You could use the class identifier PDestination for an inner class inside

each class in the same subdirectory without a name clash.

The next example shows how you can nest an inner class within any arbitrary

scope:

//: innerclasses/Parcel6.java

// Nesting a class within a scope.

352 Thinking in Java Bruce Eckel

public class Parcel6 {

 private void internalTracking(boolean b) {

 if(b) {

 class TrackingSlip {

 private String id;

 TrackingSlip(String s) {

 id = s;

 }

 String getSlip() { return id; }

 }

 TrackingSlip ts = new TrackingSlip("slip");

 String s = ts.getSlip();

 }

 // Can't use it here! Out of scope:

 //! TrackingSlip ts = new TrackingSlip("x");

 }

 public void track() { internalTracking(true); }

 public static void main(String[] args) {

 Parcel6 p = new Parcel6();

 p.track();

 }

} ///:~

The class TrackingSlip is nested inside the scope of an if statement. This

does not mean that the class is conditionally created—it gets compiled along

with everything else. However, it’s not available outside the scope in which it

is defined. Other than that, it looks just like an ordinary class.

Exercise 9: (1) Create an interface with at least one method, and
implement that interface by defining an inner class within a method, which
returns a reference to your interface.

Exercise 10: (1) Repeat the previous exercise but define the inner class
within a scope within a method.

Exercise 11: (2) Create a private inner class that implements a public
interface. Write a method that returns a reference to an instance of the
private inner class, upcast to the interface. Show that the inner class is
completely hidden by trying to downcast to it.

Anonymous inner classes
The next example looks a little odd:

//: innerclasses/Parcel7.java

Inner Classes 353

// Returning an instance of an anonymous inner class.

public class Parcel7 {

 public Contents contents() {

 return new Contents() { // Insert a class definition

 private int i = 11;

 public int value() { return i; }

 }; // Semicolon required in this case

 }

 public static void main(String[] args) {

 Parcel7 p = new Parcel7();

 Contents c = p.contents();

 }

} ///:~

The contents() method combines the creation of the return value with the

definition of the class that represents that return value! In addition, the class

is anonymous; it has no name. To make matters a bit worse, it looks like

you’re starting out to create a Contents object, But then, before you get to

the semicolon, you say, “But wait, I think I’ll slip in a class definition.”

What this strange syntax means is “Create an object of an anonymous class

that’s inherited from Contents.” The reference returned by the new

expression is automatically upcast to a Contents reference. The anonymous

inner-class syntax is a shorthand for:

//: innerclasses/Parcel7b.java

// Expanded version of Parcel7.java

public class Parcel7b {

 class MyContents implements Contents {

 private int i = 11;

 public int value() { return i; }

 }

 public Contents contents() { return new MyContents(); }

 public static void main(String[] args) {

 Parcel7b p = new Parcel7b();

 Contents c = p.contents();

 }

} ///:~

In the anonymous inner class, Contents is created by using a default

constructor.

354 Thinking in Java Bruce Eckel

The following code shows what to do if your base class needs a constructor

with an argument:

//: innerclasses/Parcel8.java

// Calling the base-class constructor.

public class Parcel8 {

 public Wrapping wrapping(int x) {

 // Base constructor call:

 return new Wrapping(x) { // Pass constructor argument.

 public int value() {

 return super.value() * 47;

 }

 }; // Semicolon required

 }

 public static void main(String[] args) {

 Parcel8 p = new Parcel8();

 Wrapping w = p.wrapping(10);

 }

} ///:~

That is, you simply pass the appropriate argument to the base-class

constructor, seen here as the x passed in new Wrapping(x). Although it’s

an ordinary class with an implementation, Wrapping is also being used as a

common “interface” to its derived classes:

//: innerclasses/Wrapping.java

public class Wrapping {

 private int i;

 public Wrapping(int x) { i = x; }

 public int value() { return i; }

} ///:~

You’ll notice that Wrapping has a constructor that requires an argument, to

make things a bit more interesting.

The semicolon at the end of the anonymous inner class doesn’t mark the end

of the class body. Instead, it marks the end of the expression that happens to

contain the anonymous class. Thus, it’s identical to the use of the semicolon

everywhere else.

You can also perform initialization when you define fields in an anonymous

class:

//: innerclasses/Parcel9.java

Inner Classes 355

// An anonymous inner class that performs

// initialization. A briefer version of Parcel5.java.

public class Parcel9 {

 // Argument must be final to use inside

 // anonymous inner class:

 public Destination destination(final String dest) {

 return new Destination() {

 private String label = dest;

 public String readLabel() { return label; }

 };

 }

 public static void main(String[] args) {

 Parcel9 p = new Parcel9();

 Destination d = p.destination("Tasmania");

 }

} ///:~

If you’re defining an anonymous inner class and want to use an object that’s

defined outside the anonymous inner class, the compiler requires that the

argument reference be final, as you see in the argument to destination().

If you forget, you’ll get a compile-time error message.

As long as you’re simply assigning a field, the approach in this example is

fine. But what if you need to perform some constructor-like activity? You

can’t have a named constructor in an anonymous class (since there’s no

name!), but with instance initialization, you can, in effect, create a

constructor for an anonymous inner class, like this:

//: innerclasses/AnonymousConstructor.java

// Creating a constructor for an anonymous inner class.

import static net.mindview.util.Print.*;

abstract class Base {

 public Base(int i) {

 print("Base constructor, i = " + i);

 }

 public abstract void f();

}

public class AnonymousConstructor {

 public static Base getBase(int i) {

 return new Base(i) {

 { print("Inside instance initializer"); }

356 Thinking in Java Bruce Eckel

 public void f() {

 print("In anonymous f()");

 }

 };

 }

 public static void main(String[] args) {

 Base base = getBase(47);

 base.f();

 }

} /* Output:

Base constructor, i = 47

Inside instance initializer

In anonymous f()

*///:~

In this case, the variable i did not have to be final. While i is passed to the

base constructor of the anonymous class, it is never directly used inside the

anonymous class.

Here’s the “parcel” theme with instance initialization. Note that the

arguments to destination() must be final since they are used within the

anonymous class:

//: innerclasses/Parcel10.java

// Using "instance initialization" to perform

// construction on an anonymous inner class.

public class Parcel10 {

 public Destination

 destination(final String dest, final float price) {

 return new Destination() {

 private int cost;

 // Instance initialization for each object:

 {

 cost = Math.round(price);

 if(cost > 100)

 System.out.println("Over budget!");

 }

 private String label = dest;

 public String readLabel() { return label; }

 };

 }

 public static void main(String[] args) {

 Parcel10 p = new Parcel10();

 Destination d = p.destination("Tasmania", 101.395F);

Inner Classes 357

 }

} /* Output:

Over budget!

*///:~

Inside the instance initializer you can see code that couldn’t be executed as

part of a field initializer (that is, the if statement). So in effect, an instance

initializer is the constructor for an anonymous inner class. Of course, it’s

limited; you can’t overload instance initializers, so you can have only one of

these constructors.

Anonymous inner classes are somewhat limited compared to regular

inheritance, because they can either extend a class or implement an interface,

but not both. And if you do implement an interface, you can only implement

one.

Exercise 12: (1) Repeat Exercise 7 using an anonymous inner class.

Exercise 13: (1) Repeat Exercise 9 using an anonymous inner class.

Exercise 14: (1) Modify interfaces/HorrorShow.java to implement
DangerousMonster and Vampire using anonymous classes.

Exercise 15: (2) Create a class with a non-default constructor (one with
arguments) and no default constructor (no “no-arg” constructor). Create a
second class that has a method that returns a reference to an object of the
first class. Create the object that you return by making an anonymous inner
class that inherits from the first class.

Factory Method revisited
Look at how much nicer the interfaces/Factories.java example comes out

when you use anonymous inner classes:

//: innerclasses/Factories.java

import static net.mindview.util.Print.*;

interface Service {

 void method1();

 void method2();

}

interface ServiceFactory {

 Service getService();

}

358 Thinking in Java Bruce Eckel

class Implementation1 implements Service {

 private Implementation1() {}

 public void method1() {print("Implementation1 method1");}

 public void method2() {print("Implementation1 method2");}

 public static ServiceFactory factory =

 new ServiceFactory() {

 public Service getService() {

 return new Implementation1();

 }

 };

}

class Implementation2 implements Service {

 private Implementation2() {}

 public void method1() {print("Implementation2 method1");}

 public void method2() {print("Implementation2 method2");}

 public static ServiceFactory factory =

 new ServiceFactory() {

 public Service getService() {

 return new Implementation2();

 }

 };

}

public class Factories {

 public static void serviceConsumer(ServiceFactory fact) {

 Service s = fact.getService();

 s.method1();

 s.method2();

 }

 public static void main(String[] args) {

 serviceConsumer(Implementation1.factory);

 // Implementations are completely interchangeable:

 serviceConsumer(Implementation2.factory);

 }

} /* Output:

Implementation1 method1

Implementation1 method2

Implementation2 method1

Implementation2 method2

*///:~

Now the constructors for Implementation1 and Implementation2 can

be private, and there’s no need to create a named class as the factory. In

Inner Classes 359

addition, you often only need a single factory object, and so here it has been

created as a static field in the Service implementation. The resulting syntax

is more meaningful, as well.

The interfaces/Games.java example can also be improved with

anonymous inner classes:

//: innerclasses/Games.java

// Using anonymous inner classes with the Game framework.

import static net.mindview.util.Print.*;

interface Game { boolean move(); }

interface GameFactory { Game getGame(); }

class Checkers implements Game {

 private Checkers() {}

 private int moves = 0;

 private static final int MOVES = 3;

 public boolean move() {

 print("Checkers move " + moves);

 return ++moves != MOVES;

 }

 public static GameFactory factory = new GameFactory() {

 public Game getGame() { return new Checkers(); }

 };

}

class Chess implements Game {

 private Chess() {}

 private int moves = 0;

 private static final int MOVES = 4;

 public boolean move() {

 print("Chess move " + moves);

 return ++moves != MOVES;

 }

 public static GameFactory factory = new GameFactory() {

 public Game getGame() { return new Chess(); }

 };

}

public class Games {

 public static void playGame(GameFactory factory) {

 Game s = factory.getGame();

 while(s.move())

360 Thinking in Java Bruce Eckel

 ;

 }

 public static void main(String[] args) {

 playGame(Checkers.factory);

 playGame(Chess.factory);

 }

} /* Output:

Checkers move 0

Checkers move 1

Checkers move 2

Chess move 0

Chess move 1

Chess move 2

Chess move 3

*///:~

Remember the advice given at the end of the last chapter: Prefer classes to

interfaces. If your design demands an interface, you’ll know it. Otherwise,

don’t put it in until you are forced to.

Exercise 16: (1) Modify the solution to Exercise 18 from the Interfaces
chapter to use anonymous inner classes.

Exercise 17: (1) Modify the solution to Exercise 19 from the Interfaces
chapter to use anonymous inner classes.

Nested classes
If you don’t need a connection between the inner-class object and the outer-

class object, then you can make the inner class static. This is commonly

called a nested class.2 To understand the meaning of static when applied to

inner classes, you must remember that the object of an ordinary inner class

implicitly keeps a reference to the object of the enclosing class that created it.

This is not true, however, when you say an inner class is static. A nested

class means:

1. You don’t need an outer-class object in order to create an object of

a nested class.

2 Roughly similar to nested classes in C++, except that those classes cannot access private
members as they can in Java.

Inner Classes 361

2. You can’t access a non-static outer-class object from an object of a

nested class.

Nested classes are different from ordinary inner classes in another way, as

well. Fields and methods in ordinary inner classes can only be at the outer

level of a class, so ordinary inner classes cannot have static data, static

fields, or nested classes. However, nested classes can have all of these:

//: innerclasses/Parcel11.java

// Nested classes (static inner classes).

public class Parcel11 {

 private static class ParcelContents implements Contents {

 private int i = 11;

 public int value() { return i; }

 }

 protected static class ParcelDestination

 implements Destination {

 private String label;

 private ParcelDestination(String whereTo) {

 label = whereTo;

 }

 public String readLabel() { return label; }

 // Nested classes can contain other static elements:

 public static void f() {}

 static int x = 10;

 static class AnotherLevel {

 public static void f() {}

 static int x = 10;

 }

 }

 public static Destination destination(String s) {

 return new ParcelDestination(s);

 }

 public static Contents contents() {

 return new ParcelContents();

 }

 public static void main(String[] args) {

 Contents c = contents();

 Destination d = destination("Tasmania");

 }

} ///:~

362 Thinking in Java Bruce Eckel

In main(), no object of Parcel11 is necessary; instead, you use the normal

syntax for selecting a static member to call the methods that return

references to Contents and Destination.

As you’ve seen earlier in this chapter, in an ordinary (non-static) inner class,

the link to the outer-class object is achieved with a special this reference. A

nested class does not have a special this reference, which makes it analogous

to a static method.

Exercise 18: (1) Create a class containing a nested class. In main(),
create an instance of the nested class.

Exercise 19: (2) Create a class containing an inner class that itself
contains an inner class. Repeat this using nested classes. Note the names of
the .class files produced by the compiler.

Classes inside interfaces
Normally, you can’t put any code inside an interface, but a nested class can be

part of an interface. Any class you put inside an interface is automatically

public and static. Since the class is static, it doesn’t violate the rules for

interfaces—the nested class is only placed inside the namespace of the

interface. You can even implement the surrounding interface in the inner

class, like this:

//: innerclasses/ClassInInterface.java

// {main: ClassInInterface$Test}

public interface ClassInInterface {

 void howdy();

 class Test implements ClassInInterface {

 public void howdy() {

 System.out.println("Howdy!");

 }

 public static void main(String[] args) {

 new Test().howdy();

 }

 }

} /* Output:

Howdy!

*///:~

Inner Classes 363

It’s convenient to nest a class inside an interface when you want to create

some common code to be used with all different implementations of that

interface.

Earlier in this book I suggested putting a main() in every class to act as a

test bed for that class. One drawback to this is the amount of extra compiled

code you must carry around. If this is a problem, you can use a nested class to

hold your test code:

//: innerclasses/TestBed.java

// Putting test code in a nested class.

// {main: TestBed$Tester}

public class TestBed {

 public void f() { System.out.println("f()"); }

 public static class Tester {

 public static void main(String[] args) {

 TestBed t = new TestBed();

 t.f();

 }

 }

} /* Output:

f()

*///:~

This generates a separate class called TestBed$Tester (to run the program,

you say java TestBed$Tester, but you must escape the ‘$’ under

Unix/Linux systems). You can use this class for testing, but you don’t need to

include it in your shipping product; you can simply delete

TestBed$Tester.class before packaging things up.

Exercise 20: (1) Create an interface containing a nested class. Implement
this interface and create an instance of the nested class.

Exercise 21: (2) Create an interface that contains a nested class that has
a static method that calls the methods of your interface and displays the
results. Implement your interface and pass an instance of your
implementation to the method.

364 Thinking in Java Bruce Eckel

Reaching outward from a multiply

nested class
It doesn’t matter how deeply an inner class may be nested—it can

transparently access all of the members of all the classes it is nested within, as

seen here:3

//: innerclasses/MultiNestingAccess.java

// Nested classes can access all members of all

// levels of the classes they are nested within.

class MNA {

 private void f() {}

 class A {

 private void g() {}

 public class B {

 void h() {

 g();

 f();

 }

 }

 }

}

public class MultiNestingAccess {

 public static void main(String[] args) {

 MNA mna = new MNA();

 MNA.A mnaa = mna.new A();

 MNA.A.B mnaab = mnaa.new B();

 mnaab.h();

 }

} ///:~

You can see that in MNA.A.B, the methods g() and f() are callable without

any qualification (despite the fact that they are private). This example also

demonstrates the syntax necessary to create objects of multiply nested inner

classes when you create the objects in a different class. The “.new” syntax

produces the correct scope, so you do not have to qualify the class name in

the constructor call.

3 Thanks again to Martin Danner.

Inner Classes 365

Why inner classes?
At this point you’ve seen a lot of syntax and semantics describing the way

inner classes work, but this doesn’t answer the question of why they exist.

Why did the Java designers go to so much trouble to add this fundamental

language feature?

Typically, the inner class inherits from a class or implements an interface,

and the code in the inner class manipulates the outer-class object that it was

created within. So you could say that an inner class provides a kind of window

into the outer class.

A question that cuts to the heart of inner classes is this: If I just need a

reference to an interface, why don’t I just make the outer class implement

that interface? The answer is “If that’s all you need, then that’s how you

should do it.” So what is it that distinguishes an inner class implementing an

interface from an outer class implementing the same interface? The answer is

that you can’t always have the convenience of interfaces—sometimes you’re

working with implementations. So the most compelling reason for inner

classes is:

Each inner class can independently inherit from an implementation.

Thus, the inner class is not limited by whether the outer class is already

inheriting from an implementation.

Without the ability that inner classes provide to inherit—in effect—from more

than one concrete or abstract class, some design and programming

problems would be intractable. So one way to look at the inner class is as the

rest of the solution of the multiple-inheritance problem. Interfaces solve part

of the problem, but inner classes effectively allow “multiple implementation

inheritance.” That is, inner classes effectively allow you to inherit from more

than one non-interface.

To see this in more detail, consider a situation in which you have two

interfaces that must somehow be implemented within a class. Because of the

flexibility of interfaces, you have two choices: a single class or an inner class.

//: innerclasses/MultiInterfaces.java

// Two ways that a class can implement multiple interfaces.

package innerclasses;

interface A {}

366 Thinking in Java Bruce Eckel

interface B {}

class X implements A, B {}

class Y implements A {

 B makeB() {

 // Anonymous inner class:

 return new B() {};

 }

}

public class MultiInterfaces {

 static void takesA(A a) {}

 static void takesB(B b) {}

 public static void main(String[] args) {

 X x = new X();

 Y y = new Y();

 takesA(x);

 takesA(y);

 takesB(x);

 takesB(y.makeB());

 }

} ///:~

Of course, this assumes that the structure of your code makes logical sense

either way. However, you’ll ordinarily have some kind of guidance from the

nature of the problem about whether to use a single class or an inner class.

But without any other constraints, the approach in the preceding example

doesn’t really make much difference from an implementation standpoint.

Both of them work.

However, if you have abstract or concrete classes instead of interfaces, you

are suddenly limited to using inner classes if your class must somehow

implement both of the others:

//: innerclasses/MultiImplementation.java

// With concrete or abstract classes, inner

// classes are the only way to produce the effect

// of "multiple implementation inheritance."

package innerclasses;

class D {}

abstract class E {}

Inner Classes 367

class Z extends D {

 E makeE() { return new E() {}; }

}

public class MultiImplementation {

 static void takesD(D d) {}

 static void takesE(E e) {}

 public static void main(String[] args) {

 Z z = new Z();

 takesD(z);

 takesE(z.makeE());

 }

} ///:~

If you didn’t need to solve the “multiple implementation inheritance”

problem, you could conceivably code around everything else without the need

for inner classes. But with inner classes you have these additional features:

1. The inner class can have multiple instances, each with its own

state information that is independent of the information in the

outer-class object.

2. In a single outer class you can have several inner classes, each of

which implements the same interface or inherits from the same

class in a different way. An example of this will be shown shortly.

3. The point of creation of the inner-class object is not tied to the

creation of the outer-class object.

4. There is no potentially confusing “is-a” relationship with the inner

class; it’s a separate entity.

As an example, if Sequence.java did not use inner classes, you’d have to

say, “A Sequence is a Selector,” and you’d only be able to have one

Selector in existence for a particular Sequence. You can easily have a

second method, reverseSelector(), that produces a Selector that moves

backward through the sequence. This kind of flexibility is only available with

inner classes.

Exercise 22: (2) Implement reverseSelector() in Sequence.java.

Exercise 23: (4) Create an interface U with three methods. Create a class
A with a method that produces a reference to a U by building an anonymous
inner class. Create a second class B that contains an array of U. B should

368 Thinking in Java Bruce Eckel

have one method that accepts and stores a reference to a U in the array, a
second method that sets a reference in the array (specified by the method
argument) to null, and a third method that moves through the array and
calls the methods in U. In main(), create a group of A objects and a single
B. Fill the B with U references produced by the A objects. Use the B to call
back into all the A objects. Remove some of the U references from the B.

Closures & callbacks
A closure is a callable object that retains information from the scope in which

it was created. From this definition, you can see that an inner class is an

object-oriented closure, because it doesn’t just contain each piece of

information from the outer-class object (“the scope in which it was created”),

but it automatically holds a reference back to the whole outer-class object,

where it has permission to manipulate all the members, even private ones.

One of the most compelling arguments made to include some kind of pointer

mechanism in Java was to allow callbacks. With a callback, some other object

is given a piece of information that allows it to call back into the originating

object at some later point. This is a very powerful concept, as you will see

later in the book. If a callback is implemented using a pointer, however, you

must rely on the programmer to behave properly and not misuse the pointer.

As you’ve seen by now, Java tends to be more careful than that, so pointers

were not included in the language.

The closure provided by the inner class is a good solution—more flexible and

far safer than a pointer. Here’s an example:

//: innerclasses/Callbacks.java

// Using inner classes for callbacks

package innerclasses;

import static net.mindview.util.Print.*;

interface Incrementable {

 void increment();

}

// Very simple to just implement the interface:

class Callee1 implements Incrementable {

 private int i = 0;

 public void increment() {

 i++;

 print(i);

Inner Classes 369

 }

}

class MyIncrement {

 public void increment() { print("Other operation"); }

 static void f(MyIncrement mi) { mi.increment(); }

}

// If your class must implement increment() in

// some other way, you must use an inner class:

class Callee2 extends MyIncrement {

 private int i = 0;

 public void increment() {

 super.increment();

 i++;

 print(i);

 }

 private class Closure implements Incrementable {

 public void increment() {

 // Specify outer-class method, otherwise

 // you'd get an infinite recursion:

 Callee2.this.increment();

 }

 }

 Incrementable getCallbackReference() {

 return new Closure();

 }

}

class Caller {

 private Incrementable callbackReference;

 Caller(Incrementable cbh) { callbackReference = cbh; }

 void go() { callbackReference.increment(); }

}

public class Callbacks {

 public static void main(String[] args) {

 Callee1 c1 = new Callee1();

 Callee2 c2 = new Callee2();

 MyIncrement.f(c2);

 Caller caller1 = new Caller(c1);

 Caller caller2 = new Caller(c2.getCallbackReference());

 caller1.go();

 caller1.go();

370 Thinking in Java Bruce Eckel

 caller2.go();

 caller2.go();

 }

} /* Output:

Other operation

1

1

2

Other operation

2

Other operation

3

*///:~

This also shows a further distinction between implementing an interface in

an outer class versus doing so in an inner class. Callee1 is clearly the simpler

solution in terms of the code. Callee2 inherits from MyIncrement, which

already has a different increment() method that does something unrelated

to the one expected by the Incrementable interface. When MyIncrement

is inherited into Callee2, increment() can’t be overridden for use by

Incrementable, so you’re forced to provide a separate implementation

using an inner class. Also note that when you create an inner class, you do not

add to or modify the interface of the outer class.

Everything except getCallbackReference() in Callee2 is private. To

allow any connection to the outside world, the interface Incrementable is

essential. Here you can see how interfaces allow for a complete separation

of interface from implementation.

The inner class Closure implements Incrementable to provide a hook

back into Callee2—but a safe hook. Whoever gets the Incrementable

reference can, of course, only call increment() and has no other abilities

(unlike a pointer, which would allow you to run wild).

Caller takes an Incrementable reference in its constructor (although the

capturing of the callback reference could happen at any time) and then,

sometime later, uses the reference to “call back” into the Callee class.

The value of the callback is in its flexibility; you can dynamically decide what

methods will be called at run time. The benefit of this will become more

evident in the Graphical User Interfaces chapter, where callbacks are used

everywhere to implement GUI functionality.

Inner Classes 371

Inner classes & control frameworks
A more concrete example of the use of inner classes can be found in

something that I will refer to here as a control framework.

An application framework is a class or a set of classes that’s designed to solve

a particular type of problem. To apply an application framework, you

typically inherit from one or more classes and override some of the methods.

The code that you write in the overridden methods customizes the general

solution provided by that application framework in order to solve your

specific problem. This is an example of the Template Method design pattern

(see On Java 8 at www.MindViewLLC.com). The Template Method contains

the basic structure of the algorithm, and it calls one or more overrideable

methods to complete the action of that algorithm. A design pattern separates

things that change from things that stay the same, and in this case the

Template Method is the part that stays the same, and the overrideable

methods are the things that change.

A control framework is a particular type of application framework dominated

by the need to respond to events. A system that primarily responds to events

is called an event-driven system. A common problem in application

programming is the graphical user interface (GUI), which is almost entirely

event-driven. As you will see in the Graphical User Interfaces chapter, the

Java Swing library is a control framework that elegantly solves the GUI

problem and that heavily uses inner classes.

To see how inner classes allow the simple creation and use of control

frameworks, consider a control framework whose job is to execute events

whenever those events are “ready.” Although “ready” could mean anything, in

this case it will be based on clock time. What follows is a control framework

that contains no specific information about what it’s controlling. That

information is supplied during inheritance, when the action() portion of the

algorithm is implemented.

First, here is the interface that describes any control event. It’s an abstract

class instead of an actual interface because the default behavior is to perform

the control based on time. Thus, some of the implementation is included

here:

//: innerclasses/controller/Event.java

// The common methods for any control event.

package innerclasses.controller;

372 Thinking in Java Bruce Eckel

public abstract class Event {

 private long eventTime;

 protected final long delayTime;

 public Event(long delayTime) {

 this.delayTime = delayTime;

 start();

 }

 public void start() { // Allows restarting

 eventTime = System.nanoTime() + delayTime;

 }

 public boolean ready() {

 return System.nanoTime() >= eventTime;

 }

 public abstract void action();

} ///:~

The constructor captures the time (measured from the time of creation of the

object) when you want the Event to run, and then calls start(), which takes

the current time and adds the delay time to produce the time when the event

will occur. Rather than being included in the constructor, start() is a

separate method. This way, you can restart the timer after the event has run

out, so the Event object can be reused. For example, if you want a repeating

event, you can simply call start() inside your action() method.

ready() tells you when it’s time to run the action() method. Of course,

ready() can be overridden in a derived class to base the Event on

something other than time.

The following file contains the actual control framework that manages and

fires events. The Event objects are held inside a container object of type

List<Event> (pronounced “List of Event”), which you’ll learn more about in

the Holding Your Objects chapter. For now, all you need to know is that

add() will append an Event to the end of the List, size() produces the

number of entries in the List, the foreach syntax fetches successive Events

from the List, and remove() removes the specified Event from the List.

//: innerclasses/controller/Controller.java

// The reusable framework for control systems.

package innerclasses.controller;

import java.util.*;

public class Controller {

Inner Classes 373

 // A class from java.util to hold Event objects:

 private List<Event> eventList = new ArrayList<Event>();

 public void addEvent(Event c) { eventList.add(c); }

 public void run() {

 while(eventList.size() > 0)

 // Make a copy so you're not modifying the list

 // while you're selecting the elements in it:

 for(Event e : new ArrayList<Event>(eventList))

 if(e.ready()) {

 System.out.println(e);

 e.action();

 eventList.remove(e);

 }

 }

} ///:~

The run() method loops through a copy of the eventList, hunting for an

Event object that’s ready() to run. For each one it finds ready(), it prints

information using the object’s toString() method, calls the action()

method, and then removes the Event from the list.

Note that so far in this design you know nothing about exactly what an

Event does. And this is the crux of the design—how it “separates the things

that change from the things that stay the same.” Or, to use my term, the

“vector of change” is the different actions of the various kinds of Event

objects, and you express different actions by creating different Event

subclasses.

This is where inner classes come into play. They allow two things:

1. The entire implementation of a control framework is created in a

single class, thereby encapsulating everything that’s unique about

that implementation. Inner classes are used to express the many

different kinds of action() necessary to solve the problem.

2. Inner classes keep this implementation from becoming awkward,

since you’re able to easily access any of the members in the outer

class. Without this ability the code might become unpleasant

enough that you’d end up seeking an alternative.

374 Thinking in Java Bruce Eckel

Consider a particular implementation of the control framework designed to

control greenhouse functions.4 Each action is entirely different: turning

lights, water, and thermostats on and off, ringing bells, and restarting the

system. But the control framework is designed to easily isolate this different

code. Inner classes allow you to have multiple derived versions of the same

base class, Event, within a single class. For each type of action, you inherit a

new Event inner class, and write the control code in the action()

implementation.

As is typical with an application framework, the class GreenhouseControls

is inherited from Controller:

//: innerclasses/GreenhouseControls.java

// This produces a specific application of the

// control system, all in a single class. Inner

// classes allow you to encapsulate different

// functionality for each type of event.

import innerclasses.controller.*;

public class GreenhouseControls extends Controller {

 private boolean light = false;

 public class LightOn extends Event {

 public LightOn(long delayTime) { super(delayTime); }

 public void action() {

 // Put hardware control code here to

 // physically turn on the light.

 light = true;

 }

 public String toString() { return "Light is on"; }

 }

 public class LightOff extends Event {

 public LightOff(long delayTime) { super(delayTime); }

 public void action() {

 // Put hardware control code here to

 // physically turn off the light.

 light = false;

 }

 public String toString() { return "Light is off"; }

 }

4 For some reason this has always been a pleasing problem for me to solve; it came from
my earlier book C++ Inside & Out, but Java allows a more elegant solution.

Inner Classes 375

 private boolean water = false;

 public class WaterOn extends Event {

 public WaterOn(long delayTime) { super(delayTime); }

 public void action() {

 // Put hardware control code here.

 water = true;

 }

 public String toString() {

 return "Greenhouse water is on";

 }

 }

 public class WaterOff extends Event {

 public WaterOff(long delayTime) { super(delayTime); }

 public void action() {

 // Put hardware control code here.

 water = false;

 }

 public String toString() {

 return "Greenhouse water is off";

 }

 }

 private String thermostat = "Day";

 public class ThermostatNight extends Event {

 public ThermostatNight(long delayTime) {

 super(delayTime);

 }

 public void action() {

 // Put hardware control code here.

 thermostat = "Night";

 }

 public String toString() {

 return "Thermostat on night setting";

 }

 }

 public class ThermostatDay extends Event {

 public ThermostatDay(long delayTime) {

 super(delayTime);

 }

 public void action() {

 // Put hardware control code here.

 thermostat = "Day";

 }

 public String toString() {

 return "Thermostat on day setting";

376 Thinking in Java Bruce Eckel

 }

 }

 // An example of an action() that inserts a

 // new one of itself into the event list:

 public class Bell extends Event {

 public Bell(long delayTime) { super(delayTime); }

 public void action() {

 addEvent(new Bell(delayTime));

 }

 public String toString() { return "Bing!"; }

 }

 public class Restart extends Event {

 private Event[] eventList;

 public Restart(long delayTime, Event[] eventList) {

 super(delayTime);

 this.eventList = eventList;

 for(Event e : eventList)

 addEvent(e);

 }

 public void action() {

 for(Event e : eventList) {

 e.start(); // Rerun each event

 addEvent(e);

 }

 start(); // Rerun this Event

 addEvent(this);

 }

 public String toString() {

 return "Restarting system";

 }

 }

 public static class Terminate extends Event {

 public Terminate(long delayTime) { super(delayTime); }

 public void action() { System.exit(0); }

 public String toString() { return "Terminating"; }

 }

} ///:~

Note that light, water, and thermostat belong to the outer class

GreenhouseControls, and yet the inner classes can access those fields

without qualification or special permission. Also, the action() methods

usually involve some sort of hardware control.

Inner Classes 377

Most of the Event classes look similar, but Bell and Restart are special.

Bell rings and then adds a new Bell object to the event list, so it will ring

again later. Notice how inner classes almost look like multiple inheritance:

Bell and Restart have all the methods of Event and also appear to have all

the methods of the outer class GreenhouseControls.

Restart is given an array of Event objects that it adds to the controller.

Since Restart() is just another Event object, you can also add a Restart

object within Restart.action() so that the system regularly restarts itself.

The following class configures the system by creating a

GreenhouseControls object and adding various kinds of Event objects.

This is an example of the Command design pattern—each object in

eventList is a request encapsulated as an object:

//: innerclasses/GreenhouseController.java

// Configure and execute the greenhouse system.

// {Args: 5000}

import innerclasses.controller.*;

public class GreenhouseController {

 public static void main(String[] args) {

 GreenhouseControls gc = new GreenhouseControls();

 // Instead of hard-wiring, you could parse

 // configuration information from a text file here:

 gc.addEvent(gc.new Bell(900));

 Event[] eventList = {

 gc.new ThermostatNight(0),

 gc.new LightOn(200),

 gc.new LightOff(400),

 gc.new WaterOn(600),

 gc.new WaterOff(800),

 gc.new ThermostatDay(1400)

 };

 gc.addEvent(gc.new Restart(2000, eventList));

 if(args.length == 1)

 gc.addEvent(

 new GreenhouseControls.Terminate(

 new Integer(args[0])));

 gc.run();

 }

} /* Output:

Bing!

Thermostat on night setting

378 Thinking in Java Bruce Eckel

Light is on

Light is off

Greenhouse water is on

Greenhouse water is off

Thermostat on day setting

Restarting system

Terminating

*///:~

This class initializes the system, so it adds all the appropriate events. The

Restart event is repeatedly run, and it loads the eventList into the

GreenhouseControls object each time. If you provide a command-line

argument indicating milliseconds, it will terminate the program after that

many milliseconds (this is used for testing).

Of course, it’s more flexible to read the events from a file instead of hard-

coding them. An exercise in the I/O chapter asks you to modify this example

to do just that.

This example should move you toward an appreciation of the value of inner

classes, especially when used within a control framework. However, in the

Graphical User Interfaces chapter you’ll see how elegantly inner classes are

used to describe the actions of a graphical user interface. By the time you

finish that chapter, you should be fully convinced.

Exercise 24: (2) In GreenhouseControls.java, add Event inner
classes that turn fans on and off. Configure GreenhouseController.java
to use these new Event objects.

Exercise 25: (3) Inherit from GreenhouseControls in
GreenhouseControls.java to add Event inner classes that turn water
mist generators on and off. Write a new version of
GreenhouseController.java to use these new Event objects.

Inheriting from inner classes
Because the inner-class constructor must attach to a reference of the

enclosing class object, things are slightly complicated when you inherit from

an inner class. The problem is that the “secret” reference to the enclosing

class object must be initialized, and yet in the derived class there’s no longer a

default object to attach to. You must use a special syntax to make the

association explicit:

Inner Classes 379

//: innerclasses/InheritInner.java

// Inheriting an inner class.

class WithInner {

 class Inner {}

}

public class InheritInner extends WithInner.Inner {

 //! InheritInner() {} // Won't compile

 InheritInner(WithInner wi) {

 wi.super();

 }

 public static void main(String[] args) {

 WithInner wi = new WithInner();

 InheritInner ii = new InheritInner(wi);

 }

} ///:~

You can see that InheritInner is extending only the inner class, not the

outer one. But when it comes time to create a constructor, the default one is

no good, and you can’t just pass a reference to an enclosing object. In

addition, you must use the syntax

enclosingClassReference.super();

inside the constructor. This provides the necessary reference, and the

program will then compile.

Exercise 26: (2) Create a class with an inner class that has a non-default
constructor (one that takes arguments). Create a second class with an inner
class that inherits from the first inner class.

Can inner classes be overridden?
What happens when you create an inner class, then inherit from the

enclosing class and redefine the inner class? That is, is it possible to

“override” the entire inner class? This seems like it would be a powerful

concept, but “overriding” an inner class as if it were another method of the

outer class doesn’t really do anything:

//: innerclasses/BigEgg.java

// An inner class cannot be overriden like a method.

import static net.mindview.util.Print.*;

380 Thinking in Java Bruce Eckel

class Egg {

 private Yolk y;

 protected class Yolk {

 public Yolk() { print("Egg.Yolk()"); }

 }

 public Egg() {

 print("New Egg()");

 y = new Yolk();

 }

}

public class BigEgg extends Egg {

 public class Yolk {

 public Yolk() { print("BigEgg.Yolk()"); }

 }

 public static void main(String[] args) {

 new BigEgg();

 }

} /* Output:

New Egg()

Egg.Yolk()

*///:~

The default constructor is synthesized automatically by the compiler, and this

calls the base-class default constructor. You might think that since a BigEgg

is being created, the “overridden” version of Yolk would be used, but this is

not the case, as you can see from the output.

This example shows that there isn’t any extra inner-class magic going on

when you inherit from the outer class. The two inner classes are completely

separate entities, each in its own namespace. However, it’s still possible to

explicitly inherit from the inner class:

//: innerclasses/BigEgg2.java

// Proper inheritance of an inner class.

import static net.mindview.util.Print.*;

class Egg2 {

 protected class Yolk {

 public Yolk() { print("Egg2.Yolk()"); }

 public void f() { print("Egg2.Yolk.f()");}

 }

 private Yolk y = new Yolk();

 public Egg2() { print("New Egg2()"); }

Inner Classes 381

 public void insertYolk(Yolk yy) { y = yy; }

 public void g() { y.f(); }

}

public class BigEgg2 extends Egg2 {

 public class Yolk extends Egg2.Yolk {

 public Yolk() { print("BigEgg2.Yolk()"); }

 public void f() { print("BigEgg2.Yolk.f()"); }

 }

 public BigEgg2() { insertYolk(new Yolk()); }

 public static void main(String[] args) {

 Egg2 e2 = new BigEgg2();

 e2.g();

 }

} /* Output:

Egg2.Yolk()

New Egg2()

Egg2.Yolk()

BigEgg2.Yolk()

BigEgg2.Yolk.f()

*///:~

Now BigEgg2.Yolk explicitly extends Egg2.Yolk and overrides its

methods. The method insertYolk() allows BigEgg2 to upcast one of its

own Yolk objects into the y reference in Egg2, so when g() calls y.f(), the

overridden version of f() is used. The second call to Egg2.Yolk() is the

base-class constructor call of the BigEgg2.Yolk constructor. You can see

that the overridden version of f() is used when g() is called.

Local inner classes
As noted earlier, inner classes can also be created inside code blocks, typically

inside the body of a method. A local inner class cannot have an access

specifier because it isn’t part of the outer class, but it does have access to the

final variables in the current code block and all the members of the enclosing

class. Here’s an example comparing the creation of a local inner class with an

anonymous inner class:

//: innerclasses/LocalInnerClass.java

// Holds a sequence of Objects.

import static net.mindview.util.Print.*;

interface Counter {

382 Thinking in Java Bruce Eckel

 int next();

}

public class LocalInnerClass {

 private int count = 0;

 Counter getCounter(final String name) {

 // A local inner class:

 class LocalCounter implements Counter {

 public LocalCounter() {

 // Local inner class can have a constructor

 print("LocalCounter()");

 }

 public int next() {

 printnb(name); // Access local final

 return count++;

 }

 }

 return new LocalCounter();

 }

 // The same thing with an anonymous inner class:

 Counter getCounter2(final String name) {

 return new Counter() {

 // Anonymous inner class cannot have a named

 // constructor, only an instance initializer:

 {

 print("Counter()");

 }

 public int next() {

 printnb(name); // Access local final

 return count++;

 }

 };

 }

 public static void main(String[] args) {

 LocalInnerClass lic = new LocalInnerClass();

 Counter

 c1 = lic.getCounter("Local inner "),

 c2 = lic.getCounter2("Anonymous inner ");

 for(int i = 0; i < 5; i++)

 print(c1.next());

 for(int i = 0; i < 5; i++)

 print(c2.next());

 }

} /* Output:

Inner Classes 383

LocalCounter()

Counter()

Local inner 0

Local inner 1

Local inner 2

Local inner 3

Local inner 4

Anonymous inner 5

Anonymous inner 6

Anonymous inner 7

Anonymous inner 8

Anonymous inner 9

*///:~

Counter returns the next value in a sequence. It is implemented as both a

local class and an anonymous inner class, both of which have the same

behaviors and capabilities. Since the name of the local inner class is not

accessible outside the method, the only justification for using a local inner

class instead of an anonymous inner class is if you need a named constructor

and/or an overloaded constructor, since an anonymous inner class can only

use instance initialization.

Another reason to make a local inner class rather than an anonymous inner

class is if you need to make more than one object of that class.

Inner-class identifiers
Since every class produces a .class file that holds all the information about

how to create objects of this type (this information produces a “meta-class”

called the Class object), you might guess that inner classes must also

produce .class files to contain the information for their Class objects. The

names of these files/classes have a strict formula: the name of the enclosing

class, followed by a ‘$’, followed by the name of the inner class. For example,

the .class files created by LocalInnerClass.java include:

Counter.class

LocalInnerClass$1.class

LocalInnerClass$1LocalCounter.class

LocalInnerClass.class

If inner classes are anonymous, the compiler simply starts generating

numbers as inner-class identifiers. If inner classes are nested within inner

384 Thinking in Java Bruce Eckel

classes, their names are simply appended after a ‘$’ and the outer-class

identifier(s).

Although this scheme of generating internal names is simple and

straightforward, it’s also robust and handles most situations.5 Since it is the

standard naming scheme for Java, the generated files are automatically

platform-independent. (Note that the Java compiler is changing your inner

classes in all sorts of other ways in order to make them work.)

Summary
Interfaces and inner classes are more sophisticated concepts than what you’ll

find in many OOP languages; for example, there’s nothing like them in C++.

Together, they solve the same problem that C++ attempts to solve with its

multiple inheritance (MI) feature. However, MI in C++ turns out to be rather

difficult to use, whereas Java interfaces and inner classes are, by comparison,

much more accessible.

Although the features themselves are reasonably straightforward, the use of

these features is a design issue, much the same as polymorphism. Over time,

you’ll become better at recognizing situations where you should use an

interface, or an inner class, or both. But at this point in this book, you should

at least be comfortable with the syntax and semantics. As you see these

language features in use, you’ll eventually internalize them.

Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for sale from www.MindViewLLC.com.

5 On the other hand, ‘$’ is a meta-character to the Unix shell and so you’ll sometimes have
trouble when listing the .class files. This is a bit strange because it came from Sun, a
Unix-based company. My guess is that they weren’t considering this issue, but instead
thought you’d naturally focus on the source-code files.

 385

Holding Your
Objects

It’s a fairly simple program that only has a fixed quantity
of objects with known lifetimes.

In general, your programs will always be creating new objects based on some

criteria that will be known only at run time. Before then, you won’t know the

quantity or even the exact type of the objects you need. To solve the general

programming problem, you need to create any number of objects, anytime,

anywhere. So you can’t rely on creating a named reference to hold each one of

your objects:

MyType aReference;

since you’ll never know how many of these you’ll actually need.

Most languages provide some way to solve this essential problem. Java has

several ways to hold objects (or rather, references to objects). The compiler-

supported type is the array, which has been discussed before. An array is the

most efficient way to hold a group of objects, and you’re pointed towards this

choice if you want to hold a group of primitives. But an array has a fixed size,

and in the more general case, you won’t know at the time you’re writing the

program how many objects you’re going to need, or whether you need a more

sophisticated way to store your objects—so the fixed-sized constraint of an

array is too limiting.

The java.util library has a reasonably complete set of container classes to

solve this problem, the basic types of which are List, Set, Queue, and Map.

These types of objects are also known as collection classes, but because the

Java library uses the name Collection to refer to a particular subset of the

library, I shall use the more inclusive term “container.” Containers provide

sophisticated ways to hold your objects, and you can solve a surprising

number of problems by using these tools.

386 Thinking in Java Bruce Eckel

Among their other characteristics—Set, for example, holds only one object of

each value, and Map is an associative array that lets you associate objects

with other objects—the Java container classes will automatically resize

themselves. So, unlike with arrays, you can put in any number of objects and

you don’t need to worry about how big to make the container while you’re

writing the program.

Even though they don’t have direct keyword support in Java,1 container

classes are fundamental tools that significantly increase your programming

muscle. In this chapter you’ll get a basic working knowledge of the Java

container library, with an emphasis on typical usage. Here, we’ll focus on the

containers that you’ll use in day-to-day programming. Later, in the

Containers in Depth chapter, you’ll learn about the rest of the containers and

more details about their functionality and how to use them.

Generics and type-safe containers
One of the problems of using pre-Java SE5 containers was that the compiler

allowed you to insert an incorrect type into a container. For example,

consider a container of Apple objects, using the basic workhorse container,

ArrayList. For now, you can think of ArrayList as “an array that

automatically expands itself.” Using an ArrayList is straightforward: Create

one, insert objects using add(), and access them with get(), using an

index—just as you do with an array, but without the square brackets.2

ArrayList also has a method size() to let you know how many elements

have been added, so that you don’t inadvertently index off the end and cause

an error (by throwing a runtime exception; exceptions will be introduced in

the chapter Error Handling with Exceptions).

In this example, Apples and Oranges are placed into the container, then

pulled out. Normally, the Java compiler will give you a warning because the

example does not use generics. Here, a special Java SE5 annotation is used to

suppress the warning. Annotations start with an ‘@’ sign, and can take an

1 A number of languages, such as Perl, Python, and Ruby, have native support for
containers.

2 This is a place where operator overloading would have been nice. C++ and C# container
classes produce a cleaner syntax using operator overloading.

Holding Your Objects 387

argument; this one is @SuppressWarnings and the argument indicates

that “unchecked” warnings only should be suppressed:

//: holding/ApplesAndOrangesWithoutGenerics.java

// Simple container example (produces compiler warnings).

// {ThrowsException}

import java.util.*;

class Apple {

 private static long counter;

 private final long id = counter++;

 public long id() { return id; }

}

class Orange {}

public class ApplesAndOrangesWithoutGenerics {

 @SuppressWarnings("unchecked")

 public static void main(String[] args) {

 ArrayList apples = new ArrayList();

 for(int i = 0; i < 3; i++)

 apples.add(new Apple());

 // Not prevented from adding an Orange to apples:

 apples.add(new Orange());

 for(int i = 0; i < apples.size(); i++)

 ((Apple)apples.get(i)).id();

 // Orange is detected only at run time

 }

} /* (Execute to see output) *///:~

You’ll learn more about Java SE5 annotations in the Annotations chapter.

The classes Apple and Orange are distinct; they have nothing in common

except that they are both Objects. (Remember that if you don’t explicitly say

what class you’re inheriting from, you automatically inherit from Object.)

Since ArrayList holds Objects, you can not only add Apple objects into

this container using the ArrayList method add(), but you can also add

Orange objects without complaint at either compile time or run time. When

you go to fetch out what you think are Apple objects using the ArrayList

method get(), you get back a reference to an Object that you must cast to an

Apple. Then you need to surround the entire expression with parentheses to

force the evaluation of the cast before calling the id() method for Apple;

otherwise, you’ll get a syntax error.

388 Thinking in Java Bruce Eckel

At run time, when you try to cast the Orange object to an Apple, you’ll get

an error in the form of the aforementioned exception.

In the Generics chapter, you’ll learn that creating classes using Java generics

can be complex. However, applying predefined generic classes is usually

straightforward. For example, to define an ArrayList intended to hold

Apple objects, you say ArrayList<Apple> instead of just ArrayList. The

angle brackets surround the type parameters (there may be more than one),

which specify the type(s) that can be held by that instance of the container.

With generics, you’re prevented, at compile time, from putting the wrong

type of object into a container.3 Here’s the example again, using generics:

//: holding/ApplesAndOrangesWithGenerics.java

import java.util.*;

public class ApplesAndOrangesWithGenerics {

 public static void main(String[] args) {

 ArrayList<Apple> apples = new ArrayList<Apple>();

 for(int i = 0; i < 3; i++)

 apples.add(new Apple());

 // Compile-time error:

 // apples.add(new Orange());

 for(int i = 0; i < apples.size(); i++)

 System.out.println(apples.get(i).id());

 // Using foreach:

 for(Apple c : apples)

 System.out.println(c.id());

 }

} /* Output:

0

1

2

0

1

2

*///:~

3 At the end of the Generics chapter, you’ll find a discussion about whether this is such a
bad problem. However, the Generics chapter will also show you that Java generics are
useful for more than just type-safe containers.

Holding Your Objects 389

Now the compiler will prevent you from putting an Orange into apples, so

it becomes a compile-time error rather than a runtime error.

Also notice that the cast is no longer necessary when fetching items back out

from the List. Since the List knows what type it holds, it does the cast for

you when you call get(). Thus, with generics you not only know that the

compiler will check the type of object that you put into a container, but you

also get cleaner syntax when using the objects in the container.

The example also shows that, if you do not need to use the index of each

element, you can use the foreach syntax to select each element in the List.

You are not limited to putting the exact type of object into a container when

you specify that type as a generic parameter. Upcasting works the same with

generics as it does with other types:

//: holding/GenericsAndUpcasting.java

import java.util.*;

class GrannySmith extends Apple {}

class Gala extends Apple {}

class Fuji extends Apple {}

class Braeburn extends Apple {}

public class GenericsAndUpcasting {

 public static void main(String[] args) {

 ArrayList<Apple> apples = new ArrayList<Apple>();

 apples.add(new GrannySmith());

 apples.add(new Gala());

 apples.add(new Fuji());

 apples.add(new Braeburn());

 for(Apple c : apples)

 System.out.println(c);

 }

} /* Output: (Sample)

GrannySmith@7d772e

Gala@11b86e7

Fuji@35ce36

Braeburn@757aef

*///:~

Thus, you can add a subtype of Apple to a container that is specified to hold

Apple objects.

390 Thinking in Java Bruce Eckel

The output is produced from the default toString() method of Object,

which prints the class name followed by the unsigned hexadecimal

representation of the hash code of the object (generated by the hashCode()

method). You’ll learn about hash codes in detail in Containers in Depth.

Exercise 1: (2) Create a new class called Gerbil with an int
gerbilNumber that’s initialized in the constructor. Give it a method called
hop() that displays which gerbil number this is, and that it’s hopping. Create
an ArrayList and add Gerbil objects to the List. Now use the get()
method to move through the List and call hop() for each Gerbil.

Basic concepts
The Java container library takes the idea of “holding your objects” and

divides it into two distinct concepts, expressed as the basic interfaces of the

library:

1. Collection: a sequence of individual elements with one or more

rules applied to them. A List must hold the elements in the way

that they were inserted, a Set cannot have duplicate elements, and

a Queue produces the elements in the order determined by a

queuing discipline (usually the same order in which they are

inserted).

2. Map: a group of key-value object pairs, allowing you to look up a

value using a key. An ArrayList allows you to look up an object

using a number, so in a sense it associates numbers to objects. A

map allows you to look up an object using another object. It’s also

called an associative array, because it associates objects with

other objects, or a dictionary, because you look up a value object

using a key object just like you look up a definition using a word.

Maps are powerful programming tools.

Although it’s not always possible, ideally you’ll write most of your code to talk

to these interfaces, and the only place where you’ll specify the precise type

you’re using is at the point of creation. So you can create a List like this:

List<Apple> apples = new ArrayList<Apple>();

Notice that the ArrayList has been upcast to a List, in contrast to the way it

was handled in the previous examples. The intent of using the interface is

Holding Your Objects 391

that if you decide you want to change your implementation, all you need to do

is change it at the point of creation, like this:

List<Apple> apples = new LinkedList<Apple>();

Thus, you’ll typically make an object of a concrete class, upcast it to the

corresponding interface, and then use the interface throughout the rest of

your code.

This approach won’t always work, because some classes have additional

functionality. For example, LinkedList has additional methods that are not

in the List interface, and a TreeMap has methods that are not in the Map

interface. If you need to use those methods, you won’t be able to upcast to the

more general interface.

The Collection interface generalizes the idea of a sequence—a way of

holding a group of objects. Here’s a simple example that fills a Collection

(represented here with an ArrayList) with Integer objects and then prints

each element in the resulting container:

//: holding/SimpleCollection.java

import java.util.*;

public class SimpleCollection {

 public static void main(String[] args) {

 Collection<Integer> c = new ArrayList<Integer>();

 for(int i = 0; i < 10; i++)

 c.add(i); // Autoboxing

 for(Integer i : c)

 System.out.print(i + ", ");

 }

} /* Output:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

*///:~

Since this example only uses Collection methods, any object of a class

inherited from Collection would work, but ArrayList is the most basic type

of sequence.

The name of the add() method suggests that it puts a new element in the

Collection. However, the documentation carefully states that add()

“ensures that this Collection contains the specified element.” This is to

allow for the meaning of Set, which adds the element only if it isn’t already

392 Thinking in Java Bruce Eckel

there. With an ArrayList, or any sort of List, add() always means “put it

in,” because Lists don’t care if there are duplicates.

All Collections can be traversed using the foreach syntax, as shown here.

Later in this chapter you’ll learn about a more flexible concept called an

Iterator.

Exercise 2: (1) Modify SimpleCollection.java to use a Set for c.

Exercise 3: (2) Modify innerclasses/Sequence.java so that you can
add any number of elements to it.

Adding groups of elements
There are utility methods in both the Arrays and Collections classes in

java.util that add groups of elements to a Collection. Arrays.asList()

takes either an array or a comma-separated list of elements (using varargs)

and turns it into a List object. Collections.addAll() takes a Collection

object and either an array or a comma-separated list and adds the elements to

the Collection. Here’s an example that shows both methods, as well as the

more conventional addAll() method that’s part of all Collection types:

//: holding/AddingGroups.java

// Adding groups of elements to Collection objects.

import java.util.*;

public class AddingGroups {

 public static void main(String[] args) {

 Collection<Integer> collection =

 new ArrayList<Integer>(Arrays.asList(1, 2, 3, 4, 5));

 Integer[] moreInts = { 6, 7, 8, 9, 10 };

 collection.addAll(Arrays.asList(moreInts));

 // Runs significantly faster, but you can't

 // construct a Collection this way:

 Collections.addAll(collection, 11, 12, 13, 14, 15);

 Collections.addAll(collection, moreInts);

 // Produces a list "backed by" an array:

 List<Integer> list = Arrays.asList(16, 17, 18, 19, 20);

 list.set(1, 99); // OK -- modify an element

 // list.add(21); // Runtime error because the

 // underlying array cannot be resized.

 }

} ///:~

Holding Your Objects 393

The constructor for a Collection can accept another Collection which it

uses for initializing itself, so you can use Arrays.asList() to produce input

for the constructor. However, Collections.addAll() runs much faster, and

it’s just as easy to construct the Collection with no elements and then call

Collections.addAll(), so this is the preferred approach.

The Collection.addAll() member method can only take an argument of

another Collection object, so it is not as flexible as Arrays.asList() or

Collections.addAll(), which use variable argument lists.

It’s also possible to use the output of Arrays.asList() directly, as a List, but

the underlying representation in this case is the array, which cannot be

resized. If you try to add() or delete() elements in such a list, that would

attempt to change the size of an array, so you’ll get an “Unsupported

Operation” error at run time.

A limitation of Arrays.asList() is that it takes a best guess about the

resulting type of the List, and doesn’t pay attention to what you’re assigning

it to. Sometimes this can cause a problem:

//: holding/AsListInference.java

// Arrays.asList() makes its best guess about type.

import java.util.*;

class Snow {}

class Powder extends Snow {}

class Light extends Powder {}

class Heavy extends Powder {}

class Crusty extends Snow {}

class Slush extends Snow {}

public class AsListInference {

 public static void main(String[] args) {

 List<Snow> snow1 = Arrays.asList(

 new Crusty(), new Slush(), new Powder());

 // Won't compile:

 // List<Snow> snow2 = Arrays.asList(

 // new Light(), new Heavy());

 // Compiler says:

 // found : java.util.List<Powder>

 // required: java.util.List<Snow>

394 Thinking in Java Bruce Eckel

 // Collections.addAll() doesn't get confused:

 List<Snow> snow3 = new ArrayList<Snow>();

 Collections.addAll(snow3, new Light(), new Heavy());

 // Give a hint using an

 // explicit type argument specification:

 List<Snow> snow4 = Arrays.<Snow>asList(

 new Light(), new Heavy());

 }

} ///:~

When trying to create snow2, Arrays.asList() only has types of Powder,

so it creates a List<Powder> rather than a List<Snow>, whereas

Collections.addAll() works fine because it knows from the first argument

what the target type is.

As you can see from the creation of snow4, it’s possible to insert a “hint” in

the middle of Arrays.asList(), to tell the compiler what the actual target

type should be for the resulting List type produced by Arrays.asList().

This is called an explicit type argument specification.

Maps are more complex, as you’ll see, and the Java standard library does not

provide any way to automatically initialize them, except from the contents of

another Map.

Printing containers
You must use Arrays.toString() to produce a printable representation of

an array, but the containers print nicely without any help. Here’s an example

that also introduces you to the basic Java containers:

//: holding/PrintingContainers.java

// Containers print themselves automatically.

import java.util.*;

import static net.mindview.util.Print.*;

public class PrintingContainers {

 static Collection fill(Collection<String> collection) {

 collection.add("rat");

 collection.add("cat");

 collection.add("dog");

 collection.add("dog");

 return collection;

 }

Holding Your Objects 395

 static Map fill(Map<String,String> map) {

 map.put("rat", "Fuzzy");

 map.put("cat", "Rags");

 map.put("dog", "Bosco");

 map.put("dog", "Spot");

 return map;

 }

 public static void main(String[] args) {

 print(fill(new ArrayList<String>()));

 print(fill(new LinkedList<String>()));

 print(fill(new HashSet<String>()));

 print(fill(new TreeSet<String>()));

 print(fill(new LinkedHashSet<String>()));

 print(fill(new HashMap<String,String>()));

 print(fill(new TreeMap<String,String>()));

 print(fill(new LinkedHashMap<String,String>()));

 }

} /* Output:

[rat, cat, dog, dog]

[rat, cat, dog, dog]

[cat, dog, rat]

[cat, dog, rat]

[rat, cat, dog]

{cat=Rags, dog=Spot, rat=Fuzzy}

{cat=Rags, dog=Spot, rat=Fuzzy}

{rat=Fuzzy, cat=Rags, dog=Spot}

*///:~

This shows the two primary categories in the Java container library. The

distinction is based on the number of items that are held in each “slot” in the

container. The Collection category only holds one item in each slot. It

includes the List, which holds a group of items in a specified sequence, the

Set, which only allows the addition of one identical item, and the Queue,

which only allows you to insert objects at one “end” of the container and

remove objects from the other “end” (for the purposes of this example, this is

just another way of looking at a sequence and so it is not shown). A Map

holds two objects, a key and an associated value, in each slot.

In the output, you can see that the default printing behavior (provided via

each container’s toString() method) produces reasonably readable results.

A Collection is printed surrounded by square brackets, with each element

separated by a comma. A Map is surrounded by curly braces, with each key

and value associated with an equal sign (keys on the left, values on the right).

396 Thinking in Java Bruce Eckel

The first fill() method works with all types of Collection, each of which

implements the add() method to include new elements.

ArrayList and LinkedList are both types of List, and you can see from the

output that they both hold elements in the same order in which they are

inserted. The difference between the two is not only performance for certain

types of operations, but also that a LinkedList contains more operations

than an ArrayList. These will be explored more fully later in this chapter.

HashSet, TreeSet and LinkedHashSet are types of Set. The output

shows that a Set will only hold one of each identical item, but it also shows

that the different Set implementations store the elements differently. The

HashSet stores elements using a rather complex approach that will be

explored in the Containers in Depth chapter—all you need to know at this

point is that this technique is the fastest way to retrieve elements, and as a

result the storage order can seem nonsensical (often, you only care whether

something is a member of the Set, not the order in which it appears). If

storage order is important, you can use a TreeSet, which keeps the objects in

ascending comparison order, or a LinkedHashSet, which keeps the objects

in the order in which they were added.

A Map (also called an associative array) allows you to look up an object

using a key, like a simple database. The associated object is called a value. If

you have a Map that associates states with their capitals and you want to

know the capital of Ohio, you look it up using “Ohio” as the key—almost as if

you were indexing into an array. Because of this behavior, a Map only

accepts one of each key.

Map.put(key, value) adds a value (the thing you want) and associates it

with a key (the thing you look it up with). Map.get(key) produces the value

associated with that key. The above example only adds key-value pairs, and

does not perform lookups. That will be shown later.

Notice that you don’t have to specify (or think about) the size of the Map

because it resizes itself automatically. Also, Maps know how to print

themselves, showing the association with keys and values. The order that the

keys and values are held inside the Map is not the insertion order because

the HashMap implementation uses a very fast algorithm that controls the

order.

Holding Your Objects 397

The example uses the three basic flavors of Map: HashMap, TreeMap and

LinkedHashMap. Like HashSet, HashMap provides the fastest lookup

technique, and also doesn’t hold its elements in any apparent order. A

TreeMap keeps the keys sorted by ascending comparison order, and a

LinkedHashMap keeps the keys in insertion order while retaining the

lookup speed of the HashMap.

Exercise 4: (3) Create a generator class that produces character names
(as String objects) from your favorite movie (you can use Snow White or
Star Wars as a fallback) each time you call next(), and loops around to the
beginning of the character list when it runs out of names. Use this generator
to fill an array, an ArrayList, a LinkedList, a HashSet, a
LinkedHashSet, and a TreeSet, then print each container.

List
Lists promise to maintain elements in a particular sequence. The List

interface adds a number of methods to Collection that allow insertion and

removal of elements in the middle of a List.

There are two types of List:

• The basic ArrayList, which excels at randomly accessing elements,

but is slower when inserting and removing elements in the middle of

a List.

• The LinkedList, which provides optimal sequential access, with

inexpensive insertions and deletions from the middle of the List. A

LinkedList is relatively slow for random access, but it has a larger

feature set than the ArrayList.

The following example reaches forward in the book to use a library from the

Type Information chapter by importing typeinfo.pets. This is a library that

contains a hierarchy of Pet classes along with some tools to randomly

generate Pet objects. You don’t need to know the full details at this point, just

that (1) there’s a Pet class and various subtypes of Pet and (2) the static

Pets.arrayList() method will return an ArrayList filled with randomly

selected Pet objects:

//: holding/ListFeatures.java

import typeinfo.pets.*;

import java.util.*;

import static net.mindview.util.Print.*;

398 Thinking in Java Bruce Eckel

public class ListFeatures {

 public static void main(String[] args) {

 Random rand = new Random(47);

 List<Pet> pets = Pets.arrayList(7);

 print("1: " + pets);

 Hamster h = new Hamster();

 pets.add(h); // Automatically resizes

 print("2: " + pets);

 print("3: " + pets.contains(h));

 pets.remove(h); // Remove by object

 Pet p = pets.get(2);

 print("4: " + p + " " + pets.indexOf(p));

 Pet cymric = new Cymric();

 print("5: " + pets.indexOf(cymric));

 print("6: " + pets.remove(cymric));

 // Must be the exact object:

 print("7: " + pets.remove(p));

 print("8: " + pets);

 pets.add(3, new Mouse()); // Insert at an index

 print("9: " + pets);

 List<Pet> sub = pets.subList(1, 4);

 print("subList: " + sub);

 print("10: " + pets.containsAll(sub));

 Collections.sort(sub); // In-place sort

 print("sorted subList: " + sub);

 // Order is not important in containsAll():

 print("11: " + pets.containsAll(sub));

 Collections.shuffle(sub, rand); // Mix it up

 print("shuffled subList: " + sub);

 print("12: " + pets.containsAll(sub));

 List<Pet> copy = new ArrayList<Pet>(pets);

 sub = Arrays.asList(pets.get(1), pets.get(4));

 print("sub: " + sub);

 copy.retainAll(sub);

 print("13: " + copy);

 copy = new ArrayList<Pet>(pets); // Get a fresh copy

 copy.remove(2); // Remove by index

 print("14: " + copy);

 copy.removeAll(sub); // Only removes exact objects

 print("15: " + copy);

 copy.set(1, new Mouse()); // Replace an element

 print("16: " + copy);

 copy.addAll(2, sub); // Insert a list in the middle

Holding Your Objects 399

 print("17: " + copy);

 print("18: " + pets.isEmpty());

 pets.clear(); // Remove all elements

 print("19: " + pets);

 print("20: " + pets.isEmpty());

 pets.addAll(Pets.arrayList(4));

 print("21: " + pets);

 Object[] o = pets.toArray();

 print("22: " + o[3]);

 Pet[] pa = pets.toArray(new Pet[0]);

 print("23: " + pa[3].id());

 }

} /* Output:

1: [Rat, Manx, Cymric, Mutt, Pug, Cymric, Pug]

2: [Rat, Manx, Cymric, Mutt, Pug, Cymric, Pug, Hamster]

3: true

4: Cymric 2

5: -1

6: false

7: true

8: [Rat, Manx, Mutt, Pug, Cymric, Pug]

9: [Rat, Manx, Mutt, Mouse, Pug, Cymric, Pug]

subList: [Manx, Mutt, Mouse]

10: true

sorted subList: [Manx, Mouse, Mutt]

11: true

shuffled subList: [Mouse, Manx, Mutt]

12: true

sub: [Mouse, Pug]

13: [Mouse, Pug]

14: [Rat, Mouse, Mutt, Pug, Cymric, Pug]

15: [Rat, Mutt, Cymric, Pug]

16: [Rat, Mouse, Cymric, Pug]

17: [Rat, Mouse, Mouse, Pug, Cymric, Pug]

18: false

19: []

20: true

21: [Manx, Cymric, Rat, EgyptianMau]

22: EgyptianMau

23: 14

*///:~

The print lines are numbered so the output can be related to the source code.

The first output line shows the original List of Pets. Unlike an array, a List

400 Thinking in Java Bruce Eckel

allows you to add elements after it has been created, or remove elements, and

it resizes itself. That’s its fundamental value: a modifiable sequence. You can

see the result of adding a Hamster in output line 2—the object is appended

to the end of the list.

You can find out whether an object is in the list using the contains()

method. If you want to remove an object, you can pass that object’s reference

to the remove() method. Also, if you have a reference to an object, you can

discover the index number where that object is located in the List using

indexOf(), as you can see in output line 4.

When deciding whether an element is part of a List, discovering the index of

an element, and removing an element from a List by reference, the

equals() method (part of the root class Object) is used. Each Pet is defined

to be a unique object, so even though there are two Cymrics in the list, if I

create a new Cymric object and pass it to indexOf(), the result will be -1

(indicating it wasn’t found), and attempts to remove() the object will return

false. For other classes, equals() may be defined differently—Strings, for

example, are equal if the contents of two Strings are identical. So to prevent

surprises, it’s important to be aware that List behavior changes depending on

equals() behavior.

In output lines 7 and 8, removing an object that exactly matches an object in

the List is shown to be successful.

It’s possible to insert an element in the middle of the List, as you can see in

output line 9 and the code that precedes it, but this brings up an issue: for a

LinkedList, insertion and removal in the middle of a list is a cheap

operation (except for, in this case, the actual random access into the middle

of the list), but for an ArrayList it is an expensive operation. Does this mean

you should never insert elements in the middle of an ArrayList, and switch

to a LinkedList if you do? No, it just means you should be aware of the

issue, and if you start doing many insertions in the middle of an ArrayList

and your program starts slowing down, that you might look at your List

implementation as the possible culprit (the best way to discover such a

bottleneck is to use a profiler). Optimization is a tricky issue, and the best

policy is to leave it alone until you discover you need to worry about it

(although understanding the issues is always a good idea).

The subList() method allows you to easily create a slice out of a larger list,

and this naturally produces a true result when passed to containsAll() for

Holding Your Objects 401

that larger list. It’s also interesting to note that order is unimportant—you can

see in output lines 11 and 12 that calling the intuitively named

Collections.sort() and Collections.shuffle() on sub doesn’t affect the

outcome of containsAll(). subList() produces a list backed by the original

list. Therefore, changes in the returned list are reflected in the original list,

and vice versa.

The retainAll() method is effectively a “set intersection” operation, in this

case keeping all the elements in copy that are also in sub. Again, the

resulting behavior depends on the equals() method.

Output line 14 shows the result of removing an element using its index

number, which is more straightforward than removing it by object reference

since you don’t have to worry about equals() behavior when using indexes.

The removeAll() method also operates based on the equals() method. As

the name implies, it removes all the objects from the List that are in the

argument List.

The set() method is rather unfortunately named because of the potential

confusion with the Set class—“replace” might have been a better name here,

because it replaces the element at the index (the first argument) with the

second argument.

Output line 17 shows that for Lists, there’s an overloaded addAll() method

that allows you to insert the new list in the middle of the original list, instead

of just appending it to the end with the addAll() that comes from

Collection.

Output lines 18-20 show the effect of the isEmpty() and clear() methods.

Output lines 22 and 23 show how you can convert any Collection to an array

using toArray(). This is an overloaded method; the no-argument version

returns an array of Object, but if you pass an array of the target type to the

overloaded version, it will produce an array of the type specified (assuming it

passes type checking). If the argument array is too small to hold all the

objects in the List (as is the case here), toArray() will create a new array of

the appropriate size. Pet objects have an id() method, which you can see is

called on one of the objects in the resulting array.

402 Thinking in Java Bruce Eckel

Exercise 5: (3) Modify ListFeatures.java so that it uses Integers
(remember autoboxing!) instead of Pets, and explain any difference in
results.

Exercise 6: (2) Modify ListFeatures.java so that it uses Strings
instead of Pets, and explain any difference in results.

Exercise 7: (3) Create a class, then make an initialized array of objects of
your class. Fill a List from your array. Create a subset of your List by using
subList(), then remove this subset from your List.

Iterator
In any container, you must have a way to insert elements and fetch them out

again. After all, that’s the primary job of a container—to hold things. In a

List, add() is one way to insert elements, and get() is one way to fetch

elements.

If you want to start thinking at a higher level, there’s a drawback: You need to

program to the exact type of the container in order to use it. This might not

seem bad at first, but what if you write code for a List, and later on you

discover that it would be convenient to apply that same code to a Set? Or

suppose you’d like to write, from the beginning, a piece of general-purpose

code that doesn’t know or care what type of container it’s working with, so

that it can be used on different types of containers without rewriting that

code?

The concept of an Iterator (another design pattern) can be used to achieve

this abstraction. An iterator is an object whose job is to move through a

sequence and select each object in that sequence without the client

programmer knowing or caring about the underlying structure of that

sequence. In addition, an iterator is usually what’s called a lightweight object:

one that’s cheap to create. For that reason, you’ll often find seemingly strange

constraints for iterators; for example, the Java Iterator can move in only

one direction. There’s not much you can do with an Iterator except:

1. Ask a Collection to hand you an Iterator using a method called

iterator(). That Iterator will be ready to return the first

element in the sequence.

2. Get the next object in the sequence with next().

3. See if there are any more objects in the sequence with hasNext().

Holding Your Objects 403

4. Remove the last element returned by the iterator with remove().

To see how it works, we can again use the Pets tools from the Type

Information chapter:

//: holding/SimpleIteration.java

import typeinfo.pets.*;

import java.util.*;

public class SimpleIteration {

 public static void main(String[] args) {

 List<Pet> pets = Pets.arrayList(12);

 Iterator<Pet> it = pets.iterator();

 while(it.hasNext()) {

 Pet p = it.next();

 System.out.print(p.id() + ":" + p + " ");

 }

 System.out.println();

 // A simpler approach, when possible:

 for(Pet p : pets)

 System.out.print(p.id() + ":" + p + " ");

 System.out.println();

 // An Iterator can also remove elements:

 it = pets.iterator();

 for(int i = 0; i < 6; i++) {

 it.next();

 it.remove();

 }

 System.out.println(pets);

 }

} /* Output:

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx

8:Cymric 9:Rat 10:EgyptianMau 11:Hamster

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx

8:Cymric 9:Rat 10:EgyptianMau 11:Hamster

[Pug, Manx, Cymric, Rat, EgyptianMau, Hamster]

*///:~

With an Iterator, you don’t need to worry about the number of elements in

the container. That’s taken care of for you by hasNext() and next().

If you’re simply moving forward through the List and not trying to modify

the List object itself, you can see that the foreach syntax is more succinct.

404 Thinking in Java Bruce Eckel

An Iterator will also remove the last element produced by next(), which

means you must call next() before you call remove().4

This idea of taking a container of objects and passing through it to perform an

operation on each one is powerful and will be seen throughout this book.

Now consider the creation of a display() method that is container-agnostic:

//: holding/CrossContainerIteration.java

import typeinfo.pets.*;

import java.util.*;

public class CrossContainerIteration {

 public static void display(Iterator<Pet> it) {

 while(it.hasNext()) {

 Pet p = it.next();

 System.out.print(p.id() + ":" + p + " ");

 }

 System.out.println();

 }

 public static void main(String[] args) {

 ArrayList<Pet> pets = Pets.arrayList(8);

 LinkedList<Pet> petsLL = new LinkedList<Pet>(pets);

 HashSet<Pet> petsHS = new HashSet<Pet>(pets);

 TreeSet<Pet> petsTS = new TreeSet<Pet>(pets);

 display(pets.iterator());

 display(petsLL.iterator());

 display(petsHS.iterator());

 display(petsTS.iterator());

 }

} /* Output:

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx

2:Cymric 1:Manx 0:Rat 6:Pug 5:Cymric 4:Pug 3:Mutt 7:Manx

5:Cymric 2:Cymric 7:Manx 1:Manx 3:Mutt 6:Pug 4:Pug 0:Rat

*///:~

4 remove() is a so-called “optional” method (there are other such methods), which
means that not all Iterator implementations must implement it. This topic is covered in
the Containers in Depth chapter. The standard Java library containers implement
remove(), however, so you don’t need to worry about it until that chapter.

Holding Your Objects 405

Note that display() contains no information about the type of sequence that

it is traversing, and this shows the true power of the Iterator: the ability to

separate the operation of traversing a sequence from the underlying structure

of that sequence. For this reason, we sometimes say that iterators unify

access to containers.

Exercise 8: (1) Modify Exercise 1 so it uses an Iterator to move through
the List while calling hop().

Exercise 9: (4) Modify innerclasses/Sequence.java so that
Sequence works with an Iterator instead of a Selector.

Exercise 10: (2) Change Exercise 9 in the Polymorphism chapter to use
an ArrayList to hold the Rodents and an Iterator to move through the
sequence of Rodents.

Exercise 11: (2) Write a method that uses an Iterator to step through a
Collection and print the toString() of each object in the container. Fill all
the different types of Collections with objects and apply your method to
each container.

ListIterator
The ListIterator is a more powerful subtype of Iterator that is produced

only by List classes. While Iterator can only move forward, ListIterator is

bidirectional. It can also produce the indexes of the next and previous

elements relative to where the iterator is pointing in the list, and it can

replace the last element that it visited using the set() method. You can

produce a ListIterator that points to the beginning of the List by calling

listIterator(), and you can also create a ListIterator that starts out

pointing to an index n in the list by calling listIterator(n). Here’s an

example that demonstrates all these abilities:

//: holding/ListIteration.java

import typeinfo.pets.*;

import java.util.*;

public class ListIteration {

 public static void main(String[] args) {

 List<Pet> pets = Pets.arrayList(8);

 ListIterator<Pet> it = pets.listIterator();

 while(it.hasNext())

 System.out.print(it.next() + ", " + it.nextIndex() +

 ", " + it.previousIndex() + "; ");

406 Thinking in Java Bruce Eckel

 System.out.println();

 // Backwards:

 while(it.hasPrevious())

 System.out.print(it.previous().id() + " ");

 System.out.println();

 System.out.println(pets);

 it = pets.listIterator(3);

 while(it.hasNext()) {

 it.next();

 it.set(Pets.randomPet());

 }

 System.out.println(pets);

 }

} /* Output:

Rat, 1, 0; Manx, 2, 1; Cymric, 3, 2; Mutt, 4, 3; Pug, 5, 4;

Cymric, 6, 5; Pug, 7, 6; Manx, 8, 7;

7 6 5 4 3 2 1 0

[Rat, Manx, Cymric, Mutt, Pug, Cymric, Pug, Manx]

[Rat, Manx, Cymric, Cymric, Rat, EgyptianMau, Hamster,

EgyptianMau]

*///:~

The Pets.randomPet() method is used to replace all the Pet objects in the

List from location 3 onward.

Exercise 12: (3) Create and populate a List<Integer>. Create a second
List<Integer> of the same size as the first, and use ListIterators to read
elements from the first List and insert them into the second in reverse order.
(You may want to explore a number of different ways to solve this problem.)

LinkedList
The LinkedList also implements the basic List interface like ArrayList

does, but it performs certain operations (insertion and removal in the middle

of the List) more efficiently than does ArrayList. Conversely, it is less

efficient for random-access operations.

LinkedList also adds methods that allow it to be used as a stack, a Queue

or a double-ended queue (deque).

Some of these methods are aliases or slight variations of each other, to

produce names that are more familiar within the context of a particular usage

(Queue, in particular). For example, getFirst() and element() are

identical—they return the head (first element) of the list without removing it,

Holding Your Objects 407

and throw NoSuchElementException if the List is empty. peek() is a

slight variation of those two that returns null if the list is empty.

removeFirst() and remove() are also identical—they remove and return

the head of the list, and throw NoSuchElementException for an empty

list, and poll() is a slight variation that returns null if this list is empty.

addFirst() inserts an element at the beginning of the list.

offer() is the same as add() and addLast(). They all add an element to

the tail (end) of a list.

removeLast() removes and returns the last element of the list.

Here’s an example that shows the basic similarity and differences between

these features. It doesn’t repeat the behavior that was shown in

ListFeatures.java:

//: holding/LinkedListFeatures.java

import typeinfo.pets.*;

import java.util.*;

import static net.mindview.util.Print.*;

public class LinkedListFeatures {

 public static void main(String[] args) {

 LinkedList<Pet> pets =

 new LinkedList<Pet>(Pets.arrayList(5));

 print(pets);

 // Identical:

 print("pets.getFirst(): " + pets.getFirst());

 print("pets.element(): " + pets.element());

 // Only differs in empty-list behavior:

 print("pets.peek(): " + pets.peek());

 // Identical; remove and return the first element:

 print("pets.remove(): " + pets.remove());

 print("pets.removeFirst(): " + pets.removeFirst());

 // Only differs in empty-list behavior:

 print("pets.poll(): " + pets.poll());

 print(pets);

 pets.addFirst(new Rat());

 print("After addFirst(): " + pets);

 pets.offer(Pets.randomPet());

 print("After offer(): " + pets);

 pets.add(Pets.randomPet());

408 Thinking in Java Bruce Eckel

 print("After add(): " + pets);

 pets.addLast(new Hamster());

 print("After addLast(): " + pets);

 print("pets.removeLast(): " + pets.removeLast());

 }

} /* Output:

[Rat, Manx, Cymric, Mutt, Pug]

pets.getFirst(): Rat

pets.element(): Rat

pets.peek(): Rat

pets.remove(): Rat

pets.removeFirst(): Manx

pets.poll(): Cymric

[Mutt, Pug]

After addFirst(): [Rat, Mutt, Pug]

After offer(): [Rat, Mutt, Pug, Cymric]

After add(): [Rat, Mutt, Pug, Cymric, Pug]

After addLast(): [Rat, Mutt, Pug, Cymric, Pug, Hamster]

pets.removeLast(): Hamster

*///:~

The result of Pets.arrayList() is handed to the LinkedList constructor in

order to populate it. If you look at the Queue interface, you’ll see the

element(), offer(), peek(), poll() and remove() methods that were

added to LinkedList in order that it could be a Queue implementation. Full

examples of Queues will be given later in this chapter.

Exercise 13: (3) In the innerclasses/GreenhouseController.java
example, the class Controller uses an ArrayList. Change the code to use a
LinkedList instead, and use an Iterator to cycle through the set of events.

Exercise 14: (3) Create an empty LinkedList<Integer>. Using a
ListIterator, add Integers to the List by always inserting them in the
middle of the List.

Stack
A stack is sometimes referred to as a “last-in, first-out” (LIFO) container. It’s

sometimes called a pushdown stack, because whatever you “push” on the

stack last is the first item you can “pop” off of the stack. An often-used

analogy is of cafeteria trays in a spring-loaded holder—the last ones that go in

are the first ones that come out.

Holding Your Objects 409

LinkedList has methods that directly implement stack functionality, so you

can also just use a LinkedList rather than making a stack class. However, a

stack class can sometimes tell the story better:

//: net/mindview/util/Stack.java

// Making a stack from a LinkedList.

package net.mindview.util;

import java.util.LinkedList;

public class Stack<T> {

 private LinkedList<T> storage = new LinkedList<T>();

 public void push(T v) { storage.addFirst(v); }

 public T peek() { return storage.getFirst(); }

 public T pop() { return storage.removeFirst(); }

 public boolean empty() { return storage.isEmpty(); }

 public String toString() { return storage.toString(); }

} ///:~

This introduces the simplest possible example of a class definition using

generics. The <T> after the class name tells the compiler that this will be a

parameterized type, and that the type parameter—the one that will be

substituted with a real type when the class is used—is T. Basically, this says,

“We’re defining a Stack that holds objects of type T.” The Stack is

implemented using a LinkedList, and the LinkedList is also told that it is

holding type T. Notice that push() takes an object of type T, while peek()

and pop() return an object of type T. The peek() method provides you with

the top element without removing it from the top of the stack, while pop()

removes and returns the top element.

If you want only stack behavior, inheritance is inappropriate here because it

would produce a class with all the rest of the LinkedList methods (you’ll see

in the Containers in Depth chapter that this very mistake was made by the

Java 1.0 designers when they created java.util.Stack).

Here’s a simple demonstration of this new Stack class:

//: holding/StackTest.java

import net.mindview.util.*;

public class StackTest {

 public static void main(String[] args) {

 Stack<String> stack = new Stack<String>();

 for(String s : "My dog has fleas".split(" "))

 stack.push(s);

410 Thinking in Java Bruce Eckel

 while(!stack.empty())

 System.out.print(stack.pop() + " ");

 }

} /* Output:

fleas has dog My

*///:~

If you want to use this Stack class in your own code, you’ll need to fully

specify the package—or change the name of the class—when you create one;

otherwise, you’ll probably collide with the Stack in the java.util package.

For example, if we import java.util.* into the above example, we must use

package names in order to prevent collisions:

//: holding/StackCollision.java

public class StackCollision {

 public static void main(String[] args) {

 net.mindview.util.Stack<String> stack =

 new net.mindview.util.Stack<String>();

 for(String s : "My dog has fleas".split(" "))

 stack.push(s);

 while(!stack.empty())

 System.out.print(stack.pop() + " ");

 System.out.println();

 java.util.Stack<String> stack2 =

 new java.util.Stack<String>();

 for(String s : "My dog has fleas".split(" "))

 stack2.push(s);

 while(!stack2.empty())

 System.out.print(stack2.pop() + " ");

 }

} /* Output:

fleas has dog My

fleas has dog My

*///:~

The two Stack classes have the same interface, but there is no common

Stack interface in java.util—probably because the original, poorly designed

java.util.Stack class in Java 1.0 co-opted the name. Even though

java.util.Stack exists, LinkedList produces a better Stack and so the

net.mindview.util.Stack approach is preferable.

Holding Your Objects 411

You can also control the selection of the “preferred” Stack implementation

using an explicit import:

import net.mindview.util.Stack;

Now any reference to Stack will select the net.mindview.util version, and

to select java.util.Stack you must use full qualification.

Exercise 15: (4) Stacks are often used to evaluate expressions in
programming languages. Using net.mindview.util.Stack, evaluate the
following expression, where ‘+’ means “push the following letter onto the
stack,” and ‘-’ means “pop the top of the stack and print it”:
“+U+n+c---+e+r+t---+a-+i-+n+t+y---+ -+r+u--+l+e+s---”

Set
A Set refuses to hold more than one instance of each object value. If you try

to add more than one instance of an equivalent object, the Set prevents

duplication. The most common use for a Set is to test for membership, so

that you can easily ask whether an object is in a Set. Because of this, lookup

is typically the most important operation for a Set, so you’ll usually choose a

HashSet implementation, which is optimized for rapid lookup.

Set has the same interface as Collection, so there isn’t any extra

functionality like there is in the two different types of List. Instead, the Set is

exactly a Collection—it just has different behavior. (This is the ideal use of

inheritance and polymorphism: to express different behavior.) A Set

determines membership based on the “value” of an object, a more complex

topic that you will learn about in the Containers in Depth chapter.

Here’s an example that uses a HashSet with Integer objects:

//: holding/SetOfInteger.java

import java.util.*;

public class SetOfInteger {

 public static void main(String[] args) {

 Random rand = new Random(47);

 Set<Integer> intset = new HashSet<Integer>();

 for(int i = 0; i < 10000; i++)

 intset.add(rand.nextInt(30));

 System.out.println(intset);

 }

} /* Output:

412 Thinking in Java Bruce Eckel

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17,

16, 19, 18, 21, 20, 23, 22, 25, 24, 27, 26, 29, 28]

*///:~

Ten thousand random numbers from 0 up to 29 are added to the Set, so you

can imagine that each value has many duplications. And yet you can see that

only one instance of each appears in the result.

You’ll also notice that the output is in no discernible order. This is because a

HashSet uses hashing for speed—hashing is covered in the Containers in

Depth chapter. The order maintained by a HashSet is different from a

TreeSet or a LinkedHashSet, since each implementation has a different

way of storing elements. TreeSet keeps elements sorted into a red-black tree

data structure, whereas HashSet uses the hashing function.

LinkedHashSet also uses hashing for lookup speed, but appears to

maintain elements in insertion order using a linked list.

If you want the results to be sorted, one approach is to use a TreeSet instead

of a HashSet:

//: holding/SortedSetOfInteger.java

import java.util.*;

public class SortedSetOfInteger {

 public static void main(String[] args) {

 Random rand = new Random(47);

 SortedSet<Integer> intset = new TreeSet<Integer>();

 for(int i = 0; i < 10000; i++)

 intset.add(rand.nextInt(30));

 System.out.println(intset);

 }

} /* Output:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]

*///:~

One of the most common operations you will perform is a test for set

membership using contains(), but there are also operations that will

remind you of the Venn diagrams you may have been taught in elementary

school:

//: holding/SetOperations.java

import java.util.*;

import static net.mindview.util.Print.*;

Holding Your Objects 413

public class SetOperations {

 public static void main(String[] args) {

 Set<String> set1 = new HashSet<String>();

 Collections.addAll(set1,

 "A B C D E F G H I J K L".split(" "));

 set1.add("M");

 print("H: " + set1.contains("H"));

 print("N: " + set1.contains("N"));

 Set<String> set2 = new HashSet<String>();

 Collections.addAll(set2, "H I J K L".split(" "));

 print("set2 in set1: " + set1.containsAll(set2));

 set1.remove("H");

 print("set1: " + set1);

 print("set2 in set1: " + set1.containsAll(set2));

 set1.removeAll(set2);

 print("set2 removed from set1: " + set1);

 Collections.addAll(set1, "X Y Z".split(" "));

 print("'X Y Z' added to set1: " + set1);

 }

} /* Output:

H: true

N: false

set2 in set1: true

set1: [D, E, F, G, A, B, C, L, M, I, J, K]

set2 in set1: false

set2 removed from set1: [D, E, F, G, A, B, C, M]

'X Y Z' added to set1: [D, E, F, G, A, B, C, M, Y, X, Z]

*///:~

The method names are self-explanatory, and there are a few more that you

will find in the JDK documentation.

Producing a list of unique elements can be quite useful. For example, suppose

you’d like to list all the words in the file SetOperations.java, above. Using

the net.mindview.TextFile utility that will be introduced later in the book,

you can open and read a file into a Set:

//: holding/UniqueWords.java

import java.util.*;

import net.mindview.util.*;

public class UniqueWords {

 public static void main(String[] args) {

 Set<String> words = new TreeSet<String>(

414 Thinking in Java Bruce Eckel

 new TextFile("SetOperations.java", "\\W+"));

 System.out.println(words);

 }

} /* Output:

[A, B, C, Collections, D, E, F, G, H, HashSet, I, J, K, L,

M, N, Output, Print, Set, SetOperations, String, X, Y, Z,

add, addAll, added, args, class, contains, containsAll,

false, from, holding, import, in, java, main, mindview, net,

new, print, public, remove, removeAll, removed, set1, set2,

split, static, to, true, util, void]

*///:~

TextFile is inherited from List<String>. The TextFile constructor opens

the file and breaks it into words according to the regular expression “\\W+”,

which means “one or more letters” (regular expressions are introduced in the

Strings chapter). The result is handed to the TreeSet constructor, which

adds the contents of the List to itself. Since it is a TreeSet, the result is

sorted. In this case, the sorting is done lexicographically so that the

uppercase and lowercase letters are in separate groups. If you’d like to sort it

alphabetically, you can pass the String.CASE_INSENSITIVE_ORDER

Comparator (a comparator is an object that establishes order) to the

TreeSet constructor:

//: holding/UniqueWordsAlphabetic.java

// Producing an alphabetic listing.

import java.util.*;

import net.mindview.util.*;

public class UniqueWordsAlphabetic {

 public static void main(String[] args) {

 Set<String> words =

 new TreeSet<String>(String.CASE_INSENSITIVE_ORDER);

 words.addAll(

 new TextFile("SetOperations.java", "\\W+"));

 System.out.println(words);

 }

} /* Output:

[A, add, addAll, added, args, B, C, class, Collections,

contains, containsAll, D, E, F, false, from, G, H, HashSet,

holding, I, import, in, J, java, K, L, M, main, mindview, N,

net, new, Output, Print, public, remove, removeAll, removed,

Set, set1, set2, SetOperations, split, static, String, to,

true, util, void, X, Y, Z]

*///:~

Holding Your Objects 415

Comparators will be explored in detail in the Arrays chapter.

Exercise 16: (5) Create a Set of the vowels. Working from
UniqueWords.java, count and display the number of vowels in each input
word, and also display the total number of vowels in the input file.

Map
The ability to map objects to other objects can be an immensely powerful way

to solve programming problems. For example, consider a program to

examine the randomness of Java’s Random class. Ideally, Random would

produce a perfect distribution of numbers, but to test this you need to

generate many random numbers and count the ones that fall in the various

ranges. A Map easily solves the problem; in this case, the key is the number

produced by Random, and the value is the number of times that number

appears:

//: holding/Statistics.java

// Simple demonstration of HashMap.

import java.util.*;

public class Statistics {

 public static void main(String[] args) {

 Random rand = new Random(47);

 Map<Integer,Integer> m =

 new HashMap<Integer,Integer>();

 for(int i = 0; i < 10000; i++) {

 // Produce a number between 0 and 20:

 int r = rand.nextInt(20);

 Integer freq = m.get(r);

 m.put(r, freq == null ? 1 : freq + 1);

 }

 System.out.println(m);

 }

} /* Output:

{0=481, 1=502, 2=489, 3=508, 4=481, 5=503, 6=519, 7=471,

8=468, 9=549, 10=513, 11=531, 12=521, 13=506, 14=477,

15=497, 17=509, 16=533, 19=464, 18=478}

*///:~

In main(), autoboxing converts the randomly generated int into an

Integer reference that can be used with the HashMap (you can’t use

primitives with containers). The get() method returns null if the key is not

416 Thinking in Java Bruce Eckel

already in the container (which means that this is the first time the number

has been found). Otherwise, the get() method produces the associated

Integer value for the key, which is incremented (again, autoboxing simplifies

the expression but there are actually conversions to and from Integer taking

place).

Here’s an example that allows you to use a String description to look up Pet

objects. It also shows how you can test a Map to see if it contains a key or a

value with containsKey() and containsValue():

//: holding/PetMap.java

import typeinfo.pets.*;

import java.util.*;

import static net.mindview.util.Print.*;

public class PetMap {

 public static void main(String[] args) {

 Map<String,Pet> petMap = new HashMap<String,Pet>();

 petMap.put("My Cat", new Cat("Molly"));

 petMap.put("My Dog", new Dog("Ginger"));

 petMap.put("My Hamster", new Hamster("Bosco"));

 print(petMap);

 Pet dog = petMap.get("My Dog");

 print(dog);

 print(petMap.containsKey("My Dog"));

 print(petMap.containsValue(dog));

 }

} /* Output:

{My Cat=Cat Molly, My Dog=Dog Ginger, My Hamster=Hamster

Bosco}

Dog Ginger

true

true

*///:~

Maps, like arrays and Collections, can easily be expanded to multiple

dimensions; you simply make a Map whose values are Maps (and the values

of those Maps can be other containers, even other Maps). Thus, it’s quite

easy to combine containers to quickly produce powerful data structures. For

example, suppose you are keeping track of people who have multiple pets—all

you need is a Map<Person, List<Pet>>:

//: holding/MapOfList.java

package holding;

Holding Your Objects 417

import typeinfo.pets.*;

import java.util.*;

import static net.mindview.util.Print.*;

public class MapOfList {

 public static Map<Person, List<? extends Pet>>

 petPeople = new HashMap<Person, List<? extends Pet>>();

 static {

 petPeople.put(new Person("Dawn"),

 Arrays.asList(new Cymric("Molly"),new Mutt("Spot")));

 petPeople.put(new Person("Kate"),

 Arrays.asList(new Cat("Shackleton"),

 new Cat("Elsie May"), new Dog("Margrett")));

 petPeople.put(new Person("Marilyn"),

 Arrays.asList(

 new Pug("Louie aka Louis Snorkelstein Dupree"),

 new Cat("Stanford aka Stinky el Negro"),

 new Cat("Pinkola")));

 petPeople.put(new Person("Luke"),

 Arrays.asList(new Rat("Fuzzy"), new Rat("Fizzy")));

 petPeople.put(new Person("Isaac"),

 Arrays.asList(new Rat("Freckly")));

 }

 public static void main(String[] args) {

 print("People: " + petPeople.keySet());

 print("Pets: " + petPeople.values());

 for(Person person : petPeople.keySet()) {

 print(person + " has:");

 for(Pet pet : petPeople.get(person))

 print(" " + pet);

 }

 }

} /* Output:

People: [Person Marilyn, Person Luke, Person Isaac, Person

Kate, Person Dawn]

Pets: [[Pug Louie aka Louis Snorkelstein Dupree, Cat

Stanford aka Stinky el Negro, Cat Pinkola], [Rat Fuzzy, Rat

Fizzy], [Rat Freckly], [Cat Shackleton, Cat Elsie May, Dog

Margrett], [Cymric Molly, Mutt Spot]]

Person Marilyn has:

 Pug Louie aka Louis Snorkelstein Dupree

 Cat Stanford aka Stinky el Negro

 Cat Pinkola

Person Luke has:

418 Thinking in Java Bruce Eckel

 Rat Fuzzy

 Rat Fizzy

Person Isaac has:

 Rat Freckly

Person Kate has:

 Cat Shackleton

 Cat Elsie May

 Dog Margrett

Person Dawn has:

 Cymric Molly

 Mutt Spot

*///:~

A Map can return a Set of its keys, a Collection of its values, or a Set of its

pairs. The keySet() method produces a Set of all the keys in petPeople,

which is used in the foreach statement to iterate through the Map.

Exercise 17: (2) Take the Gerbil class in Exercise 1 and put it into a
Map instead, associating each Gerbil’s name (e.g. “Fuzzy” or “Spot”) as a
String (the key) for each Gerbil (the value) you put in the table. Get an
Iterator for the keySet() and use it to move through the Map, looking up
the Gerbil for each key and printing out the key and telling the Gerbil to
hop().

Exercise 18: (3) Fill a HashMap with key-value pairs. Print the results
to show ordering by hash code. Extract the pairs, sort by key, and place the
result into a LinkedHashMap. Show that the insertion order is maintained.

Exercise 19: (2) Repeat the previous exercise with a HashSet and
LinkedHashSet.

Exercise 20: (3) Modify Exercise 16 so that you keep a count of the
occurrence of each vowel.

Exercise 21: (3) Using a Map<String,Integer>, follow the form of
UniqueWords.java to create a program that counts the occurrence of
words in a file. Sort the results using Collections.sort() with a second
argument of String.CASE_INSENSITIVE_ORDER (to produce an
alphabetic sort), and display the result.

Exercise 22: (5) Modify the previous exercise so that it uses a class
containing a String and a count field to store each different word, and a Set
of these objects to maintain the list of words.

Holding Your Objects 419

Exercise 23: (4) Starting with Statistics.java, create a program that
runs the test repeatedly and looks to see if any one number tends to appear
more than the others in the results.

Exercise 24: (2) Fill a LinkedHashMap with String keys and objects
of your choice. Now extract the pairs, sort them based on the keys, and
reinsert them into the Map.

Exercise 25: (3) Create a Map<String,ArrayList<Integer>>. Use
net.mindview.TextFile to open a text file and read it in a word at a time
(use "\\W+" as the second argument to the TextFile constructor). Count
the words as you read them in, and for each word in the file, record in the
ArrayList<Integer> the word count associated with that word—this is, in
effect, the location in the file where that word was found.

Exercise 26: (4) Take the resulting Map from the previous exercise and
re-create the order of the words as they appeared in the original file.

Queue
A queue is typically a “first-in, first-out” (FIFO) container. That is, you put

things in at one end and pull them out at the other, and the order in which

you put them in will be the same order in which they come out. Queues are

commonly used as a way to reliably transfer objects from one area of a

program to another. Queues are especially important in concurrent

programming, as you will see in the Concurrency chapter, because they safely

transfer objects from one task to another.

LinkedList has methods to support queue behavior and it implements the

Queue interface, so a LinkedList can be used as a Queue implementation.

By upcasting a LinkedList to a Queue, this example uses the Queue-

specific methods in the Queue interface:

//: holding/QueueDemo.java

// Upcasting to a Queue from a LinkedList.

import java.util.*;

public class QueueDemo {

 public static void printQ(Queue queue) {

 while(queue.peek() != null)

 System.out.print(queue.remove() + " ");

 System.out.println();

 }

 public static void main(String[] args) {

420 Thinking in Java Bruce Eckel

 Queue<Integer> queue = new LinkedList<Integer>();

 Random rand = new Random(47);

 for(int i = 0; i < 10; i++)

 queue.offer(rand.nextInt(i + 10));

 printQ(queue);

 Queue<Character> qc = new LinkedList<Character>();

 for(char c : "Brontosaurus".toCharArray())

 qc.offer(c);

 printQ(qc);

 }

} /* Output:

8 1 1 1 5 14 3 1 0 1

B r o n t o s a u r u s

*///:~

offer() is one of the Queue-specific methods; it inserts an element at the

tail of the queue if it can, or returns false. Both peek() and element()

return the head of the queue without removing it, but peek() returns null if

the queue is empty and element() throws NoSuchElementException.

Both poll() and remove() remove and return the head of the queue, but

poll() returns null if the queue is empty, while remove() throws

NoSuchElementException.

Autoboxing automatically converts the int result of nextInt() into the

Integer object required by queue, and the char c into the Character

object required by qc. The Queue interface narrows access to the methods of

LinkedList so that only the appropriate methods are available, and you are

thus less tempted to use LinkedList methods (here, you could actually cast

queue back to a LinkedList, but you are at least discouraged from doing

so).

Notice that the Queue-specific methods provide complete and standalone

functionality. That is, you can have a usable Queue without any of the

methods that are in Collection, from which it is inherited.

Exercise 27: (2) Write a class called Command that contains a String
and has a method operation() that displays the String. Write a second
class with a method that fills a Queue with Command objects and returns
it. Pass the filled Queue to a method in a third class that consumes the
objects in the Queue and calls their operation() methods.

Holding Your Objects 421

PriorityQueue
First-in, first-out (FIFO) describes the most typical queuing discipline. A

queuing discipline is what decides, given a group of elements in the queue,

which one goes next. First-in, first-out says that the next element should be

the one that was waiting the longest.

A priority queue says that the element that goes next is the one with the

greatest need (the highest priority). For example, in an airport, a customer

might be pulled out of a queue if their plane is about to leave. If you build a

messaging system, some messages will be more important than others, and

should be dealt with sooner, regardless of when they arrive. The

PriorityQueue was added in Java SE5 to provide an automatic

implementation for this behavior.

When you offer() an object onto a PriorityQueue, that object is sorted

into the queue.5 The default sorting uses the natural order of the objects in

the queue, but you can modify the order by providing your own

Comparator. The PriorityQueue ensures that when you call peek(),

poll() or remove(), the element you get will be the one with the highest

priority.

It’s trivial to make a PriorityQueue that works with built-in types like

Integer, String or Character. In the following example, the first set of

values are the identical random values from the previous example, so you can

see that they emerge differently from the PriorityQueue:

//: holding/PriorityQueueDemo.java

import java.util.*;

public class PriorityQueueDemo {

 public static void main(String[] args) {

 PriorityQueue<Integer> priorityQueue =

 new PriorityQueue<Integer>();

 Random rand = new Random(47);

 for(int i = 0; i < 10; i++)

 priorityQueue.offer(rand.nextInt(i + 10));

5 This actually depends on the implementation. Priority queue algorithms typically sort on
insertion (maintaining a heap), but they may also perform the selection of the most
important element upon removal. The choice of algorithm could be important if object
priority can change while it is waiting in the queue.

422 Thinking in Java Bruce Eckel

 QueueDemo.printQ(priorityQueue);

 List<Integer> ints = Arrays.asList(25, 22, 20,

 18, 14, 9, 3, 1, 1, 2, 3, 9, 14, 18, 21, 23, 25);

 priorityQueue = new PriorityQueue<Integer>(ints);

 QueueDemo.printQ(priorityQueue);

 priorityQueue = new PriorityQueue<Integer>(

 ints.size(), Collections.reverseOrder());

 priorityQueue.addAll(ints);

 QueueDemo.printQ(priorityQueue);

 String fact = "EDUCATION SHOULD ESCHEW OBFUSCATION";

 List<String> strings = Arrays.asList(fact.split(""));

 PriorityQueue<String> stringPQ =

 new PriorityQueue<String>(strings);

 QueueDemo.printQ(stringPQ);

 stringPQ = new PriorityQueue<String>(

 strings.size(), Collections.reverseOrder());

 stringPQ.addAll(strings);

 QueueDemo.printQ(stringPQ);

 Set<Character> charSet = new HashSet<Character>();

 for(char c : fact.toCharArray())

 charSet.add(c); // Autoboxing

 PriorityQueue<Character> characterPQ =

 new PriorityQueue<Character>(charSet);

 QueueDemo.printQ(characterPQ);

 }

} /* Output:

0 1 1 1 1 1 3 5 8 14

1 1 2 3 3 9 9 14 14 18 18 20 21 22 23 25 25

25 25 23 22 21 20 18 18 14 14 9 9 3 3 2 1 1

 A A B C C C D D E E E F H H I I L N N O O O O S S S T

T U U U W

W U U U T T S S S O O O O N N L I I H H F E E E D D C C C B

A A

 A B C D E F H I L N O S T U W

*///:~

You can see that duplicates are allowed, and the lowest values have the

highest priority (in the case of String, spaces also count as values and are

higher in priority than letters). To show how you can change the ordering by

providing your own Comparator object, the third constructor call to

PriorityQueue<Integer> and the second call to

Holding Your Objects 423

PriorityQueue<String> use the reverse-order Comparator produced by

Collections.reverseOrder() (added in Java SE5).

The last section adds a HashSet to eliminate duplicate Characters, just to

make things a little more interesting.

Integer, String and Character work with PriorityQueue because these

classes already have natural ordering built in. If you want you use your own

class in a PriorityQueue, you must include additional functionality to

produce natural ordering, or provide your own Comparator. There’s a more

sophisticated example that demonstrates this in the Containers in Depth

chapter.

Exercise 28: (2) Fill a PriorityQueue (using offer()) with Double
values created using java.util.Random, then remove the elements using
poll() and display them.

Exercise 29: (2) Create a simple class that inherits from Object and
contains no members, and show that you cannot successfully add multiple
elements of that class to a PriorityQueue. This issue will be fully explained
in the Containers in Depth chapter.

Collection vs. Iterator
Collection is the root interface that describes what is common for all

sequence containers. It might be thought of as an “incidental interface,” one

that appeared because of commonality between other interfaces. In addition,

the java.util.AbstractCollection class provides a default implementation

for a Collection, so that you can create a new subtype of

AbstractCollection without unnecessary code duplication.

One argument for having an interface is that it allows you to create more

generic code. By writing to an interface rather than an implementation, your

code can be applied to more types of objects.6 So if I write a method that

takes a Collection, that method can be applied to any type that implements

Collection—and this allows a new class to choose to implement Collection

6 Some people advocate the automatic creation of an interface for every possible
combination of methods in a class—sometimes for every single class. I believe that an
interface should have more meaning than a mechanical duplication of method
combinations, so I tend to wait until I see the value added by an interface before creating
one.

424 Thinking in Java Bruce Eckel

in order to be used with my method. It’s interesting to note, however, that the

Standard C++ Library has no common base class for its containers—all

commonality between containers is achieved through iterators. In Java, it

might seem sensible to follow the C++ approach, and to express commonality

between containers using an iterator rather than a Collection. However, the

two approaches are bound together, since implementing Collection also

means providing an iterator() method:

//: holding/InterfaceVsIterator.java

import typeinfo.pets.*;

import java.util.*;

public class InterfaceVsIterator {

 public static void display(Iterator<Pet> it) {

 while(it.hasNext()) {

 Pet p = it.next();

 System.out.print(p.id() + ":" + p + " ");

 }

 System.out.println();

 }

 public static void display(Collection<Pet> pets) {

 for(Pet p : pets)

 System.out.print(p.id() + ":" + p + " ");

 System.out.println();

 }

 public static void main(String[] args) {

 List<Pet> petList = Pets.arrayList(8);

 Set<Pet> petSet = new HashSet<Pet>(petList);

 Map<String,Pet> petMap =

 new LinkedHashMap<String,Pet>();

 String[] names = ("Ralph, Eric, Robin, Lacey, " +

 "Britney, Sam, Spot, Fluffy").split(", ");

 for(int i = 0; i < names.length; i++)

 petMap.put(names[i], petList.get(i));

 display(petList);

 display(petSet);

 display(petList.iterator());

 display(petSet.iterator());

 System.out.println(petMap);

 System.out.println(petMap.keySet());

 display(petMap.values());

 display(petMap.values().iterator());

 }

} /* Output:

Holding Your Objects 425

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx

2:Cymric 1:Manx 0:Rat 6:Pug 5:Cymric 4:Pug 3:Mutt 7:Manx

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx

2:Cymric 1:Manx 0:Rat 6:Pug 5:Cymric 4:Pug 3:Mutt 7:Manx

{Ralph=Rat, Eric=Manx, Robin=Cymric, Lacey=Mutt,

Britney=Pug, Sam=Cymric, Spot=Pug, Fluffy=Manx}

[Ralph, Eric, Robin, Lacey, Britney, Sam, Spot, Fluffy]

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx

*///:~

Both versions of display() work with Map objects as well as with subtypes

of Collection, and both the Collection interface and the Iterator decouple

the display() methods from knowing about the particular implementation

of the underlying container.

In this case the two approaches come up even. In fact, Collection pulls

ahead a bit because it is Iterable, and so in the implementation of

display(Collection) the foreach construct can be used, which makes the

code a little cleaner.

The use of Iterator becomes compelling when you implement a foreign

class, one that is not a Collection, in which it would be difficult or annoying

to make it implement the Collection interface. For example, if we create a

Collection implementation by inheriting from a class that holds Pet objects,

we must implement all the Collection methods, even if we don’t need to use

them within the display() method. Although this can easily be

accomplished by inheriting from AbstractCollection, you’re forced to

implement iterator() anyway, along with size(), in order to provide the

methods that are not implemented by AbstractCollection, but that are

used by the other methods in AbstractCollection:

//: holding/CollectionSequence.java

import typeinfo.pets.*;

import java.util.*;

public class CollectionSequence

extends AbstractCollection<Pet> {

 private Pet[] pets = Pets.createArray(8);

 public int size() { return pets.length; }

 public Iterator<Pet> iterator() {

 return new Iterator<Pet>() {

 private int index = 0;

426 Thinking in Java Bruce Eckel

 public boolean hasNext() {

 return index < pets.length;

 }

 public Pet next() { return pets[index++]; }

 public void remove() { // Not implemented

 throw new UnsupportedOperationException();

 }

 };

 }

 public static void main(String[] args) {

 CollectionSequence c = new CollectionSequence();

 InterfaceVsIterator.display(c);

 InterfaceVsIterator.display(c.iterator());

 }

} /* Output:

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx

*///:~

The remove() method is an “optional operation,” which you will learn about

in the Containers in Depth chapter. Here, it’s not necessary to implement it,

and if you call it, it will throw an exception.

From this example, you can see that if you implement Collection, you also

implement iterator(), and just implementing iterator() alone requires

only slightly less effort than inheriting from AbstractCollection. However,

if your class already inherits from another class, then you cannot also inherit

from AbstractCollection. In that case, to implement Collection you’d

have to implement all the methods in the interface. In this case it would be

much easier to inherit and add the ability to create an iterator:

//: holding/NonCollectionSequence.java

import typeinfo.pets.*;

import java.util.*;

class PetSequence {

 protected Pet[] pets = Pets.createArray(8);

}

public class NonCollectionSequence extends PetSequence {

 public Iterator<Pet> iterator() {

 return new Iterator<Pet>() {

 private int index = 0;

 public boolean hasNext() {

Holding Your Objects 427

 return index < pets.length;

 }

 public Pet next() { return pets[index++]; }

 public void remove() { // Not implemented

 throw new UnsupportedOperationException();

 }

 };

 }

 public static void main(String[] args) {

 NonCollectionSequence nc = new NonCollectionSequence();

 InterfaceVsIterator.display(nc.iterator());

 }

} /* Output:

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx

*///:~

Producing an Iterator is the least-coupled way of connecting a sequence to a

method that consumes that sequence, and puts far fewer constraints on the

sequence class than does implementing Collection.

Exercise 30: (5) Modify CollectionSequence.java so that it does not
inherit from AbstractCollection, but instead implements Collection.

Foreach and iterators
So far, the foreach syntax has been primarily used with arrays, but it also

works with any Collection object. You’ve actually seen a few examples of

this using ArrayList, but here’s a general proof:

//: holding/ForEachCollections.java

// All collections work with foreach.

import java.util.*;

public class ForEachCollections {

 public static void main(String[] args) {

 Collection<String> cs = new LinkedList<String>();

 Collections.addAll(cs,

 "Take the long way home".split(" "));

 for(String s : cs)

 System.out.print("'" + s + "' ");

 }

} /* Output:

'Take' 'the' 'long' 'way' 'home'

*///:~

428 Thinking in Java Bruce Eckel

Since cs is a Collection, this code shows that working with foreach is a

characteristic of all Collection objects.

The reason that this works is that Java SE5 introduced a new interface called

Iterable which contains an iterator() method to produce an Iterator, and

the Iterable interface is what foreach uses to move through a sequence. So if

you create any class that implements Iterable, you can use it in a foreach

statement:

//: holding/IterableClass.java

// Anything Iterable works with foreach.

import java.util.*;

public class IterableClass implements Iterable<String> {

 protected String[] words = ("And that is how " +

 "we know the Earth to be banana-shaped.").split(" ");

 public Iterator<String> iterator() {

 return new Iterator<String>() {

 private int index = 0;

 public boolean hasNext() {

 return index < words.length;

 }

 public String next() { return words[index++]; }

 public void remove() { // Not implemented

 throw new UnsupportedOperationException();

 }

 };

 }

 public static void main(String[] args) {

 for(String s : new IterableClass())

 System.out.print(s + " ");

 }

} /* Output:

And that is how we know the Earth to be banana-shaped.

*///:~

The iterator() method returns an instance of an anonymous inner

implementation of Iterator<String> which delivers each word in the array.

In main(), you can see that IterableClass does indeed work in a foreach

statement.

In Java SE5, a number of classes have been made Iterable, primarily all

Collection classes (but not Maps). For example, this code displays all the

operating system environment variables:

Holding Your Objects 429

//: holding/EnvironmentVariables.java

import java.util.*;

public class EnvironmentVariables {

 public static void main(String[] args) {

 for(Map.Entry entry: System.getenv().entrySet()) {

 System.out.println(entry.getKey() + ": " +

 entry.getValue());

 }

 }

} /* (Execute to see output) *///:~

System.getenv()7 returns a Map, entrySet() produces a Set of

Map.Entry elements, and a Set is Iterable so it can be used in a foreach

loop.

A foreach statement works with an array or anything Iterable, but that

doesn’t mean that an array is automatically an Iterable, nor is there any

autoboxing that takes place:

//: holding/ArrayIsNotIterable.java

import java.util.*;

public class ArrayIsNotIterable {

 static <T> void test(Iterable<T> ib) {

 for(T t : ib)

 System.out.print(t + " ");

 }

 public static void main(String[] args) {

 test(Arrays.asList(1, 2, 3));

 String[] strings = { "A", "B", "C" };

 // An array works in foreach, but it's not Iterable:

 //! test(strings);

 // You must explicitly convert it to an Iterable:

 test(Arrays.asList(strings));

 }

} /* Output:

1 2 3 A B C

*///:~

7 This was not available before Java SE5, because it was thought to be too tightly coupled
to the operating system, and thus to violate “write once, run anywhere.” The fact that it is
included now suggests that the Java designers are becoming more pragmatic.

430 Thinking in Java Bruce Eckel

Trying to pass an array as an Iterable argument fails. There is no automatic

conversion to an Iterable; you must do it by hand.

Exercise 31: (3) Modify
polymorphism/shape/RandomShapeGenerator.java to make it
Iterable. You’ll need to add a constructor that takes the number of elements
that you want the iterator to produce before stopping. Verify that it works.

The Adapter Method idiom
What if you have an existing class that is Iterable, and you’d like to add one

or more new ways to use this class in a foreach statement? For example,

suppose you’d like to choose whether to iterate through a list of words in

either a forward or reverse direction. If you simply inherit from the class and

override the iterator() method, you replace the existing method and you

don’t get a choice.

One solution is what I call the Adapter Method idiom. The “Adapter” part

comes from design patterns, because you must provide a particular interface

to satisfy the foreach statement. When you have one interface and you need

another one, writing an adapter solves the problem. Here, I want to add the

ability to produce a reverse iterator to the default forward iterator, so I can’t

override. Instead, I add a method that produces an Iterable object which can

then be used in the foreach statement. As you see here, this allows us to

provide multiple ways to use foreach:

//: holding/AdapterMethodIdiom.java

// The "Adapter Method" idiom allows you to use foreach

// with additional kinds of Iterables.

import java.util.*;

class ReversibleArrayList<T> extends ArrayList<T> {

 public ReversibleArrayList(Collection<T> c) { super(c); }

 public Iterable<T> reversed() {

 return new Iterable<T>() {

 public Iterator<T> iterator() {

 return new Iterator<T>() {

 int current = size() - 1;

 public boolean hasNext() { return current > -1; }

 public T next() { return get(current--); }

 public void remove() { // Not implemented

 throw new UnsupportedOperationException();

 }

Holding Your Objects 431

 };

 }

 };

 }

}

public class AdapterMethodIdiom {

 public static void main(String[] args) {

 ReversibleArrayList<String> ral =

 new ReversibleArrayList<String>(

 Arrays.asList("To be or not to be".split(" ")));

 // Grabs the ordinary iterator via iterator():

 for(String s : ral)

 System.out.print(s + " ");

 System.out.println();

 // Hand it the Iterable of your choice

 for(String s : ral.reversed())

 System.out.print(s + " ");

 }

} /* Output:

To be or not to be

be to not or be To

*///:~

If you simply put the ral object in the foreach statement, you get the (default)

forward iterator. But if you call reversed() on the object, it produces

different behavior.

Using this approach, I can add two adapter methods to the

IterableClass.java example:

//: holding/MultiIterableClass.java

// Adding several Adapter Methods.

import java.util.*;

public class MultiIterableClass extends IterableClass {

 public Iterable<String> reversed() {

 return new Iterable<String>() {

 public Iterator<String> iterator() {

 return new Iterator<String>() {

 int current = words.length - 1;

 public boolean hasNext() { return current > -1; }

 public String next() { return words[current--]; }

 public void remove() { // Not implemented

 throw new UnsupportedOperationException();

432 Thinking in Java Bruce Eckel

 }

 };

 }

 };

 }

 public Iterable<String> randomized() {

 return new Iterable<String>() {

 public Iterator<String> iterator() {

 List<String> shuffled =

 new ArrayList<String>(Arrays.asList(words));

 Collections.shuffle(shuffled, new Random(47));

 return shuffled.iterator();

 }

 };

 }

 public static void main(String[] args) {

 MultiIterableClass mic = new MultiIterableClass();

 for(String s : mic.reversed())

 System.out.print(s + " ");

 System.out.println();

 for(String s : mic.randomized())

 System.out.print(s + " ");

 System.out.println();

 for(String s : mic)

 System.out.print(s + " ");

 }

} /* Output:

banana-shaped. be to Earth the know we how is that And

is banana-shaped. Earth that how the be And we know to

And that is how we know the Earth to be banana-shaped.

*///:~

Notice that the second method, random(), doesn’t create its own Iterator

but simply returns the one from the shuffled List.

You can see from the output that the Collections.shuffle() method doesn’t

affect the original array, but only shuffles the references in shuffled. This is

only true because the randomized() method wraps an ArrayList around

the result of Arrays.asList(). If the List produced by Arrays.asList() is

shuffled directly, it will modify the underlying array, as you can see here:

//: holding/ModifyingArraysAsList.java

import java.util.*;

Holding Your Objects 433

public class ModifyingArraysAsList {

 public static void main(String[] args) {

 Random rand = new Random(47);

 Integer[] ia = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 List<Integer> list1 =

 new ArrayList<Integer>(Arrays.asList(ia));

 System.out.println("Before shuffling: " + list1);

 Collections.shuffle(list1, rand);

 System.out.println("After shuffling: " + list1);

 System.out.println("array: " + Arrays.toString(ia));

 List<Integer> list2 = Arrays.asList(ia);

 System.out.println("Before shuffling: " + list2);

 Collections.shuffle(list2, rand);

 System.out.println("After shuffling: " + list2);

 System.out.println("array: " + Arrays.toString(ia));

 }

} /* Output:

Before shuffling: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

After shuffling: [4, 6, 3, 1, 8, 7, 2, 5, 10, 9]

array: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Before shuffling: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

After shuffling: [9, 1, 6, 3, 7, 2, 5, 10, 4, 8]

array: [9, 1, 6, 3, 7, 2, 5, 10, 4, 8]

*///:~

In the first case, the output of Arrays.asList() is handed to the

ArrayList() constructor, and this creates an ArrayList that references the

elements of ia. Shuffling these references doesn’t modify the array. However,

if you use the result of Arrays.asList(ia) directly, shuffling modifies the

order of ia. It’s important to be aware that Arrays.asList() produces a List

object that uses the underlying array as its physical implementation. If you do

anything to that List that modifies it, and you don’t want the original array

modified, you should make a copy into another container.

Exercise 32: (2) Following the example of MultiIterableClass, add
reversed() and randomized() methods to
NonCollectionSequence.java, as well as making
NonCollectionSequence implement Iterable, and show that all the
approaches work in foreach statements.

Summary
Java provides a number of ways to hold objects:

434 Thinking in Java Bruce Eckel

1. An array associates numerical indexes to objects. It holds objects

of a known type so that you don’t have to cast the result when

you’re looking up an object. It can be multidimensional, and it can

hold primitives. However, its size cannot be changed once you

create it.

2. A Collection holds single elements, and a Map holds associated

pairs. With Java generics, you specify the type of object to be held

in the containers, so you can’t put the wrong type into a container

and you don’t have to cast elements when you fetch them out of a

container. Both Collections and Maps automatically resize

themselves as you add more elements. A container won’t hold

primitives, but autoboxing takes care of translating primitives

back and forth to the wrapper types held in the container.

3. Like an array, a List also associates numerical indexes to objects—

thus, arrays and Lists are ordered containers.

4. Use an ArrayList if you’re doing a lot of random accesses, but a

LinkedList if you will be doing a lot of insertions and removals in

the middle of the list.

5. The behavior of Queues and stacks is provided via the

LinkedList.

6. A Map is a way to associate not integral values, but objects with

other objects. HashMaps are designed for rapid access, whereas a

TreeMap keeps its keys in sorted order, and thus is not as fast as

a HashMap. A LinkedHashMap keeps its elements in insertion

order, but provides rapid access with hashing.

7. A Set only accepts one of each type of object. HashSets provide

maximally fast lookups, whereas TreeSets keep the elements in

sorted order. LinkedHashSets keep elements in insertion order.

8. There’s no need to use the legacy classes Vector, Hashtable, and

Stack in new code.

It’s helpful to look at a simplified diagram of the Java containers (without the

abstract classes or legacy components). This only includes the interfaces and

classes that you will encounter on a regular basis.

Holding Your Objects 435

Iterator Collection Map

ListIterator List Set
Produces

HashMap TreeMap

HashSet TreeSet

ArrayList LinkedList

ProducesProduces

Collections

Arrays

Utilities

Comparable

LinkedHashMap

LinkedHashSet

Queue

PriorityQueue

Comparator

Simple Container Taxonomy

You’ll see that there are really only four basic container components—Map,

List, Set, and Queue—and only two or three implementations of each one

(the java.util.concurrent implementations of Queue are not included in

this diagram). The containers that you will use most often have heavy black

lines around them.

The dotted boxes represent interfaces, and the solid boxes are regular

(concrete) classes. The dotted lines with hollow arrows indicate that a

particular class is implementing an interface. The solid arrows show that a

class can produce objects of the class the arrow is pointing to. For example,

any Collection can produce an Iterator, and a List can produce a

ListIterator (as well as an ordinary Iterator, since List is inherited from

Collection).

Here’s an example that shows the difference in methods between the various

classes. The actual code is from the Generics chapter; I’m just calling it here

to produce the output. The output also shows the interfaces that are

implemented in each class or interface:

//: holding/ContainerMethods.java

import net.mindview.util.*;

public class ContainerMethods {

 public static void main(String[] args) {

 ContainerMethodDifferences.main(args);

436 Thinking in Java Bruce Eckel

 }

} /* Output: (Sample)

Collection: [add, addAll, clear, contains, containsAll,

equals, hashCode, isEmpty, iterator, remove, removeAll,

retainAll, size, toArray]

Interfaces in Collection: [Iterable]

Set extends Collection, adds: []

Interfaces in Set: [Collection]

HashSet extends Set, adds: []

Interfaces in HashSet: [Set, Cloneable, Serializable]

LinkedHashSet extends HashSet, adds: []

Interfaces in LinkedHashSet: [Set, Cloneable, Serializable]

TreeSet extends Set, adds: [pollLast, navigableHeadSet,

descendingIterator, lower, headSet, ceiling, pollFirst,

subSet, navigableTailSet, comparator, first, floor, last,

navigableSubSet, higher, tailSet]

Interfaces in TreeSet: [NavigableSet, Cloneable,

Serializable]

List extends Collection, adds: [listIterator, indexOf, get,

subList, set, lastIndexOf]

Interfaces in List: [Collection]

ArrayList extends List, adds: [ensureCapacity, trimToSize]

Interfaces in ArrayList: [List, RandomAccess, Cloneable,

Serializable]

LinkedList extends List, adds: [pollLast, offer,

descendingIterator, addFirst, peekLast, removeFirst,

peekFirst, removeLast, getLast, pollFirst, pop, poll,

addLast, removeFirstOccurrence, getFirst, element, peek,

offerLast, push, offerFirst, removeLastOccurrence]

Interfaces in LinkedList: [List, Deque, Cloneable,

Serializable]

Queue extends Collection, adds: [offer, element, peek, poll]

Interfaces in Queue: [Collection]

PriorityQueue extends Queue, adds: [comparator]

Interfaces in PriorityQueue: [Serializable]

Map: [clear, containsKey, containsValue, entrySet, equals,

get, hashCode, isEmpty, keySet, put, putAll, remove, size,

values]

HashMap extends Map, adds: []

Interfaces in HashMap: [Map, Cloneable, Serializable]

LinkedHashMap extends HashMap, adds: []

Interfaces in LinkedHashMap: [Map]

SortedMap extends Map, adds: [subMap, comparator, firstKey,

lastKey, headMap, tailMap]

Holding Your Objects 437

Interfaces in SortedMap: [Map]

TreeMap extends Map, adds: [descendingEntrySet, subMap,

pollLastEntry, lastKey, floorEntry, lastEntry, lowerKey,

navigableHeadMap, navigableTailMap, descendingKeySet,

tailMap, ceilingEntry, higherKey, pollFirstEntry,

comparator, firstKey, floorKey, higherEntry, firstEntry,

navigableSubMap, headMap, lowerEntry, ceilingKey]

Interfaces in TreeMap: [NavigableMap, Cloneable,

Serializable]

*///:~

You can see that all Sets except TreeSet have exactly the same interface as

Collection. List and Collection differ significantly, although List requires

methods that are in Collection. On the other hand, the methods in the

Queue interface stand alone; the Collection methods are not required to

create a functioning Queue implementation. Finally, the only intersection

between Map and Collection is the fact that a Map can produce

Collections using the entrySet() and values() methods.

Notice the tagging interface java.util.RandomAccess, which is attached to

ArrayList but not to LinkedList. This provides information for algorithms

that might want to dynamically change their behavior depending on the use

of a particular List.

It’s true that this organization is somewhat odd, as object-oriented

hierarchies go. However, as you learn more about the containers in java.util

(in particular, in the Containers in Depth chapter), you’ll see that there are

more issues than just a slightly odd inheritance structure. Container libraries

have always been difficult design problems—solving these problems involves

satisfying a set of forces that often oppose each other. So you should be

prepared for some compromises here and there.

Despite these issues, the Java containers are fundamental tools that you can

use on a day-to-day basis to make your programs simpler, more powerful,

and more effective. It might take you a little while to get comfortable with

some aspects of the library, but I think you’ll find yourself rapidly acquiring

and using the classes in this library.

Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for sale from www.MindViewLLC.com.

 439

Error Handling
with Exceptions

The basic philosophy of Java is that “badly formed code
will not be run.”

The ideal time to catch an error is at compile time, before you even try to run

the program. However, not all errors can be detected at compile time. The

rest of the problems must be handled at run time through some formality that

allows the originator of the error to pass appropriate information to a

recipient who will know how to handle the difficulty properly.

Improved error recovery is one of the most powerful ways that you can

increase the robustness of your code. Error recovery is a fundamental

concern for every program you write, but it’s especially important in Java,

where one of the primary goals is to create program components for others to

use. To create a robust system, each component must be robust. By

providing a consistent error-reporting model using exceptions, Java allows

components to reliably communicate problems to client code.

The goals for exception handling in Java are to simplify the creation of large,

reliable programs using less code than currently possible, and to do so with

more confidence that your application doesn’t have an unhandled error.

Exceptions are not terribly difficult to learn, and are one of those features

that provide immediate and significant benefits to your project.

Because exception handling is the only official way that Java reports errors,

and it is enforced by the Java compiler, there are only so many examples that

can be written in this book without learning about exception handling. This

chapter introduces you to the code that you need to write to properly handle

exceptions, and shows how you can generate your own exceptions if one of

your methods gets into trouble.

440 Thinking in Java Bruce Eckel

Concepts
C and other earlier languages often had multiple error-handling schemes, and

these were generally established by convention and not as part of the

programming language. Typically, you returned a special value or set a flag,

and the recipient was supposed to look at the value or the flag and determine

that something was amiss. However, as the years passed, it was discovered

that programmers who use a library tend to think of themselves as

invincible—as in “Yes, errors might happen to others, but not in my code.” So,

not too surprisingly, they wouldn’t check for the error conditions (and

sometimes the error conditions were too silly to check for1). If you were

thorough enough to check for an error every time you called a method, your

code could turn into an unreadable nightmare. Because programmers could

still coax systems out of these languages, they were resistant to admitting the

truth: that this approach to handling errors was a major limitation to creating

large, robust, maintainable programs.

The solution is to take the casual nature out of error handling and to enforce

formality. This actually has a long history, because implementations of

exception handling go back to operating systems in the 1960s, and even to

BASIC’s “on error goto.” But C++ exception handling was based on Ada,

and Java’s is based primarily on C++ (although it looks more like Object

Pascal).

The word “exception” is meant in the sense of “I take exception to that.” At

the point where the problem occurs, you might not know what to do with it,

but you do know that you can’t just continue on merrily; you must stop, and

somebody, somewhere, must figure out what to do. But you don’t have

enough information in the current context to fix the problem. So you hand

the problem out to a higher context where someone is qualified to make the

proper decision.

The other rather significant benefit of exceptions is that they tend to reduce

the complexity of error-handling code. Without exceptions, you must check

for a particular error and deal with it at multiple places in your program.

With exceptions, you no longer need to check for errors at the point of the

method call, since the exception will guarantee that someone catches it. You

1 The C programmer can look up the return value of printf() for an example of this.

Error Handling with Exceptions 441

only need to handle the problem in one place, in the so-called exception

handler. This saves you code, and it separates the code that describes what

you want to do during normal execution from the code that is executed when

things go awry. In general, reading, writing, and debugging code becomes

much clearer with exceptions than when using the old way of error handling.

Basic exceptions
An exceptional condition is a problem that prevents the continuation of the

current method or scope. It’s important to distinguish an exceptional

condition from a normal problem, in which you have enough information in

the current context to somehow cope with the difficulty. With an exceptional

condition, you cannot continue processing because you don’t have the

information necessary to deal with the problem in the current context. All

you can do is jump out of the current context and relegate that problem to a

higher context. This is what happens when you throw an exception.

Division is a simple example. If you’re about to divide by zero, it’s worth

checking for that condition. But what does it mean that the denominator is

zero? Maybe you know, in the context of the problem you’re trying to solve in

that particular method, how to deal with a zero denominator. But if it’s an

unexpected value, you can’t deal with it and so must throw an exception

rather than continuing along that execution path.

When you throw an exception, several things happen. First, the exception

object is created in the same way that any Java object is created: on the heap,

with new. Then the current path of execution (the one you couldn’t continue)

is stopped and the reference for the exception object is ejected from the

current context. At this point the exception-handling mechanism takes over

and begins to look for an appropriate place to continue executing the

program. This appropriate place is the exception handler, whose job is to

recover from the problem so the program can either try another tack or just

continue.

As a simple example of throwing an exception, consider an object reference

called t. It’s possible that you might be passed a reference that hasn’t been

initialized, so you might want to check before trying to call a method using

that object reference. You can send information about the error into a larger

context by creating an object representing your information and “throwing” it

out of your current context. This is called throwing an exception. Here’s what

it looks like:

442 Thinking in Java Bruce Eckel

if(t == null)

 throw new NullPointerException();

This throws the exception, which allows you—in the current context—to

abdicate responsibility for thinking about the issue further. It’s just magically

handled somewhere else. Precisely where will be shown shortly.

Exceptions allow you to think of everything that you do as a transaction, and

the exceptions guard those transactions: “…the fundamental premise of

transactions is that we needed exception handling in distributed

computations. Transactions are the computer equivalent of contract law. If

anything goes wrong, we’ll just blow away the whole computation.”2 You can

also think about exceptions as a built-in undo system, because (with some

care) you can have various recovery points in your program. If a part of the

program fails, the exception will “undo” back to a known stable point in the

program.

One of the most important aspects of exceptions is that if something bad

happens, they don’t allow a program to continue along its ordinary path. This

has been a real problem in languages like C and C++; especially C, which had

no way to force a program to stop going down a path if a problem occurred,

so it was possible to ignore problems for a long time and get into a completely

inappropriate state. Exceptions allow you to (if nothing else) force the

program to stop and tell you what went wrong, or (ideally) force the program

to deal with the problem and return to a stable state.

Exception arguments
As with any object in Java, you always create exceptions on the heap using

new, which allocates storage and calls a constructor. There are two

constructors in all standard exceptions: The first is the default constructor,

and the second takes a string argument so that you can place pertinent

information in the exception:

 throw new NullPointerException("t = null");

This string can later be extracted using various methods, as you’ll see.

2 Jim Gray, Turing Award winner for his team’s contributions on transactions, in an
interview on www.acmqueue.org.

Error Handling with Exceptions 443

The keyword throw produces a number of interesting results. After creating

an exception object with new, you give the resulting reference to throw. The

object is, in effect, “returned” from the method, even though that object type

isn’t normally what the method is designed to return. A simplistic way to

think about exception handling is as a different kind of return mechanism,

although you get into trouble if you take that analogy too far. You can also

exit from ordinary scopes by throwing an exception. In either case, an

exception object is returned, and the method or scope exits.

Any similarity to an ordinary return from a method ends here, because where

you return is someplace completely different from where you return for a

normal method call. (You end up in an appropriate exception handler that

might be far away—many levels on the call stack—from where the exception

was thrown.)

In addition, you can throw any type of Throwable, which is the exception

root class. Typically, you’ll throw a different class of exception for each

different type of error. The information about the error is represented both

inside the exception object and implicitly in the name of the exception class,

so someone in the bigger context can figure out what to do with your

exception. (Often, the only information is the type of exception, and nothing

meaningful is stored within the exception object.)

Catching an exception
To see how an exception is caught, you must first understand the concept of a

guarded region. This is a section of code that might produce exceptions and

is followed by the code to handle those exceptions.

The try block
If you’re inside a method and you throw an exception (or another method

that you call within this method throws an exception), that method will exit

in the process of throwing. If you don’t want a throw to exit the method, you

can set up a special block within that method to capture the exception. This is

called the try block because you “try” your various method calls there. The

try block is an ordinary scope preceded by the keyword try:

try {

 // Code that might generate exceptions

}

444 Thinking in Java Bruce Eckel

If you were checking for errors carefully in a programming language that

didn’t support exception handling, you’d have to surround every method call

with setup and error-testing code, even if you call the same method several

times. With exception handling, you put everything in a try block and

capture all the exceptions in one place. This means your code is much easier

to write and read because the goal of the code is not confused with the error

checking.

Exception handlers
Of course, the thrown exception must end up someplace. This “place” is the

exception handler, and there’s one for every exception type you want to catch.

Exception handlers immediately follow the try block and are denoted by the

keyword catch:

try {

 // Code that might generate exceptions

} catch(Type1 id1) {

 // Handle exceptions of Type1

} catch(Type2 id2) {

 // Handle exceptions of Type2

} catch(Type3 id3) {

 // Handle exceptions of Type3

}

// etc...

Each catch clause (exception handler) is like a little method that takes one

and only one argument of a particular type. The identifier (id1, id2, and so

on) can be used inside the handler, just like a method argument. Sometimes

you never use the identifier because the type of the exception gives you

enough information to deal with the exception, but the identifier must still be

there.

The handlers must appear directly after the try block. If an exception is

thrown, the exception-handling mechanism goes hunting for the first handler

with an argument that matches the type of the exception. Then it enters that

catch clause, and the exception is considered handled. The search for

handlers stops once the catch clause is finished. Only the matching catch

clause executes; it’s not like a switch statement in which you need a break

after each case to prevent the remaining ones from executing.

Error Handling with Exceptions 445

Note that within the try block, a number of different method calls might

generate the same exception, but you need only one handler.

Termination vs. resumption
There are two basic models in exception-handling theory. Java supports

termination,3 in which you assume that the error is so critical that there’s no

way to get back to where the exception occurred. Whoever threw the

exception decided that there was no way to salvage the situation, and they

don’t want to come back.

The alternative is called resumption. It means that the exception handler is

expected to do something to rectify the situation, and then the faulting

method is retried, presuming success the second time. If you want

resumption, it means you still hope to continue execution after the exception

is handled.

If you want resumption-like behavior in Java, don’t throw an exception when

you encounter an error. Instead, call a method that fixes the problem.

Alternatively, place your try block inside a while loop that keeps reentering

the try block until the result is satisfactory.

Historically, programmers using operating systems that supported

resumptive exception handling eventually ended up using termination-like

code and skipping resumption. So although resumption sounds attractive at

first, it isn’t quite so useful in practice. The dominant reason is probably the

coupling that results: A resumptive handler would need to be aware of where

the exception is thrown, and contain non-generic code specific to the

throwing location. This makes the code difficult to write and maintain,

especially for large systems where the exception can be generated from many

points.

Creating your own exceptions
You’re not stuck using the existing Java exceptions. The Java exception

hierarchy can’t foresee all the errors you might want to report, so you can

create your own to denote a special problem that your library might

encounter.

3 As do most languages, including C++, C#, Python, D, etc.

446 Thinking in Java Bruce Eckel

To create your own exception class, you must inherit from an existing

exception class, preferably one that is close in meaning to your new exception

(although this is often not possible). The most trivial way to create a new type

of exception is just to let the compiler create the default constructor for you,

so it requires almost no code at all:

//: exceptions/InheritingExceptions.java

// Creating your own exceptions.

class SimpleException extends Exception {}

public class InheritingExceptions {

 public void f() throws SimpleException {

 System.out.println("Throw SimpleException from f()");

 throw new SimpleException();

 }

 public static void main(String[] args) {

 InheritingExceptions sed = new InheritingExceptions();

 try {

 sed.f();

 } catch(SimpleException e) {

 System.out.println("Caught it!");

 }

 }

} /* Output:

Throw SimpleException from f()

Caught it!

*///:~

The compiler creates a default constructor, which automatically (and

invisibly) calls the base-class default constructor. Of course, in this case you

don’t get a SimpleException(String) constructor, but in practice that isn’t

used much. As you’ll see, the most important thing about an exception is the

class name, so most of the time an exception like the one shown here is

satisfactory.

Here, the result is printed to the console, where it is automatically captured

and tested with this book’s output-display system. However, you may want to

send error output to the standard error stream by writing to System.err.

This is usually a better place to send error information than System.out,

which may be redirected. If you send output to System.err, it will not be

redirected along with System.out so the user is more likely to notice it.

Error Handling with Exceptions 447

You can also create an exception class that has a constructor with a String

argument:

//: exceptions/FullConstructors.java

class MyException extends Exception {

 public MyException() {}

 public MyException(String msg) { super(msg); }

}

public class FullConstructors {

 public static void f() throws MyException {

 System.out.println("Throwing MyException from f()");

 throw new MyException();

 }

 public static void g() throws MyException {

 System.out.println("Throwing MyException from g()");

 throw new MyException("Originated in g()");

 }

 public static void main(String[] args) {

 try {

 f();

 } catch(MyException e) {

 e.printStackTrace(System.out);

 }

 try {

 g();

 } catch(MyException e) {

 e.printStackTrace(System.out);

 }

 }

} /* Output:

Throwing MyException from f()

MyException

 at FullConstructors.f(FullConstructors.java:11)

 at FullConstructors.main(FullConstructors.java:19)

Throwing MyException from g()

MyException: Originated in g()

 at FullConstructors.g(FullConstructors.java:15)

 at FullConstructors.main(FullConstructors.java:24)

*///:~

448 Thinking in Java Bruce Eckel

The added code is small: two constructors that define the way MyException

is created. In the second constructor, the base-class constructor with a

String argument is explicitly invoked by using the super keyword.

In the handlers, one of the Throwable (from which Exception is inherited)

methods is called: printStackTrace(). As you can see from the output, this

produces information about the sequence of methods that were called to get

to the point where the exception happened. Here, the information is sent to

System.out, and automatically captured and displayed in the output.

However, if you call the default version:

e.printStackTrace();

the information goes to the standard error stream.

Exercise 1: (2) Create a class with a main() that throws an object of
class Exception inside a try block. Give the constructor for Exception a
String argument. Catch the exception inside a catch clause and print the
String argument. Add a finally clause and print a message to prove you
were there.

Exercise 2: (1) Define an object reference and initialize it to null. Try to
call a method through this reference. Now wrap the code in a try-catch
clause to catch the exception.

Exercise 3: (1) Write code to generate and catch an
ArrayIndexOutOfBoundsException.

Exercise 4: (2) Create your own exception class using the extends
keyword. Write a constructor for this class that takes a String argument and
stores it inside the object with a String reference. Write a method that
displays the stored String. Create a try-catch clause to exercise your new
exception.

Exercise 5: (3) Create your own resumption-like behavior using a while
loop that repeats until an exception is no longer thrown.

Exceptions and logging
You may also want to log the output using the java.util.logging facility.

Basic logging is straightforward enough to be used here.

//: exceptions/LoggingExceptions.java

// An exception that reports through a Logger.

import java.util.logging.*;

Error Handling with Exceptions 449

import java.io.*;

class LoggingException extends Exception {

 private static Logger logger =

 Logger.getLogger("LoggingException");

 public LoggingException() {

 StringWriter trace = new StringWriter();

 printStackTrace(new PrintWriter(trace));

 logger.severe(trace.toString());

 }

}

public class LoggingExceptions {

 public static void main(String[] args) {

 try {

 throw new LoggingException();

 } catch(LoggingException e) {

 System.err.println("Caught " + e);

 }

 try {

 throw new LoggingException();

 } catch(LoggingException e) {

 System.err.println("Caught " + e);

 }

 }

} /* Output: (85% match)

Aug 30, 2005 4:02:31 PM LoggingException <init>

SEVERE: LoggingException

 at LoggingExceptions.main(LoggingExceptions.java:19)

Caught LoggingException

Aug 30, 2005 4:02:31 PM LoggingException <init>

SEVERE: LoggingException

 at LoggingExceptions.main(LoggingExceptions.java:24)

Caught LoggingException

*///:~

The static Logger.getLogger() method creates a Logger object

associated with the String argument (usually the name of the package and

class that the errors are about) which sends its output to System.err. The

easiest way to write to a Logger is just to call the method associated with the

level of logging message; here, severe() is used. To produce the String for

the logging message, we’d like to have the stack trace where the exception is

450 Thinking in Java Bruce Eckel

thrown, but printStackTrace() doesn’t produce a String by default. To get

a String, we need to use the overloaded printStackTrace() that takes a

java.io.PrintWriter object as an argument (all of this will be fully

explained in the I/O chapter). If we hand the PrintWriter constructor a

java.io.StringWriter object, the output can be extracted as a String by

calling toString().

Although the approach used by LoggingException is very convenient

because it builds all the logging infrastructure into the exception itself, and

thus it works automatically without client programmer intervention, it’s more

common that you will be catching and logging someone else’s exception, so

you must generate the log message in the exception handler:

//: exceptions/LoggingExceptions2.java

// Logging caught exceptions.

import java.util.logging.*;

import java.io.*;

public class LoggingExceptions2 {

 private static Logger logger =

 Logger.getLogger("LoggingExceptions2");

 static void logException(Exception e) {

 StringWriter trace = new StringWriter();

 e.printStackTrace(new PrintWriter(trace));

 logger.severe(trace.toString());

 }

 public static void main(String[] args) {

 try {

 throw new NullPointerException();

 } catch(NullPointerException e) {

 logException(e);

 }

 }

} /* Output: (90% match)

Aug 30, 2005 4:07:54 PM LoggingExceptions2 logException

SEVERE: java.lang.NullPointerException

 at

LoggingExceptions2.main(LoggingExceptions2.java:16)

*///:~

The process of creating your own exceptions can be taken further. You can

add extra constructors and members:

//: exceptions/ExtraFeatures.java

Error Handling with Exceptions 451

// Further embellishment of exception classes.

import static net.mindview.util.Print.*;

class MyException2 extends Exception {

 private int x;

 public MyException2() {}

 public MyException2(String msg) { super(msg); }

 public MyException2(String msg, int x) {

 super(msg);

 this.x = x;

 }

 public int val() { return x; }

 public String getMessage() {

 return "Detail Message: "+ x + " "+ super.getMessage();

 }

}

public class ExtraFeatures {

 public static void f() throws MyException2 {

 print("Throwing MyException2 from f()");

 throw new MyException2();

 }

 public static void g() throws MyException2 {

 print("Throwing MyException2 from g()");

 throw new MyException2("Originated in g()");

 }

 public static void h() throws MyException2 {

 print("Throwing MyException2 from h()");

 throw new MyException2("Originated in h()", 47);

 }

 public static void main(String[] args) {

 try {

 f();

 } catch(MyException2 e) {

 e.printStackTrace(System.out);

 }

 try {

 g();

 } catch(MyException2 e) {

 e.printStackTrace(System.out);

 }

 try {

 h();

 } catch(MyException2 e) {

452 Thinking in Java Bruce Eckel

 e.printStackTrace(System.out);

 System.out.println("e.val() = " + e.val());

 }

 }

} /* Output:

Throwing MyException2 from f()

MyException2: Detail Message: 0 null

 at ExtraFeatures.f(ExtraFeatures.java:22)

 at ExtraFeatures.main(ExtraFeatures.java:34)

Throwing MyException2 from g()

MyException2: Detail Message: 0 Originated in g()

 at ExtraFeatures.g(ExtraFeatures.java:26)

 at ExtraFeatures.main(ExtraFeatures.java:39)

Throwing MyException2 from h()

MyException2: Detail Message: 47 Originated in h()

 at ExtraFeatures.h(ExtraFeatures.java:30)

 at ExtraFeatures.main(ExtraFeatures.java:44)

e.val() = 47

*///:~

A field x has been added, along with a method that reads that value and an

additional constructor that sets it. In addition, Throwable.getMessage()

has been overridden to produce a more interesting detail message.

getMessage() is something like toString() for exception classes.

Since an exception is just another kind of object, you can continue this

process of embellishing the power of your exception classes. Keep in mind,

however, that all this dressing-up might be lost on the client programmers

using your packages, since they might simply look for the exception to be

thrown and nothing more. (That’s the way most of the Java library exceptions

are used.)

Exercise 6: (1) Create two exception classes, each of which performs its
own logging automatically. Demonstrate that these work.

Exercise 7: (1) Modify Exercise 3 so that the catch clause logs the results.

The exception specification
In Java, you’re encouraged to inform the client programmer, who calls your

method, of the exceptions that might be thrown from your method. This is

civilized, because the caller can then know exactly what code to write to catch

all potential exceptions. Of course, if the source code is available, the client

Error Handling with Exceptions 453

programmer could hunt through and look for throw statements, but a

library might not come with sources. To prevent this from being a problem,

Java provides syntax (and forces you to use that syntax) to allow you to

politely tell the client programmer what exceptions this method throws, so

the client programmer can handle them. This is the exception specification

and it’s part of the method declaration, appearing after the argument list.

The exception specification uses an additional keyword, throws, followed by

a list of all the potential exception types. So your method definition might

look like this:

void f() throws TooBig, TooSmall, DivZero { //...

However, if you say

void f() { // ...

it means that no exceptions are thrown from the method (except for the

exceptions inherited from RuntimeException, which can be thrown

anywhere without exception specifications—these will be described later).

You can’t lie about an exception specification. If the code within your method

causes exceptions, but your method doesn’t handle them, the compiler will

detect this and tell you that you must either handle the exception or indicate

with an exception specification that it may be thrown from your method. By

enforcing exception specifications from top to bottom, Java guarantees that a

certain level of exception correctness can be ensured at compile time.

There is one place you can lie: You can claim to throw an exception that you

really don’t. The compiler takes your word for it, and forces the users of your

method to treat it as if it really does throw that exception. This has the

beneficial effect of being a placeholder for that exception, so you can actually

start throwing the exception later without requiring changes to existing code.

It’s also important for creating abstract base classes and interfaces whose

derived classes or implementations may need to throw exceptions.

Exceptions that are checked and enforced at compile time are called checked

exceptions.

Exercise 8: (1) Write a class with a method that throws an exception of
the type created in Exercise 4. Try compiling it without an exception
specification to see what the compiler says. Add the appropriate exception
specification. Try out your class and its exception inside a try-catch clause.

454 Thinking in Java Bruce Eckel

Catching any exception
It is possible to create a handler that catches any type of exception. You do

this by catching the base-class exception type Exception (there are other

types of base exceptions, but Exception is the base that’s pertinent to

virtually all programming activities):

catch(Exception e) {

 System.out.println("Caught an exception");

}

This will catch any exception, so if you use it you’ll want to put it at the end of

your list of handlers to avoid preempting any exception handlers that might

otherwise follow it.

Since the Exception class is the base of all the exception classes that are

important to the programmer, you don’t get much specific information about

the exception, but you can call the methods that come from its base type

Throwable:

String getMessage()

String getLocalizedMessage()

Gets the detail message, or a message adjusted for this particular locale.

String toString()

Returns a short description of the Throwable, including the detail message

if there is one.

void printStackTrace()

void printStackTrace(PrintStream)

void printStackTrace(java.io.PrintWriter)

Prints the Throwable and the Throwable’s call stack trace. The call stack

shows the sequence of method calls that brought you to the point at which the

exception was thrown. The first version prints to standard error, the second

and third print to a stream of your choice (in the I/O chapter, you’ll

understand why there are two types of streams).

Throwable fillInStackTrace()

Records information within this Throwable object about the current state of

the stack frames. Useful when an application is rethrowing an error or

exception (more about this shortly).

Error Handling with Exceptions 455

In addition, you get some other methods from Throwable’s base type

Object (everybody’s base type). The one that might come in handy for

exceptions is getClass(), which returns an object representing the class of

this object. You can in turn query this Class object for its name with

getName(), which includes package information, or getSimpleName(),

which produces the class name alone.

Here’s an example that shows the use of the basic Exception methods:

//: exceptions/ExceptionMethods.java

// Demonstrating the Exception Methods.

import static net.mindview.util.Print.*;

public class ExceptionMethods {

 public static void main(String[] args) {

 try {

 throw new Exception("My Exception");

 } catch(Exception e) {

 print("Caught Exception");

 print("getMessage():" + e.getMessage());

 print("getLocalizedMessage():" +

 e.getLocalizedMessage());

 print("toString():" + e);

 print("printStackTrace():");

 e.printStackTrace(System.out);

 }

 }

} /* Output:

Caught Exception

getMessage():My Exception

getLocalizedMessage():My Exception

toString():java.lang.Exception: My Exception

printStackTrace():

java.lang.Exception: My Exception

 at ExceptionMethods.main(ExceptionMethods.java:8)

*///:~

You can see that the methods provide successively more information—each is

effectively a superset of the previous one.

Exercise 9: (2) Create three new types of exceptions. Write a class with a
method that throws all three. In main(), call the method but only use a
single catch clause that will catch all three types of exceptions.

456 Thinking in Java Bruce Eckel

The stack trace
The information provided by printStackTrace() can also be accessed

directly using getStackTrace(). This method returns an array of stack trace

elements, each representing one stack frame. Element zero is the top of the

stack, and is the last method invocation in the sequence (the point this

Throwable was created and thrown). The last element of the array and the

bottom of the stack is the first method invocation in the sequence. This

program provides a simple demonstration:

//: exceptions/WhoCalled.java

// Programmatic access to stack trace information.

public class WhoCalled {

 static void f() {

 // Generate an exception to fill in the stack trace

 try {

 throw new Exception();

 } catch (Exception e) {

 for(StackTraceElement ste : e.getStackTrace())

 System.out.println(ste.getMethodName());

 }

 }

 static void g() { f(); }

 static void h() { g(); }

 public static void main(String[] args) {

 f();

 System.out.println("--------------------------------");

 g();

 System.out.println("--------------------------------");

 h();

 }

} /* Output:

f

main

f

g

main

f

g

h

main

Error Handling with Exceptions 457

*///:~

Here, we just print the method name, but you can also print the entire

StackTraceElement, which contains additional information.

Rethrowing an exception
Sometimes you’ll want to rethrow the exception that you just caught,

particularly when you use Exception to catch any exception. Since you

already have the reference to the current exception, you can simply rethrow

that reference:

catch(Exception e) {

 System.out.println("An exception was thrown");

 throw e;

}

Rethrowing an exception causes it to go to the exception handlers in the next-

higher context. Any further catch clauses for the same try block are still

ignored. In addition, everything about the exception object is preserved, so

the handler at the higher context that catches the specific exception type can

extract all the information from that object.

If you simply rethrow the current exception, the information that you print

about that exception in printStackTrace() will pertain to the exception’s

origin, not the place where you rethrow it. If you want to install new stack

trace information, you can do so by calling fillInStackTrace(), which

returns a Throwable object that it creates by stuffing the current stack

information into the old exception object. Here’s what it looks like:

//: exceptions/Rethrowing.java

// Demonstrating fillInStackTrace()

public class Rethrowing {

 public static void f() throws Exception {

 System.out.println("originating the exception in f()");

 throw new Exception("thrown from f()");

 }

 public static void g() throws Exception {

 try {

 f();

 } catch(Exception e) {

 System.out.println("Inside g(),e.printStackTrace()");

 e.printStackTrace(System.out);

458 Thinking in Java Bruce Eckel

 throw e;

 }

 }

 public static void h() throws Exception {

 try {

 f();

 } catch(Exception e) {

 System.out.println("Inside h(),e.printStackTrace()");

 e.printStackTrace(System.out);

 throw (Exception)e.fillInStackTrace();

 }

 }

 public static void main(String[] args) {

 try {

 g();

 } catch(Exception e) {

 System.out.println("main: printStackTrace()");

 e.printStackTrace(System.out);

 }

 try {

 h();

 } catch(Exception e) {

 System.out.println("main: printStackTrace()");

 e.printStackTrace(System.out);

 }

 }

} /* Output:

originating the exception in f()

Inside g(),e.printStackTrace()

java.lang.Exception: thrown from f()

 at Rethrowing.f(Rethrowing.java:7)

 at Rethrowing.g(Rethrowing.java:11)

 at Rethrowing.main(Rethrowing.java:29)

main: printStackTrace()

java.lang.Exception: thrown from f()

 at Rethrowing.f(Rethrowing.java:7)

 at Rethrowing.g(Rethrowing.java:11)

 at Rethrowing.main(Rethrowing.java:29)

originating the exception in f()

Inside h(),e.printStackTrace()

java.lang.Exception: thrown from f()

 at Rethrowing.f(Rethrowing.java:7)

 at Rethrowing.h(Rethrowing.java:20)

 at Rethrowing.main(Rethrowing.java:35)

Error Handling with Exceptions 459

main: printStackTrace()

java.lang.Exception: thrown from f()

 at Rethrowing.h(Rethrowing.java:24)

 at Rethrowing.main(Rethrowing.java:35)

*///:~

The line where fillInStackTrace() is called becomes the new point of

origin of the exception.

It’s also possible to rethrow a different exception from the one you caught. If

you do this, you get a similar effect as when you use fillInStackTrace()—

the information about the original site of the exception is lost, and what

you’re left with is the information pertaining to the new throw:

//: exceptions/RethrowNew.java

// Rethrow a different object from the one that was caught.

class OneException extends Exception {

 public OneException(String s) { super(s); }

}

class TwoException extends Exception {

 public TwoException(String s) { super(s); }

}

public class RethrowNew {

 public static void f() throws OneException {

 System.out.println("originating the exception in f()");

 throw new OneException("thrown from f()");

 }

 public static void main(String[] args) {

 try {

 try {

 f();

 } catch(OneException e) {

 System.out.println(

 "Caught in inner try, e.printStackTrace()");

 e.printStackTrace(System.out);

 throw new TwoException("from inner try");

 }

 } catch(TwoException e) {

 System.out.println(

 "Caught in outer try, e.printStackTrace()");

 e.printStackTrace(System.out);

 }

460 Thinking in Java Bruce Eckel

 }

} /* Output:

originating the exception in f()

Caught in inner try, e.printStackTrace()

OneException: thrown from f()

 at RethrowNew.f(RethrowNew.java:15)

 at RethrowNew.main(RethrowNew.java:20)

Caught in outer try, e.printStackTrace()

TwoException: from inner try

 at RethrowNew.main(RethrowNew.java:25)

*///:~

The final exception knows only that it came from the inner try block and not

from f().

You never have to worry about cleaning up the previous exception, or any

exceptions for that matter. They’re all heap-based objects created with new,

so the garbage collector automatically cleans them all up.

Exception chaining
Often you want to catch one exception and throw another, but still keep the

information about the originating exception—this is called exception

chaining. Prior to JDK 1.4, programmers had to write their own code to

preserve the original exception information, but now all Throwable

subclasses have the option to take a cause object in their constructor. The

cause is intended to be the originating exception, and by passing it in you

maintain the stack trace back to its origin, even though you’re creating and

throwing a new exception.

It’s interesting to note that the only Throwable subclasses that provide the

cause argument in the constructor are the three fundamental exception

classes Error (used by the JVM to report system errors), Exception, and

RuntimeException. If you want to chain any other exception types, you do

it through the initCause() method rather than the constructor.

Here’s an example that allows you to dynamically add fields to a

DynamicFields object at run time:

//: exceptions/DynamicFields.java

// {ThrowsException}

// A Class that dynamically adds fields to itself.

// Demonstrates exception chaining.

Error Handling with Exceptions 461

import static net.mindview.util.Print.*;

class DynamicFieldsException extends Exception {}

public class DynamicFields {

 private Object[][] fields;

 public DynamicFields(int initialSize) {

 fields = new Object[initialSize][2];

 for(int i = 0; i < initialSize; i++)

 fields[i] = new Object[] { null, null };

 }

 public String toString() {

 StringBuilder result = new StringBuilder();

 for(Object[] obj : fields) {

 result.append(obj[0]);

 result.append(": ");

 result.append(obj[1]);

 result.append("\n");

 }

 return result.toString();

 }

 private int hasField(String id) {

 for(int i = 0; i < fields.length; i++)

 if(id.equals(fields[i][0]))

 return i;

 return -1;

 }

 private int

 getFieldNumber(String id) throws NoSuchFieldException {

 int fieldNum = hasField(id);

 if(fieldNum == -1)

 throw new NoSuchFieldException();

 return fieldNum;

 }

 private int makeField(String id) {

 for(int i = 0; i < fields.length; i++)

 if(fields[i][0] == null) {

 fields[i][0] = id;

 return i;

 }

 // No empty fields. Add one:

 Object[][] tmp = new Object[fields.length + 1][2];

 for(int i = 0; i < fields.length; i++)

 tmp[i] = fields[i];

 for(int i = fields.length; i < tmp.length; i++)

462 Thinking in Java Bruce Eckel

 tmp[i] = new Object[] { null, null };

 fields = tmp;

 // Recursive call with expanded fields:

 return makeField(id);

 }

 public Object

 getField(String id) throws NoSuchFieldException {

 return fields[getFieldNumber(id)][1];

 }

 public Object setField(String id, Object value)

 throws DynamicFieldsException {

 if(value == null) {

 // Most exceptions don't have a "cause" constructor.

 // In these cases you must use initCause(),

 // available in all Throwable subclasses.

 DynamicFieldsException dfe =

 new DynamicFieldsException();

 dfe.initCause(new NullPointerException());

 throw dfe;

 }

 int fieldNumber = hasField(id);

 if(fieldNumber == -1)

 fieldNumber = makeField(id);

 Object result = null;

 try {

 result = getField(id); // Get old value

 } catch(NoSuchFieldException e) {

 // Use constructor that takes "cause":

 throw new RuntimeException(e);

 }

 fields[fieldNumber][1] = value;

 return result;

 }

 public static void main(String[] args) {

 DynamicFields df = new DynamicFields(3);

 print(df);

 try {

 df.setField("d", "A value for d");

 df.setField("number", 47);

 df.setField("number2", 48);

 print(df);

 df.setField("d", "A new value for d");

 df.setField("number3", 11);

 print("df: " + df);

Error Handling with Exceptions 463

 print("df.getField(\"d\") : " + df.getField("d"));

 Object field = df.setField("d", null); // Exception

 } catch(NoSuchFieldException e) {

 e.printStackTrace(System.out);

 } catch(DynamicFieldsException e) {

 e.printStackTrace(System.out);

 }

 }

} /* Output:

null: null

null: null

null: null

d: A value for d

number: 47

number2: 48

df: d: A new value for d

number: 47

number2: 48

number3: 11

df.getField("d") : A new value for d

DynamicFieldsException

 at DynamicFields.setField(DynamicFields.java:64)

 at DynamicFields.main(DynamicFields.java:94)

Caused by: java.lang.NullPointerException

 at DynamicFields.setField(DynamicFields.java:66)

 ... 1 more

*///:~

Each DynamicFields object contains an array of Object-Object pairs. The

first object is the field identifier (a String), and the second is the field value,

which can be any type except an unwrapped primitive. When you create the

object, you make an educated guess about how many fields you need. When

you call setField(), it either finds the existing field by that name or creates a

new one, and puts in your value. If it runs out of space, it adds new space by

creating an array of length one longer and copying the old elements in. If you

try to put in a null value, then it throws a DynamicFieldsException by

creating one and using initCause() to insert a NullPointerException as

the cause.

As a return value, setField() also fetches out the old value at that field

location using getField(), which could throw a NoSuchFieldException.

464 Thinking in Java Bruce Eckel

If the client programmer calls getField(), then they are responsible for

handling NoSuchFieldException, but if this exception is thrown inside

setField(), it’s a programming error, so the NoSuchFieldException is

converted to a RuntimeException using the constructor that takes a cause

argument.

You’ll notice that toString() uses a StringBuilder to create its result.

You’ll learn more about StringBuilder in the Strings chapter, but in general

you’ll want to use it whenever you’re writing a toString() that involves

looping, as is the case here.

Exercise 10: (2) Create a class with two methods, f() and g(). In g(),
throw an exception of a new type that you define. In f(), call g(), catch its
exception and, in the catch clause, throw a different exception (of a second
type that you define). Test your code in main().

Exercise 11: (1) Repeat the previous exercise, but inside the catch
clause, wrap g()’s exception in a RuntimeException.

Standard Java exceptions
The Java class Throwable describes anything that can be thrown as an

exception. There are two general types of Throwable objects (“types of” =

“inherited from”). Error represents compile-time and system errors that you

don’t worry about catching (except in very special cases). Exception is the

basic type that can be thrown from any of the standard Java library class

methods and from your methods and runtime accidents. So the Java

programmer’s base type of interest is usually Exception.

The best way to get an overview of the exceptions is to browse the JDK

documentation. It’s worth doing this once just to get a feel for the various

exceptions, but you’ll soon see that there isn’t anything special between one

exception and the next except for the name. Also, the number of exceptions in

Java keeps expanding; basically, it’s pointless to print them in a book. Any

new library you get from a third-party vendor will probably have its own

exceptions as well. The important thing to understand is the concept and

what you should do with the exceptions.

The basic idea is that the name of the exception represents the problem that

occurred, and the exception name is intended to be relatively self-

explanatory. The exceptions are not all defined in java.lang; some are

created to support other libraries such as util, net, and io, which you can see

Error Handling with Exceptions 465

from their full class names or what they are inherited from. For example, all

I/O exceptions are inherited from java.io.IOException.

Special case: RuntimeException
The first example in this chapter was

if(t == null)

 throw new NullPointerException();

It can be a bit horrifying to think that you must check for null on every

reference that is passed into a method (since you can’t know if the caller has

passed you a valid reference). Fortunately, you don’t—this is part of the

standard runtime checking that Java performs for you, and if any call is made

to a null reference, Java will automatically throw a NullPointerException.

So the above bit of code is always superfluous, although you may want to

perform other checks in order to guard against the appearance of a

NullPointerException.

There’s a whole group of exception types that are in this category. They’re

always thrown automatically by Java and you don’t need to include them in

your exception specifications. Conveniently enough, they’re all grouped

together by putting them under a single base class called

RuntimeException, which is a perfect example of inheritance: It

establishes a family of types that have some characteristics and behaviors in

common. Also, you never need to write an exception specification saying that

a method might throw a RuntimeException (or any type inherited from

RuntimeException), because they are unchecked exceptions. Because they

indicate bugs, you don’t usually catch a RuntimeException—it’s dealt with

automatically. If you were forced to check for RuntimeExceptions, your

code could get too messy. Even though you don’t typically catch

RuntimeExceptions, in your own packages you might choose to throw

some of the RuntimeExceptions.

What happens when you don’t catch such exceptions? Since the compiler

doesn’t enforce exception specifications for these, it’s quite plausible that a

RuntimeException could percolate all the way out to your main()

method without being caught. To see what happens in this case, try the

following example:

//: exceptions/NeverCaught.java

// Ignoring RuntimeExceptions.

466 Thinking in Java Bruce Eckel

// {ThrowsException}

public class NeverCaught {

 static void f() {

 throw new RuntimeException("From f()");

 }

 static void g() {

 f();

 }

 public static void main(String[] args) {

 g();

 }

} ///:~

You can already see that a RuntimeException (or anything inherited from

it) is a special case, since the compiler doesn’t require an exception

specification for these types. The output is reported to System.err:

Exception in thread "main" java.lang.RuntimeException: From f()

 at NeverCaught.f(NeverCaught.java:7)

 at NeverCaught.g(NeverCaught.java:10)

 at NeverCaught.main(NeverCaught.java:13)

So the answer is: If a RuntimeException gets all the way out to main()

without being caught, printStackTrace() is called for that exception as the

program exits.

Keep in mind that only exceptions of type RuntimeException (and

subclasses) can be ignored in your coding, since the compiler carefully

enforces the handling of all checked exceptions. The reasoning is that a

RuntimeException represents a programming error, which is:

1. An error you cannot anticipate. For example, a null reference that

is outside of your control.

2. An error that you, as a programmer, should have checked for in

your code (such as ArrayIndexOutOfBoundsException where

you should have paid attention to the size of the array). An

exception that happens from point #1 often becomes an issue for

point #2.

You can see what a tremendous benefit it is to have exceptions in this case,

since they help in the debugging process.

Error Handling with Exceptions 467

It’s interesting to notice that you cannot classify Java exception handling as a

single-purpose tool. Yes, it is designed to handle those pesky runtime errors

that will occur because of forces outside your code’s control, but it’s also

essential for certain types of programming bugs that the compiler cannot

detect.

Exercise 12: (3) Modify innerclasses/Sequence.java so that it throws
an appropriate exception if you try to put in too many elements.

Performing cleanup
with finally

There’s often some piece of code that you want to execute whether or not an

exception is thrown within a try block. This usually pertains to some

operation other than memory recovery (since that’s taken care of by the

garbage collector). To achieve this effect, you use a finally clause4 at the end

of all the exception handlers. The full picture of an exception-handling

section is thus:

try {

 // The guarded region: Dangerous activities

 // that might throw A, B, or C

} catch(A a1) {

 // Handler for situation A

} catch(B b1) {

 // Handler for situation B

} catch(C c1) {

 // Handler for situation C

} finally {

 // Activities that happen every time

}

To demonstrate that the finally clause always runs, try this program:

//: exceptions/FinallyWorks.java

// The finally clause is always executed.

class ThreeException extends Exception {}

4 C++ exception handling does not have the finally clause because it relies on destructors
to accomplish this sort of cleanup.

468 Thinking in Java Bruce Eckel

public class FinallyWorks {

 static int count = 0;

 public static void main(String[] args) {

 while(true) {

 try {

 // Post-increment is zero first time:

 if(count++ == 0)

 throw new ThreeException();

 System.out.println("No exception");

 } catch(ThreeException e) {

 System.out.println("ThreeException");

 } finally {

 System.out.println("In finally clause");

 if(count == 2) break; // out of "while"

 }

 }

 }

} /* Output:

ThreeException

In finally clause

No exception

In finally clause

*///:~

From the output, you can see that the finally clause is executed whether or

not an exception is thrown.

This program also gives a hint for how you can deal with the fact that

exceptions in Java do not allow you to resume back to where the exception

was thrown, as discussed earlier. If you place your try block in a loop, you

can establish a condition that must be met before you continue the program.

You can also add a static counter or some other device to allow the loop to

try several different approaches before giving up. This way you can build a

greater level of robustness into your programs.

What’s finally for?
In a language without garbage collection and without automatic destructor

calls,5 finally is important because it allows the programmer to guarantee

5 A destructor is a function that’s always called when an object becomes unused. You
always know exactly where and when the destructor gets called. C++ has automatic

Error Handling with Exceptions 469

the release of memory regardless of what happens in the try block. But Java

has garbage collection, so releasing memory is virtually never a problem.

Also, it has no destructors to call. So when do you need to use finally in

Java?

The finally clause is necessary when you need to set something other than

memory back to its original state. This is some kind of cleanup like an open

file or network connection, something you’ve drawn on the screen, or even a

switch in the outside world, as modeled in the following example:

//: exceptions/Switch.java

import static net.mindview.util.Print.*;

public class Switch {

 private boolean state = false;

 public boolean read() { return state; }

 public void on() { state = true; print(this); }

 public void off() { state = false; print(this); }

 public String toString() { return state ? "on" : "off"; }

} ///:~

//: exceptions/OnOffException1.java

public class OnOffException1 extends Exception {} ///:~

//: exceptions/OnOffException2.java

public class OnOffException2 extends Exception {} ///:~

//: exceptions/OnOffSwitch.java

// Why use finally?

public class OnOffSwitch {

 private static Switch sw = new Switch();

 public static void f()

 throws OnOffException1,OnOffException2 {}

 public static void main(String[] args) {

 try {

 sw.on();

 // Code that can throw exceptions...

 f();

 sw.off();

 } catch(OnOffException1 e) {

destructor calls, and C# (which is much more like Java) has a way that automatic
destruction can occur.

470 Thinking in Java Bruce Eckel

 System.out.println("OnOffException1");

 sw.off();

 } catch(OnOffException2 e) {

 System.out.println("OnOffException2");

 sw.off();

 }

 }

} /* Output:

on

off

*///:~

The goal here is to make sure that the switch is off when main() is

completed, so sw.off() is placed at the end of the try block and at the end of

each exception handler. But it’s possible that an exception might be thrown

that isn’t caught here, so sw.off() would be missed. However, with finally

you can place the cleanup code from a try block in just one place:

//: exceptions/WithFinally.java

// Finally Guarantees cleanup.

public class WithFinally {

 static Switch sw = new Switch();

 public static void main(String[] args) {

 try {

 sw.on();

 // Code that can throw exceptions...

 OnOffSwitch.f();

 } catch(OnOffException1 e) {

 System.out.println("OnOffException1");

 } catch(OnOffException2 e) {

 System.out.println("OnOffException2");

 } finally {

 sw.off();

 }

 }

} /* Output:

on

off

*///:~

Here the sw.off() has been moved to just one place, where it’s guaranteed to

run no matter what happens.

Error Handling with Exceptions 471

Even in cases in which the exception is not caught in the current set of catch

clauses, finally will be executed before the exception-handling mechanism

continues its search for a handler at the next higher level:

//: exceptions/AlwaysFinally.java

// Finally is always executed.

import static net.mindview.util.Print.*;

class FourException extends Exception {}

public class AlwaysFinally {

 public static void main(String[] args) {

 print("Entering first try block");

 try {

 print("Entering second try block");

 try {

 throw new FourException();

 } finally {

 print("finally in 2nd try block");

 }

 } catch(FourException e) {

 System.out.println(

 "Caught FourException in 1st try block");

 } finally {

 System.out.println("finally in 1st try block");

 }

 }

} /* Output:

Entering first try block

Entering second try block

finally in 2nd try block

Caught FourException in 1st try block

finally in 1st try block

*///:~

The finally statement will also be executed in situations in which break and

continue statements are involved. Note that, along with the labeled break

and labeled continue, finally eliminates the need for a goto statement in

Java.

Exercise 13: (2) Modify Exercise 9 by adding a finally clause. Verify that
your finally clause is executed, even if a NullPointerException is thrown.

472 Thinking in Java Bruce Eckel

Exercise 14: (2) Show that OnOffSwitch.java can fail by throwing a
RuntimeException inside the try block.

Exercise 15: (2) Show that WithFinally.java doesn’t fail by throwing a
RuntimeException inside the try block.

Using finally during return
Because a finally clause is always executed, it’s possible to return from

multiple points within a method and still guarantee that important cleanup

will be performed:

//: exceptions/MultipleReturns.java

import static net.mindview.util.Print.*;

public class MultipleReturns {

 public static void f(int i) {

 print("Initialization that requires cleanup");

 try {

 print("Point 1");

 if(i == 1) return;

 print("Point 2");

 if(i == 2) return;

 print("Point 3");

 if(i == 3) return;

 print("End");

 return;

 } finally {

 print("Performing cleanup");

 }

 }

 public static void main(String[] args) {

 for(int i = 1; i <= 4; i++)

 f(i);

 }

} /* Output:

Initialization that requires cleanup

Point 1

Performing cleanup

Initialization that requires cleanup

Point 1

Point 2

Performing cleanup

Initialization that requires cleanup

Point 1

Error Handling with Exceptions 473

Point 2

Point 3

Performing cleanup

Initialization that requires cleanup

Point 1

Point 2

Point 3

End

Performing cleanup

*///:~

You can see from the output that it doesn’t matter where you return from

inside the finally class.

Exercise 16: (2) Modify reusing/CADSystem.java to demonstrate
that returning from the middle of a try-finally will still perform proper
cleanup.

Exercise 17: (3) Modify polymorphism/Frog.java so that it uses try-
finally to guarantee proper cleanup, and show that this works even if you
return from the middle of the try-finally.

Pitfall: the lost exception
Unfortunately, there’s a flaw in Java’s exception implementation. Although

exceptions are an indication of a crisis in your program and should never be

ignored, it’s possible for an exception to simply be lost. This happens with a

particular configuration using a finally clause:

//: exceptions/LostMessage.java

// How an exception can be lost.

class VeryImportantException extends Exception {

 public String toString() {

 return "A very important exception!";

 }

}

class HoHumException extends Exception {

 public String toString() {

 return "A trivial exception";

 }

}

public class LostMessage {

474 Thinking in Java Bruce Eckel

 void f() throws VeryImportantException {

 throw new VeryImportantException();

 }

 void dispose() throws HoHumException {

 throw new HoHumException();

 }

 public static void main(String[] args) {

 try {

 LostMessage lm = new LostMessage();

 try {

 lm.f();

 } finally {

 lm.dispose();

 }

 } catch(Exception e) {

 System.out.println(e);

 }

 }

} /* Output:

A trivial exception

*///:~

You can see from the output that there’s no evidence of the

VeryImportantException, which is simply replaced by the

HoHumException in the finally clause. This is a rather serious pitfall,

since it means that an exception can be completely lost, and in a far more

subtle and difficult-to-detect fashion than the preceding example. In contrast,

C++ treats the situation in which a second exception is thrown before the first

one is handled as a dire programming error. Perhaps a future version of Java

will repair this problem (on the other hand, you will typically wrap any

method that throws an exception, such as dispose() in the example above,

inside a try-catch clause).

An even simpler way to lose an exception is just to return from inside a

finally clause:

//: exceptions/ExceptionSilencer.java

public class ExceptionSilencer {

 public static void main(String[] args) {

 try {

 throw new RuntimeException();

 } finally {

 // Using 'return' inside the finally block

Error Handling with Exceptions 475

 // will silence any thrown exception.

 return;

 }

 }

} ///:~

If you run this program you’ll see that it produces no output, even though an

exception is thrown.

Exercise 18: (3) Add a second level of exception loss to
LostMessage.java so that the HoHumException is itself replaced by a
third exception.

Exercise 19: (2) Repair the problem in LostMessage.java by guarding
the call in the finally clause.

Exception restrictions
When you override a method, you can throw only the exceptions that have

been specified in the base-class version of the method. This is a useful

restriction, since it means that code that works with the base class will

automatically work with any object derived from the base class (a

fundamental OOP concept, of course), including exceptions.

This example demonstrates the kinds of restrictions imposed (at compile

time) for exceptions:

//: exceptions/StormyInning.java

// Overridden methods may throw only the exceptions

// specified in their base-class versions, or exceptions

// derived from the base-class exceptions.

class BaseballException extends Exception {}

class Foul extends BaseballException {}

class Strike extends BaseballException {}

abstract class Inning {

 public Inning() throws BaseballException {}

 public void event() throws BaseballException {

 // Doesn't actually have to throw anything

 }

 public abstract void atBat() throws Strike, Foul;

 public void walk() {} // Throws no checked exceptions

}

476 Thinking in Java Bruce Eckel

class StormException extends Exception {}

class RainedOut extends StormException {}

class PopFoul extends Foul {}

interface Storm {

 public void event() throws RainedOut;

 public void rainHard() throws RainedOut;

}

public class StormyInning extends Inning implements Storm {

 // OK to add new exceptions for constructors, but you

 // must deal with the base constructor exceptions:

 public StormyInning()

 throws RainedOut, BaseballException {}

 public StormyInning(String s)

 throws Foul, BaseballException {}

 // Regular methods must conform to base class:

//! void walk() throws PopFoul {} //Compile error

 // Interface CANNOT add exceptions to existing

 // methods from the base class:

//! public void event() throws RainedOut {}

 // If the method doesn't already exist in the

 // base class, the exception is OK:

 public void rainHard() throws RainedOut {}

 // You can choose to not throw any exceptions,

 // even if the base version does:

 public void event() {}

 // Overridden methods can throw inherited exceptions:

 public void atBat() throws PopFoul {}

 public static void main(String[] args) {

 try {

 StormyInning si = new StormyInning();

 si.atBat();

 } catch(PopFoul e) {

 System.out.println("Pop foul");

 } catch(RainedOut e) {

 System.out.println("Rained out");

 } catch(BaseballException e) {

 System.out.println("Generic baseball exception");

 }

 // Strike not thrown in derived version.

 try {

 // What happens if you upcast?

Error Handling with Exceptions 477

 Inning i = new StormyInning();

 i.atBat();

 // You must catch the exceptions from the

 // base-class version of the method:

 } catch(Strike e) {

 System.out.println("Strike");

 } catch(Foul e) {

 System.out.println("Foul");

 } catch(RainedOut e) {

 System.out.println("Rained out");

 } catch(BaseballException e) {

 System.out.println("Generic baseball exception");

 }

 }

} ///:~

In Inning, you can see that both the constructor and the event() method

say that they will throw an exception, but they never do. This is legal because

it allows you to force the user to catch any exceptions that might be added in

overridden versions of event(). The same idea holds for abstract methods,

as seen in atBat().

The interface Storm is interesting because it contains one method

(event()) that is defined in Inning, and one method that isn’t. Both

methods throw a new type of exception, RainedOut. When StormyInning

extends Inning and implements Storm, you’ll see that the event()

method in Storm cannot change the exception interface of event() in

Inning. Again, this makes sense because otherwise you’d never know if you

were catching the correct thing when working with the base class. Of course,

if a method described in an interface is not in the base class, such as

rainHard(), then there’s no problem if it throws exceptions.

The restriction on exceptions does not apply to constructors. You can see in

StormyInning that a constructor can throw anything it wants, regardless of

what the base-class constructor throws. However, since a base-class

constructor must always be called one way or another (here, the default

constructor is called automatically), the derived-class constructor must

declare any base-class constructor exceptions in its exception specification.

A derived-class constructor cannot catch exceptions thrown by its base-class

constructor.

478 Thinking in Java Bruce Eckel

The reason StormyInning.walk() will not compile is that it throws an

exception, but Inning.walk() does not. If this were allowed, then you could

write code that called Inning.walk() and that didn’t have to handle any

exceptions, but then when you substituted an object of a class derived from

Inning, exceptions would be thrown so your code would break. By forcing

the derived-class methods to conform to the exception specifications of the

base-class methods, substitutability of objects is maintained.

The overridden event() method shows that a derived-class version of a

method may choose not to throw any exceptions, even if the base-class

version does. Again, this is fine since it doesn’t break code that is written

assuming the base-class version throws exceptions. Similar logic applies to

atBat(), which throws PopFoul, an exception that is derived from Foul

thrown by the base-class version of atBat(). This way, if you write code that

works with Inning and calls atBat(), you must catch the Foul exception.

Since PopFoul is derived from Foul, the exception handler will also catch

PopFoul.

The last point of interest is in main(). Here, you can see that if you’re

dealing with exactly a StormyInning object, the compiler forces you to

catch only the exceptions that are specific to that class, but if you upcast to

the base type, then the compiler (correctly) forces you to catch the exceptions

for the base type. All these constraints produce much more robust exception-

handling code.6

Although exception specifications are enforced by the compiler during

inheritance, the exception specifications are not part of the type of a method,

which comprises only the method name and argument types. Therefore, you

cannot overload methods based on exception specifications. In addition, just

because an exception specification exists in a base-class version of a method

doesn’t mean that it must exist in the derived-class version of the method.

This is quite different from inheritance rules, where a method in the base

class must also exist in the derived class. Put another way, the “exception

specification interface” for a particular method may narrow during

inheritance and overriding, but it may not widen—this is precisely the

opposite of the rule for the class interface during inheritance.

6 ISO C++ added similar constraints that require derived-method exceptions to be the
same as, or derived from, the exceptions thrown by the base-class method. This is one case
in which C++ is actually able to check exception specifications at compile time.

Error Handling with Exceptions 479

Exercise 20: (3) Modify StormyInning.java by adding an
UmpireArgument exception type and methods that throw this exception.
Test the modified hierarchy.

Constructors
It’s important that you always ask, “If an exception occurs, will everything be

properly cleaned up?” Most of the time you’re fairly safe, but with

constructors there’s a problem. The constructor puts the object into a safe

starting state, but it might perform some operation—such as opening a file—

that doesn’t get cleaned up until the user is finished with the object and calls

a special cleanup method. If you throw an exception from inside a

constructor, these cleanup behaviors might not occur properly. This means

that you must be especially diligent while you write your constructor.

You might think that finally is the solution. But it’s not quite that simple,

because finally performs the cleanup code every time. If a constructor fails

partway through its execution, it might not have successfully created some

part of the object that will be cleaned up in the finally clause.

In the following example, a class called InputFile is created that opens a file

and allows you to read it one line at a time. It uses the classes FileReader

and BufferedReader from the Java standard I/O library that will be

discussed in the I/O chapter. These classes are simple enough that you

probably won’t have any trouble understanding their basic use:

//: exceptions/InputFile.java

// Paying attention to exceptions in constructors.

import java.io.*;

public class InputFile {

 private BufferedReader in;

 public InputFile(String fname) throws Exception {

 try {

 in = new BufferedReader(new FileReader(fname));

 // Other code that might throw exceptions

 } catch(FileNotFoundException e) {

 System.out.println("Could not open " + fname);

 // Wasn't open, so don't close it

 throw e;

 } catch(Exception e) {

 // All other exceptions must close it

 try {

480 Thinking in Java Bruce Eckel

 in.close();

 } catch(IOException e2) {

 System.out.println("in.close() unsuccessful");

 }

 throw e; // Rethrow

 } finally {

 // Don't close it here!!!

 }

 }

 public String getLine() {

 String s;

 try {

 s = in.readLine();

 } catch(IOException e) {

 throw new RuntimeException("readLine() failed");

 }

 return s;

 }

 public void dispose() {

 try {

 in.close();

 System.out.println("dispose() successful");

 } catch(IOException e2) {

 throw new RuntimeException("in.close() failed");

 }

 }

} ///:~

The constructor for InputFile takes a String argument, which is the name

of the file you want to open. Inside a try block, it creates a FileReader using

the file name. A FileReader isn’t particularly useful until you use it to create

a BufferedReader. One of the benefits of InputFile is that it combines

these two actions.

If the FileReader constructor is unsuccessful, it throws a

FileNotFoundException. This is the one case in which you don’t want to

close the file, because it wasn’t successfully opened. Any other catch clauses

must close the file because it was opened by the time those catch clauses are

entered. (Of course, this gets trickier if more than one method can throw a

FileNotFoundException. In that case, you’ll usually have to break things

into several try blocks.) The close() method might throw an exception so it

is tried and caught even though it’s within the block of another catch

clause—it’s just another pair of curly braces to the Java compiler. After

Error Handling with Exceptions 481

performing local operations, the exception is rethrown, which is appropriate

because this constructor failed, and you don’t want the calling method to

assume that the object has been properly created and is valid.

In this example, the finally clause is definitely not the place to close() the

file, since that would close it every time the constructor completed. We want

the file to be open for the useful lifetime of the InputFile object.

The getLine() method returns a String containing the next line in the file.

It calls readLine(), which can throw an exception, but that exception is

caught so that getLine() doesn’t throw any exceptions. One of the design

issues with exceptions is whether to handle an exception completely at this

level, to handle it partially and pass the same exception (or a different one)

on, or whether to simply pass it on. Passing it on, when appropriate, can

certainly simplify coding. In this situation, the getLine() method converts

the exception to a RuntimeException to indicate a programming error.

The dispose() method must be called by the user when the InputFile

object is no longer needed. This will release the system resources (such as file

handles) that are used by the BufferedReader and/or FileReader objects.

You don’t want to do this until you’re finished with the InputFile object. You

might think of putting such functionality into a finalize() method, but as

mentioned in the Initialization & Cleanup chapter, you can’t always be sure

that finalize() will be called (even if you can be sure that it will be called,

you don’t know when). This is one of the downsides to Java: All cleanup—

other than memory cleanup—doesn’t happen automatically, so you must

inform the client programmers that they are responsible.

The safest way to use a class which might throw an exception during

construction and which requires cleanup is to use nested try blocks:

//: exceptions/Cleanup.java

// Guaranteeing proper cleanup of a resource.

public class Cleanup {

 public static void main(String[] args) {

 try {

 InputFile in = new InputFile("Cleanup.java");

 try {

 String s;

 int i = 1;

 while((s = in.getLine()) != null)

482 Thinking in Java Bruce Eckel

 ; // Perform line-by-line processing here...

 } catch(Exception e) {

 System.out.println("Caught Exception in main");

 e.printStackTrace(System.out);

 } finally {

 in.dispose();

 }

 } catch(Exception e) {

 System.out.println("InputFile construction failed");

 }

 }

} /* Output:

dispose() successful

*///:~

Look carefully at the logic here: The construction of the InputFile object is

effectively in its own try block. If that construction fails, the outer catch

clause is entered and dispose() is not called. However, if construction

succeeds then you want to make sure the object is cleaned up, so immediately

after construction you create a new try block. The finally that performs

cleanup is associated with the inner try block; this way, the finally clause is

not executed if construction fails, and it is always executed if construction

succeeds.

This general cleanup idiom should still be used if the constructor throws no

exceptions. The basic rule is: Right after you create an object that requires

cleanup, begin a try-finally:

//: exceptions/CleanupIdiom.java

// Each disposable object must be followed by a try-finally

class NeedsCleanup { // Construction can't fail

 private static long counter = 1;

 private final long id = counter++;

 public void dispose() {

 System.out.println("NeedsCleanup " + id + " disposed");

 }

}

class ConstructionException extends Exception {}

class NeedsCleanup2 extends NeedsCleanup {

 // Construction can fail:

 public NeedsCleanup2() throws ConstructionException {}

Error Handling with Exceptions 483

}

public class CleanupIdiom {

 public static void main(String[] args) {

 // Section 1:

 NeedsCleanup nc1 = new NeedsCleanup();

 try {

 // ...

 } finally {

 nc1.dispose();

 }

 // Section 2:

 // If construction cannot fail you can group objects:

 NeedsCleanup nc2 = new NeedsCleanup();

 NeedsCleanup nc3 = new NeedsCleanup();

 try {

 // ...

 } finally {

 nc3.dispose(); // Reverse order of construction

 nc2.dispose();

 }

 // Section 3:

 // If construction can fail you must guard each one:

 try {

 NeedsCleanup2 nc4 = new NeedsCleanup2();

 try {

 NeedsCleanup2 nc5 = new NeedsCleanup2();

 try {

 // ...

 } finally {

 nc5.dispose();

 }

 } catch(ConstructionException e) { // nc5 constructor

 System.out.println(e);

 } finally {

 nc4.dispose();

 }

 } catch(ConstructionException e) { // nc4 constructor

 System.out.println(e);

 }

 }

} /* Output:

484 Thinking in Java Bruce Eckel

NeedsCleanup 1 disposed

NeedsCleanup 3 disposed

NeedsCleanup 2 disposed

NeedsCleanup 5 disposed

NeedsCleanup 4 disposed

*///:~

In main(), section 1 is fairly straightforward: You follow a disposable object

with a try-finally. If the object construction cannot fail, no catch is

necessary. In section 2, you can see that objects with constructors that cannot

fail can be grouped together for both construction and cleanup.

Section 3 shows how to deal with objects whose constructors can fail and

which need cleanup. To properly handle this situation, things get messy,

because you must surround each construction with its own try-catch, and

each object construction must be followed by a try-finally to guarantee

cleanup.

The messiness of exception handling in this case is a strong argument for

creating constructors that cannot fail, although this is not always possible.

Note that if dispose() can throw an exception you might need additional

try blocks. Basically, you must think carefully about all the possibilities and

guard for each one.

Exercise 21: (2) Demonstrate that a derived-class constructor cannot
catch exceptions thrown by its base-class constructor.

Exercise 22: (2) Create a class called FailingConstructor with a
constructor that might fail partway through the construction process and
throw an exception. In main(), write code that properly guards against this
failure.

Exercise 23: (4) Add a class with a dispose() method to the previous
exercise. Modify FailingConstructor so that the constructor creates one of
these disposable objects as a member object, after which the constructor
might throw an exception, after which it creates a second disposable member
object. Write code to properly guard against failure, and in main() verify
that all possible failure situations are covered.

Exercise 24: (3) Add a dispose() method to the FailingConstructor
class and write code to properly use this class.

Error Handling with Exceptions 485

Exception matching
When an exception is thrown, the exception-handling system looks through

the “nearest” handlers in the order they are written. When it finds a match,

the exception is considered handled, and no further searching occurs.

Matching an exception doesn’t require a perfect match between the exception

and its handler. A derived-class object will match a handler for the base class,

as shown in this example:

//: exceptions/Human.java

// Catching exception hierarchies.

class Annoyance extends Exception {}

class Sneeze extends Annoyance {}

public class Human {

 public static void main(String[] args) {

 // Catch the exact type:

 try {

 throw new Sneeze();

 } catch(Sneeze s) {

 System.out.println("Caught Sneeze");

 } catch(Annoyance a) {

 System.out.println("Caught Annoyance");

 }

 // Catch the base type:

 try {

 throw new Sneeze();

 } catch(Annoyance a) {

 System.out.println("Caught Annoyance");

 }

 }

} /* Output:

Caught Sneeze

Caught Annoyance

*///:~

The Sneeze exception will be caught by the first catch clause that it

matches, which is the first one, of course. However, if you remove the first

catch clause, leaving only the catch clause for Annoyance, the code still

works because it’s catching the base class of Sneeze. Put another way,

catch(Annoyance a) will catch an Annoyance or any class derived from

486 Thinking in Java Bruce Eckel

it. This is useful because if you decide to add more derived exceptions to a

method, then the client programmer’s code will not need changing as long as

the client catches the base-class exceptions.

If you try to “mask” the derived-class exceptions by putting the base-class

catch clause first, like this:

 try {

 throw new Sneeze();

 } catch(Annoyance a) {

 // ...

 } catch(Sneeze s) {

 // ...

 }

the compiler will give you an error message, since it sees that the Sneeze

catch clause can never be reached.

Exercise 25: (2) Create a three-level hierarchy of exceptions. Now create
a base-class A with a method that throws an exception at the base of your
hierarchy. Inherit B from A and override the method so it throws an
exception at level two of your hierarchy. Repeat by inheriting class C from B.
In main(), create a C and upcast it to A, then call the method.

Alternative approaches
An exception-handling system is a trapdoor that allows your program to

abandon execution of the normal sequence of statements. The trapdoor is

used when an “exceptional condition” occurs, such that normal execution is

no longer possible or desirable. Exceptions represent conditions that the

current method is unable to handle. The reason exception-handling systems

were developed is because the approach of dealing with each possible error

condition produced by each function call was too onerous, and programmers

simply weren’t doing it. As a result, they were ignoring the errors. It’s worth

observing that the issue of programmer convenience in handling errors was a

prime motivation for exceptions in the first place.

One of the important guidelines in exception handling is “Don’t catch an

exception unless you know what to do with it.” In fact, one of the important

goals of exception handling is to move the error-handling code away from the

point where the errors occur. This allows you to focus on what you want to

accomplish in one section of your code, and how you’re going to deal with

problems in a distinct separate section of your code. As a result, your

Error Handling with Exceptions 487

mainline code is not cluttered with error-handling logic, and it’s much easier

to understand and maintain. Exception handling also tends to reduce the

amount of error-handling code, by allowing one handler to deal with many

error sites.

Checked exceptions complicate this scenario a bit, because they force you to

add catch clauses in places where you may not be ready to handle an error.

This results in the “harmful if swallowed” problem:

try {

 // ... to do something useful

} catch(ObligatoryException e) {} // Gulp!

Programmers (myself included, in the 1st edition of this book) would just do

the simplest thing, and “swallow” the exception—often unintentionally, but

once you do it, the compiler has been satisfied, so unless you remember to

revisit and correct the code, the exception will be lost. The exception

happens, but it vanishes completely when swallowed. Because the compiler

forces you to write code right away to handle the exception, this seems like

the easiest solution even though it’s probably the worst thing you can do.

Horrified upon realizing that I had done this, in the 2nd edition I “fixed” the

problem by printing the stack trace inside the handler (as is still seen—

appropriately—in a number of examples in this chapter). While this is useful

to trace the behavior of exceptions, it still indicates that you don’t really know

what to do with the exception at that point in your code. In this section you’ll

learn about some of the issues and complications arising from checked

exceptions, and options that you have when dealing with them.

This topic seems simple. But it is not only complicated, it is also an issue of

some volatility. There are people who are staunchly rooted on either side of

the fence and who feel that the correct answer (theirs) is blatantly obvious. I

believe the reason for one of these positions is the distinct benefit seen in

going from a poorly typed language like pre-ANSI C to a strong, statically

typed language (that is, checked at compile time) like C++ or Java. When you

make that transition (as I did), the benefits are so dramatic that it can seem

like static type checking is always the best answer to most problems. My hope

is to relate a little bit of my own evolution that has brought the absolute value

of static type checking into question; clearly, it’s very helpful much of the

time, but there’s a fuzzy line we cross when it begins to get in the way and

become a hindrance (one of my favorite quotes is “All models are wrong.

Some are useful.”).

488 Thinking in Java Bruce Eckel

History
Exception handling originated in systems like PL/1 and Mesa, and later

appeared in CLU, Smalltalk, Modula-3, Ada, Eiffel, C++, Python, Java, and

the post-Java languages Ruby and C#. The Java design is similar to C++,

except in places where the Java designers felt that the C++ approach caused

problems.

To provide programmers with a framework that they were more likely to use

for error handling and recovery, exception handling was added to C++ rather

late in the standardization process, promoted by Bjarne Stroustrup, the

language’s original author. The model for C++ exceptions came primarily

from CLU. However, other languages existed at that time that also supported

exception handling: Ada, Smalltalk (both of these had exceptions but no

exception specifications) and Modula-3 (which included both exceptions and

specifications).

In their seminal paper7 on the subject, Liskov and Snyder observe that a

major defect of languages like C, which report errors in a transient fashion, is

that:

“…every invocation must be followed by a conditional test to determine

what the outcome was. This requirement leads to programs that are

difficult to read, and probably inefficient as well, thus discouraging

programmers from signaling and handling exceptions.”

Thus one of the original motivations of exception handling was to prevent

this requirement, but with checked exceptions in Java we commonly see

exactly this kind of code. They go on to say:

“…requiring that the text of a handler be attached to the invocation that

raises the exception would lead to unreadable programs in which

expressions were broken up with handlers.”

Following the CLU approach when designing C++ exceptions, Stroustrup

stated that the goal was to reduce the amount of code required to recover

from errors. I believe that he was observing that programmers were typically

7 Barbara Liskov and Alan Snyder, Exception Handling in CLU, IEEE Transactions on
Software Engineering, Vol. SE-5, No. 6, November 1979. This paper is not available on the
Internet, only in print form, so you’ll have to contact a library to get a copy.

Error Handling with Exceptions 489

not writing error-handling code in C because the amount and placement of

such code was daunting and distracting. As a result, they were used to doing

it the C way, ignoring errors in code and using debuggers to track down

problems. To use exceptions, these C programmers had to be convinced to

write “additional” code that they weren’t normally writing. Thus, to draw

them into a better way of handling errors, the amount of code they would

need to “add” must not be onerous. I think it’s important to keep this goal in

mind when looking at the effects of checked exceptions in Java.

C++ brought an additional idea over from CLU: the exception specification,

to programmatically state in the method signature the exceptions that could

result from calling that method. The exception specification really has two

purposes. It can say, “I’m originating this exception in my code; you handle

it.” But it can also mean, “I’m ignoring this exception that can occur as a

result of my code; you handle it.” We’ve been focusing on the “you handle it”

part when looking at the mechanics and syntax of exceptions, but here I’m

particularly interested in the fact that we often ignore exceptions and that’s

what the exception specification can state.

In C++ the exception specification is not part of the type information of a

function. The only compile-time checking is to ensure that exception

specifications are used consistently; for example, if a function or method

throws exceptions, then the overloaded or derived versions must also throw

those exceptions. Unlike Java, however, no compile-time checking occurs to

determine whether or not the function or method will actually throw that

exception, or whether the exception specification is complete (that is,

whether it accurately describes all exceptions that may be thrown). That

validation does happen, but only at run time. If an exception is thrown that

violates the exception specification, the C++ program will call the standard

library function unexpected().

It is interesting to note that, because of the use of templates, exception

specifications are not used at all in the Standard C++ Library. In Java, there

are restrictions on the way that Java generics can be used with exception

specifications.

Perspectives
First, it’s worth noting that Java effectively invented the checked exception

(clearly inspired by C++ exception specifications and the fact that C++

490 Thinking in Java Bruce Eckel

programmers typically don’t bother with them). However, it was an

experiment which no subsequent language has chosen to duplicate.

Secondly, checked exceptions appear to be an “obvious good thing” when

seen in introductory examples and in small programs. It has been suggested

that the subtle difficulties begin to appear when programs start to get large.

Of course, largeness usually doesn’t happen overnight; it creeps. Languages

that may not be suited for large-scale projects are used for small projects.

These projects grow, and at some point we realize that things have gone from

“manageable” to “difficult.” This is what I’m suggesting may be the case with

too much type checking; in particular, with checked exceptions.

The scale of the program seems to be a significant issue. This is a problem

because most discussions tend to use small programs as demonstrations. One

of the C# designers observed that:

“Examination of small programs leads to the conclusion that requiring

exception specifications could both enhance developer productivity and

enhance code quality, but experience with large software projects

suggests a different result—decreased productivity and little or no

increase in code quality.” 8

In reference to uncaught exceptions, the CLU creators stated:

“We felt it was unrealistic to require the programmer to provide

handlers in situations where no meaningful action can be taken.” 9

When explaining why a function declaration with no specification means that

it can throw any exception, rather than no exceptions, Stroustrup states:

“However, that would require exception specifications for essentially

every function, would be a significant cause for recompilation, and

would inhibit cooperation with software written in other languages.

This would encourage programmers to subvert the exception-handling

mechanisms and to write spurious code to suppress exceptions. It would

8 http://discuss.develop.com/archives/wa.exe?A2=ind0011A&L=DOTNET&P=R32820

9 Exception Handling in CLU, Liskov & Snyder.

Error Handling with Exceptions 491

provide a false sense of security to people who failed to notice the

exception.” 10

We see this very behavior—subverting the exceptions—happening with

checked exceptions in Java.

Martin Fowler (author of UML Distilled, Refactoring, and Analysis Patterns)

wrote the following to me:

“…on the whole I think that exceptions are good, but Java checked

exceptions are more trouble than they are worth.”

I now think that Java’s important step was to unify the error-reporting

model, so that all errors are reported using exceptions. This wasn’t

happening with C++, because for backward compatibility with C the old

model of just ignoring errors was still available. But if you have consistent

reporting with exceptions, then exceptions can be used if desired, and if not,

they will propagate out to the highest level (the console or other container

program). When Java modified the C++ model so that exceptions were the

only way to report errors, the extra enforcement of checked exceptions may

have become less necessary.

In the past, I have been a strong believer that both checked exceptions and

static type checking were essential to robust program development. However,

both anecdotal and direct experience11 with languages that are more dynamic

than static has led me to think that the great benefits actually come from:

1. A unified error-reporting model via exceptions, regardless of whether

the programmer is forced by the compiler to handle them.

2. Type checking, regardless of when it takes place. That is, as long as

proper use of a type is enforced, it often doesn’t matter if it happens

at compile time or run time.

On top of this, there are very significant productivity benefits to reducing the

compile-time constraints upon the programmer. Indeed, reflection and

10 Bjarne Stroustrup, The C++ Programming Language, 3rd Edition (Addison-Wesley,
1997), p. 376.

11 Indirectly with Smalltalk via conversations with many experienced programmers in that
language; directly with Python (www.Python.org).

492 Thinking in Java Bruce Eckel

generics are required to compensate for the overconstraining nature of static

typing, as you shall see in a number of examples throughout the book.

I’ve already been told by some that what I say here constitutes blasphemy,

and by uttering these words my reputation will be destroyed, civilizations will

fall, and a higher percentage of programming projects will fail. The belief that

the compiler can save your project by pointing out errors at compile time

runs strong, but it’s even more important to realize the limitation of what the

compiler is able to do. An automated build process and unit testing give you

far more leverage than you get by trying to turn everything into a syntax

error. It’s worth keeping in mind that:

“A good programming language is one that helps programmers write

good programs. No programming language will prevent its users from

writing bad programs.” 12

In any event, the likelihood of checked exceptions ever being removed from

Java seems dim. It would be too radical of a language change, and

proponents within Java appear to be quite strong. Java has a history and

policy of absolute backwards compatibility. However, if you find that some

checked exceptions are getting in your way, or especially if you find yourself

being forced to catch exceptions, but you don’t know what to do with them,

there are some alternatives.

Passing exceptions to the console
In simple programs, like many of those in this book, the easiest way to

preserve the exceptions without writing a lot of code is to pass them out of

main() to the console. For example, if you want to open a file for reading

(something you’ll learn about in detail in the I/O chapter), you must open

and close a FileInputStream, which throws exceptions. For a simple

program, you can do this (you’ll see this approach used in numerous places

throughout this book):

//: exceptions/MainException.java

import java.io.*;

public class MainException {

12 Kees Koster, designer of the CDL language, as quoted by Bertrand Meyer, designer of
the Eiffel language, www.elj.com/elj/v1/n1/bm/right/.

Error Handling with Exceptions 493

 // Pass all exceptions to the console:

 public static void main(String[] args) throws Exception {

 // Open the file:

 FileInputStream file =

 new FileInputStream("MainException.java");

 // Use the file ...

 // Close the file:

 file.close();

 }

} ///:~

Note that main() is also a method that may have an exception specification,

and here the type of exception is Exception, the root class of all checked

exceptions. By passing it out to the console, you are relieved from writing try-

catch clauses within the body of main(). (Unfortunately, file I/O is

significantly more complex than it would appear to be from this example, so

don’t get too excited until after you’ve read the I/O chapter).

Exercise 26: (1) Change the file name string in MainException.java to
name a file that doesn’t exist. Run the program and note the result.

Converting checked to unchecked

exceptions
Throwing an exception from main() is convenient when you’re writing

simple programs for your own consumption, but is not generally useful. The

real problem is when you are writing an ordinary method body, and you call

another method and realize, “I have no idea what to do with this exception

here, but I don’t want to swallow it or print some banal message.” With

chained exceptions, a new and simple solution presents itself. You simply

“wrap” a checked exception inside a RuntimeException by passing it to the

RuntimeException constructor, like this:

try {

 // ... to do something useful

} catch(IDontKnowWhatToDoWithThisCheckedException e) {

 throw new RuntimeException(e);

}

This seems to be an ideal solution if you want to “turn off” the checked

exception—you don’t swallow it, and you don’t have to put it in your method’s

exception specification, but because of exception chaining you don’t lose any

information from the original exception.

494 Thinking in Java Bruce Eckel

This technique provides the option to ignore the exception and let it bubble

up the call stack without being required to write try-catch clauses and/or

exception specifications. However, you may still catch and handle the specific

exception by using getCause(), as seen here:

//: exceptions/TurnOffChecking.java

// "Turning off" Checked exceptions.

import java.io.*;

import static net.mindview.util.Print.*;

class WrapCheckedException {

 void throwRuntimeException(int type) {

 try {

 switch(type) {

 case 0: throw new FileNotFoundException();

 case 1: throw new IOException();

 case 2: throw new RuntimeException("Where am I?");

 default: return;

 }

 } catch(Exception e) { // Adapt to unchecked:

 throw new RuntimeException(e);

 }

 }

}

class SomeOtherException extends Exception {}

public class TurnOffChecking {

 public static void main(String[] args) {

 WrapCheckedException wce = new WrapCheckedException();

 // You can call throwRuntimeException() without a try

 // block, and let RuntimeExceptions leave the method:

 wce.throwRuntimeException(3);

 // Or you can choose to catch exceptions:

 for(int i = 0; i < 4; i++)

 try {

 if(i < 3)

 wce.throwRuntimeException(i);

 else

 throw new SomeOtherException();

 } catch(SomeOtherException e) {

 print("SomeOtherException: " + e);

 } catch(RuntimeException re) {

 try {

Error Handling with Exceptions 495

 throw re.getCause();

 } catch(FileNotFoundException e) {

 print("FileNotFoundException: " + e);

 } catch(IOException e) {

 print("IOException: " + e);

 } catch(Throwable e) {

 print("Throwable: " + e);

 }

 }

 }

} /* Output:

FileNotFoundException: java.io.FileNotFoundException

IOException: java.io.IOException

Throwable: java.lang.RuntimeException: Where am I?

SomeOtherException: SomeOtherException

*///:~

WrapCheckedException.throwRuntimeException() contains code

that generates different types of exceptions. These are caught and wrapped

inside RuntimeException objects, so they become the “cause” of those

exceptions.

In TurnOffChecking, you can see that it’s possible to call

throwRuntimeException() with no try block because the method does

not throw any checked exceptions. However, when you’re ready to catch

exceptions, you still have the ability to catch any exception you want by

putting your code inside a try block. You start by catching all the exceptions

you explicitly know might emerge from the code in your try block—in this

case, SomeOtherException is caught first. Lastly, you catch

RuntimeException and throw the result of getCause() (the wrapped

exception). This extracts the originating exceptions, which can then be

handled in their own catch clauses.

The technique of wrapping a checked exception in a RuntimeException

will be used when appropriate throughout the rest of this book. Another

solution is to create your own subclass of RuntimeException. This way, it

doesn’t need to be caught, but someone can catch it if they want to.

Exercise 27: (1) Modify Exercise 3 to convert the exception to a
RuntimeException.

496 Thinking in Java Bruce Eckel

Exercise 28: (1) Modify Exercise 4 so that the custom exception class
inherits from RuntimeException, and show that the compiler allows you to
leave out the try block.

Exercise 29: (1) Modify all the exception types in StormyInning.java
so that they extend RuntimeException, and show that no exception
specifications or try blocks are necessary. Remove the ‘//!’ comments and
show how the methods can be compiled without specifications.

Exercise 30: (2) Modify Human.java so that the exceptions inherit
from RuntimeException. Modify main() so that the technique in
TurnOffChecking.java is used to handle the different types of exceptions.

Exception guidelines
Use exceptions to:

1. Handle problems at the appropriate level. (Avoid catching

exceptions unless you know what to do with them.)

2. Fix the problem and call the method that caused the exception

again.

3. Patch things up and continue without retrying the method.

4. Calculate some alternative result instead of what the method was

supposed to produce.

5. Do whatever you can in the current context and rethrow the same

exception to a higher context.

6. Do whatever you can in the current context and throw a different

exception to a higher context.

7. Terminate the program.

8. Simplify. (If your exception scheme makes things more

complicated, then it is painful and annoying to use.)

9. Make your library and program safer. (This is a short-term

investment for debugging, and a long-term investment for

application robustness.)

Error Handling with Exceptions 497

Summary
Exceptions are integral to programming with Java; you can accomplish only

so much without knowing how to work with them. For that reason,

exceptions are introduced at this point in the book—there are many libraries

(like I/O, mentioned earlier) that you can’t use without handling exceptions.

One of the advantages of exception handling is that it allows you to

concentrate on the problem you’re trying to solve in one place, and then deal

with the errors from that code in another place. And although exceptions are

generally explained as tools that allow you to report and recover from errors

at run time, I have come to wonder how often the “recovery” aspect is

implemented, or even possible. My perception is that it is less than 10 percent

of the time, and even then it probably amounts to unwinding the stack to a

known stable state rather than actually performing any kind of resumptive

behavior. Whether or not this is true, I have come to believe that the

“reporting” function is where the essential value of exceptions lie. The fact

that Java effectively insists that all errors be reported in the form of

exceptions is what gives it a great advantage over languages like C++, which

allow you to report errors in a number of different ways, or not at all. A

consistent error-reporting system means that you no longer have to ask the

question “Are errors slipping through the cracks?” with each piece of code

you write (as long as you don’t “swallow” the exceptions, that is!).

As you will see in future chapters, by laying this question to rest—even if you

do so by throwing a RuntimeException—your design and implementation

efforts can be focused on more interesting and challenging issues.

Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for sale from www.MindViewLLC.com.

 499

Strings
String manipulation is arguably one of the most common
activities in computer programming.

This is especially true in Web systems, where Java is heavily used. In this

chapter, we’ll look more deeply at what is certainly the most commonly used

class in the language, String, along with some of its associated classes and

utilities.

Immutable Strings
Objects of the String class are immutable. If you examine the JDK

documentation for the String class, you’ll see that every method in the class

that appears to modify a String actually creates and returns a brand new

String object containing the modification. The original String is left

untouched.

Consider the following code:

//: strings/Immutable.java

import static net.mindview.util.Print.*;

public class Immutable {

 public static String upcase(String s) {

 return s.toUpperCase();

 }

 public static void main(String[] args) {

 String q = "howdy";

 print(q); // howdy

 String qq = upcase(q);

 print(qq); // HOWDY

 print(q); // howdy

 }

} /* Output:

howdy

HOWDY

howdy

*///:~

500 Thinking in Java Bruce Eckel

When q is passed in to upcase() it’s actually a copy of the reference to q.

The object this reference is connected to stays in a single physical location.

The references are copied as they are passed around.

Looking at the definition for upcase(), you can see that the reference that’s

passed in has the name s, and it exists for only as long as the body of

upcase() is being executed. When upcase() completes, the local reference

s vanishes. upcase() returns the result, which is the original string with all

the characters set to uppercase. Of course, it actually returns a reference to

the result. But it turns out that the reference that it returns is for a new

object, and the original q is left alone.

This behavior is usually what you want. Suppose you say:

String s = "asdf";

String x = Immutable.upcase(s);

Do you really want the upcase() method to change the argument? To the

reader of the code, an argument usually looks like a piece of information

provided to the method, not something to be modified. This is an important

guarantee, since it makes code easier to write and understand.

Overloading ‘+’ vs. StringBuilder
Since String objects are immutable, you can alias to a particular String as

many times as you want. Because a String is read-only, there’s no possibility

that one reference will change something that will affect the other references.

Immutability can have efficiency issues. A case in point is the operator ‘+’

that has been overloaded for String objects. Overloading means that an

operation has been given an extra meaning when used with a particular class.

(The ‘+’ and ‘+=’ for String are the only operators that are overloaded in

Java, and Java does not allow the programmer to overload any others.)1

1 C++ allows the programmer to overload operators at will. Because this can often be a
complicated process (see Chapter 10 of Thinking in C++, 2nd Edition, Prentice Hall, 2000),
the Java designers deemed it a “bad” feature that shouldn’t be included in Java. It wasn’t
so bad that they didn’t end up doing it themselves, and ironically enough, operator
overloading would be much easier to use in Java than in C++. This can be seen in Python
(see www.Python.org) and C#, which have garbage collection and straightforward
operator overloading.

Strings 501

The ‘+’ operator allows you to concatenate Strings:

//: strings/Concatenation.java

public class Concatenation {

 public static void main(String[] args) {

 String mango = "mango";

 String s = "abc" + mango + "def" + 47;

 System.out.println(s);

 }

} /* Output:

abcmangodef47

*///:~

You could imagine how this might work. The String “abc” could have a

method append() that creates a new String object containing “abc”

concatenated with the contents of mango. The new String object would

then create another new String that added “def,” and so on.

This would certainly work, but it requires the creation of a lot of String

objects just to put together this new String, and then you have a bunch of

intermediate String objects that need to be garbage collected. I suspect that

the Java designers tried this approach first (which is a lesson in software

design—you don’t really know anything about a system until you try it out in

code and get something working). I also suspect that they discovered it

delivered unacceptable performance.

To see what really happens, you can decompile the above code using the

javap tool that comes as part of the JDK. Here’s the command line:

javap -c Concatenation

The -c flag will produce the JVM bytecodes. After we strip out the parts we’re

not interested in and do a bit of editing, here are the relevant bytecodes:

public static void main(java.lang.String[]);

 Code:

 Stack=2, Locals=3, Args_size=1

 0: ldc #2; //String mango

 2: astore_1

 3: new #3; //class StringBuilder

 6: dup

 7: invokespecial #4; //StringBuilder."<init>":()

 10: ldc #5; //String abc

502 Thinking in Java Bruce Eckel

 12: invokevirtual #6; //StringBuilder.append:(String)

 15: aload_1

 16: invokevirtual #6; //StringBuilder.append:(String)

 19: ldc #7; //String def

 21: invokevirtual #6; //StringBuilder.append:(String)

 24: bipush 47

 26: invokevirtual #8; //StringBuilder.append:(I)

 29: invokevirtual #9; //StringBuilder.toString:()

 32: astore_2

 33: getstatic #10; //Field System.out:PrintStream;

 36: aload_2

 37: invokevirtual #11; // PrintStream.println:(String)

 40: return

If you’ve had experience with assembly language, this may look familiar to

you—statements like dup and invokevirtual are the Java Virtual Machine

(JVM) equivalent of assembly language. If you’ve never seen assembly

language, don’t worry about it—the important part to notice is the

introduction by the compiler of the java.lang.StringBuilder class. There

was no mention of StringBuilder in the source code, but the compiler

decided to use it anyway, because it is much more efficient.

In this case, the compiler creates a StringBuilder object to build the String

s, and calls append() four times, one for each of the pieces. Finally, it calls

toString() to produce the result, which it stores (with astore_2) as s.

Before you assume that you should just use Strings everywhere and that the

compiler will make everything efficient, let’s look a little more closely at what

the compiler is doing. Here’s an example that produces a String result in two

ways: using Strings, and by hand-coding with StringBuilder:

//: strings/WhitherStringBuilder.java

public class WhitherStringBuilder {

 public String implicit(String[] fields) {

 String result = "";

 for(int i = 0; i < fields.length; i++)

 result += fields[i];

 return result;

 }

 public String explicit(String[] fields) {

 StringBuilder result = new StringBuilder();

 for(int i = 0; i < fields.length; i++)

 result.append(fields[i]);

Strings 503

 return result.toString();

 }

} ///:~

Now if you run javap -c WitherStringBuilder, you can see the

(simplified) code for the two different methods. First, implicit():

public java.lang.String implicit(java.lang.String[]);

 Code:

 0: ldc #2; //String

 2: astore_2

 3: iconst_0

 4: istore_3

 5: iload_3

 6: aload_1

 7: arraylength

 8: if_icmpge 38

 11: new #3; //class StringBuilder

 14: dup

 15: invokespecial #4; // StringBuilder."<init>":()

 18: aload_2

 19: invokevirtual #5; // StringBuilder.append:()

 22: aload_1

 23: iload_3

 24: aaload

 25: invokevirtual #5; // StringBuilder.append:()

 28: invokevirtual #6; // StringBuilder.toString:()

 31: astore_2

 32: iinc 3, 1

 35: goto 5

 38: aload_2

 39: areturn

Notice 8: and 35:, which together form a loop. 8: does an “integer compare

greater than or equal to” of the operands on the stack and jumps to 38: when

the loop is done. 35: is a goto back to the beginning of the loop, at 5:. The

important thing to note is that the StringBuilder construction happens

inside this loop, which means you’re going to get a new StringBuilder

object every time you pass through the loop.

Here are the bytecodes for explicit():

public java.lang.String explicit(java.lang.String[]);

 Code:

 0: new #3; //class StringBuilder

504 Thinking in Java Bruce Eckel

 3: dup

 4: invokespecial #4; // StringBuilder."<init>":()

 7: astore_2

 8: iconst_0

 9: istore_3

 10: iload_3

 11: aload_1

 12: arraylength

 13: if_icmpge 30

 16: aload_2

 17: aload_1

 18: iload_3

 19: aaload

 20: invokevirtual #5; // StringBuilder.append:()

 23: pop

 24: iinc 3, 1

 27: goto 10

 30: aload_2

 31: invokevirtual #6; // StringBuilder.toString:()

 34: areturn

Not only is the loop code shorter and simpler, the method only creates a

single StringBuilder object. Creating an explicit StringBuilder also allows

you to preallocate its size if you have extra information about how big it

might need to be, so that it doesn’t need to constantly reallocate the buffer.

Thus, when you create a toString() method, if the operations are simple

ones that the compiler can figure out on its own, you can generally rely on the

compiler to build the result in a reasonable fashion. But if looping is involved,

you should explicitly use a StringBuilder in your toString(), like this:

//: strings/UsingStringBuilder.java

import java.util.*;

public class UsingStringBuilder {

 public static Random rand = new Random(47);

 public String toString() {

 StringBuilder result = new StringBuilder("[");

 for(int i = 0; i < 25; i++) {

 result.append(rand.nextInt(100));

 result.append(", ");

 }

 result.delete(result.length()-2, result.length());

 result.append("]");

Strings 505

 return result.toString();

 }

 public static void main(String[] args) {

 UsingStringBuilder usb = new UsingStringBuilder();

 System.out.println(usb);

 }

} /* Output:

[58, 55, 93, 61, 61, 29, 68, 0, 22, 7, 88, 28, 51, 89, 9,

78, 98, 61, 20, 58, 16, 40, 11, 22, 4]

*///:~

Notice that each piece of the result is added with an append() statement. If

you try to take shortcuts and do something like append(a + ": " + c), the

compiler will jump in and start making more StringBuilder objects again.

If you are in doubt about which approach to use, you can always run javap to

double-check.

Although StringBuilder has a full complement of methods, including

insert(), replace(), substring() and even reverse(), the ones you will

generally use are append() and toString(). Note the use of delete() to

remove the last comma and space before adding the closing square bracket.

StringBuilder was introduced in Java SE5. Prior to this, Java used

StringBuffer, which ensured thread safety (see the Concurrency chapter)

and so was significantly more expensive. Thus, string operations in Java

SE5/6 should be faster.

Exercise 1: (2) Analyze SprinklerSystem.toString() in
reusing/SprinklerSystem.java to discover whether writing the
toString() with an explicit StringBuilder will save any StringBuilder
creations.

Unintended recursion
Because (like every other class) the Java standard containers are ultimately

inherited from Object, they contain a toString() method. This has been

overridden so that they can produce a String representation of themselves,

including the objects they hold. ArrayList.toString(), for example, steps

through the elements of the ArrayList and calls toString() for each one:

//: strings/ArrayListDisplay.java

import generics.coffee.*;

import java.util.*;

506 Thinking in Java Bruce Eckel

public class ArrayListDisplay {

 public static void main(String[] args) {

 ArrayList<Coffee> coffees = new ArrayList<Coffee>();

 for(Coffee c : new CoffeeGenerator(10))

 coffees.add(c);

 System.out.println(coffees);

 }

} /* Output:

[Americano 0, Latte 1, Americano 2, Mocha 3, Mocha 4, Breve

5, Americano 6, Latte 7, Cappuccino 8, Cappuccino 9]

*///:~

Suppose you’d like your toString() to print the address of your class. It

seems to make sense to simply refer to this:

//: strings/InfiniteRecursion.java

// Accidental recursion.

// {RunByHand}

import java.util.*;

public class InfiniteRecursion {

 public String toString() {

 return " InfiniteRecursion address: " + this + "\n";

 }

 public static void main(String[] args) {

 List<InfiniteRecursion> v =

 new ArrayList<InfiniteRecursion>();

 for(int i = 0; i < 10; i++)

 v.add(new InfiniteRecursion());

 System.out.println(v);

 }

} ///:~

If you create an InfiniteRecursion object and then print it, you’ll get a very

long sequence of exceptions. This is also true if you place the

InfiniteRecursion objects in an ArrayList and print that ArrayList as

shown here. What’s happening is automatic type conversion for Strings.

When you say:

"InfiniteRecursion address: " + this

The compiler sees a String followed by a ‘+’ and something that’s not a

String, so it tries to convert this to a String. It does this conversion by

calling toString(), which produces a recursive call.

Strings 507

If you really do want to print the address of the object, the solution is to call

the Object toString() method, which does just that. So instead of saying

this, you’d say super.toString().

Exercise 2: (1) Repair InfiniteRecursion.java.

Operations on Strings
Here are some of the basic methods available for String objects. Methods

that are overloaded are summarized in a single row:

Method Arguments,
Overloading

Use

Constructor Overloaded: default,
String,
StringBuilder,
StringBuffer, char
arrays, byte arrays.

Creating String objects.

length() Number of characters in
the String.

charAt() int Index The char at a location in
the String.

getChars(),
getBytes()

The beginning and
end from which to
copy, the array to
copy into, an index
into the destination
array.

Copy chars or bytes
into an external array.

toCharArray() Produces a char[]
containing the characters
in the String.

equals(), equals-
IgnoreCase()

A String to compare
with.

An equality check on the
contents of the two
Strings.

compareTo() A String to compare
with.

Result is negative, zero,
or positive depending on
the lexicographical
ordering of the String
and the argument.
Uppercase and lowercase
are not equal!

508 Thinking in Java Bruce Eckel

Method Arguments,
Overloading

Use

contains() A CharSequence to
search for.

Result is true if the
argument is contained in
the String.

contentEquals() A CharSequence or
StringBuffer to
compare to.

Result is true if there’s
an exact match with the
argument.

equalsIgnoreCase() A String to compare
with.

Result is true if the
contents are equal,
ignoring case.

regionMatches() Offset into this
String, the other
String and its offset
and length to
compare. Overload
adds “ignore case.”

boolean result indicates
whether the region
matches.

startsWith() String that it might
start with. Overload
adds offset into
argument.

boolean result indicates
whether the String
starts with the argument.

endsWith() String that might be
a suffix of this
String.

boolean result indicates
whether the argument is
a suffix.

indexOf(),
lastIndexOf()

Overloaded: char,
char and starting
index, String,
String and starting
index.

Returns -1 if the
argument is not found
within this String;
otherwise, returns the
index where the
argument starts.
lastIndexOf() searches
backward from end.

substring() (also
subSequence())

Overloaded: starting
index; starting index
+ ending index.

Returns a new String
object containing the
specified character set.

concat() The String to
concatenate.

Returns a new String
object containing the
original String’s
characters followed by
the characters in the

Strings 509

Method Arguments,
Overloading

Use

argument.

replace() The old character to
search for, the new
character to replace it
with. Can also replace
a CharSequence
with a
CharSequence.

Returns a new String
object with the
replacements made.
Uses the old String if no
match is found.

toLowerCase()
toUpperCase()

 Returns a new String
object with the case of all
letters changed. Uses the
old String if no changes
need to be made.

trim() Returns a new String
object with the
whitespace removed
from each end. Uses the
old String if no changes
need to be made.

valueOf() Overloaded: Object,
char[], char[] and
offset and count,
boolean, char, int,
long, float, double.

Returns a String
containing a character
representation of the
argument.

intern() Produces one and only
one String reference per
unique character
sequence.

You can see that every String method carefully returns a new String object

when it’s necessary to change the contents. Also notice that if the contents

don’t need changing, the method will just return a reference to the original

String. This saves storage and overhead.

The String methods involving regular expressions will be explained later in

this chapter.

510 Thinking in Java Bruce Eckel

Formatting output
One of the long-awaited features that has finally appeared in Java SE5 is

output formatting in the style of C’s printf() statement. Not only does this

allow for simplified output code, but it also gives Java developers powerful

control over output formatting and alignment.2

printf()
C’s printf() doesn’t assemble strings the way Java does, but takes a single

format string and inserts values into it, formatting as it goes. Instead of using

the overloaded ‘+’ operator (which C doesn’t overload) to concatenate quoted

text and variables, printf() uses special placeholders to show where the data

should go. The arguments that are inserted into the format string follow in a

comma-separated list.

For example:

printf("Row 1: [%d %f]\n", x, y);

At run time, the value of x is inserted into %d and the value of y is inserted

into %f. These placeholders are called format specifiers and, in addition to

telling where to insert the value, they also tell what kind of variable is to be

inserted and how to format it. For instance, the ‘%d’ above says that x is an

integer and the ‘%f’ says y is a floating point value (a float or double).

System.out.format()
Java SE5 introduced the format() method, available to PrintStream or

PrintWriter objects (which you’ll learn more about in the I/O chapter),

which includes System.out. The format() method is modeled after C’s

printf(). There’s even a convenience printf() method that you can use if

you’re feeling nostalgic, which just calls format(). Here’s a simple example:

//: strings/SimpleFormat.java

public class SimpleFormat {

 public static void main(String[] args) {

 int x = 5;

2 Mark Welsh assisted in the creation of this section, and the “Scanning input” section.

Strings 511

 double y = 5.332542;

 // The old way:

 System.out.println("Row 1: [" + x + " " + y + "]");

 // The new way:

 System.out.format("Row 1: [%d %f]\n", x, y);

 // or

 System.out.printf("Row 1: [%d %f]\n", x, y);

 }

} /* Output:

Row 1: [5 5.332542]

Row 1: [5 5.332542]

Row 1: [5 5.332542]

*///:~

You can see that format() and printf() are equivalent. In both cases,

there’s only a single format string, followed by one argument for each format

specifier.

The Formatter class
All of Java’s new formatting functionality is handled by the Formatter class

in the java.util package. You can think of Formatter as a translator that

converts your format string and data into the desired result. When you create

a Formatter object, you tell it where you want this result to go by passing

that information to the constructor:

//: strings/Turtle.java

import java.io.*;

import java.util.*;

public class Turtle {

 private String name;

 private Formatter f;

 public Turtle(String name, Formatter f) {

 this.name = name;

 this.f = f;

 }

 public void move(int x, int y) {

 f.format("%s The Turtle is at (%d,%d)\n", name, x, y);

 }

 public static void main(String[] args) {

 PrintStream outAlias = System.out;

 Turtle tommy = new Turtle("Tommy",

 new Formatter(System.out));

 Turtle terry = new Turtle("Terry",

512 Thinking in Java Bruce Eckel

 new Formatter(outAlias));

 tommy.move(0,0);

 terry.move(4,8);

 tommy.move(3,4);

 terry.move(2,5);

 tommy.move(3,3);

 terry.move(3,3);

 }

} /* Output:

Tommy The Turtle is at (0,0)

Terry The Turtle is at (4,8)

Tommy The Turtle is at (3,4)

Terry The Turtle is at (2,5)

Tommy The Turtle is at (3,3)

Terry The Turtle is at (3,3)

*///:~

All the tommy output goes to System.out and all the terry output goes to

an alias of System.out. The constructor is overloaded to take a range of

output locations, but the most useful are PrintStreams (as above),

OutputStreams, and Files. You’ll learn more about these in the I/O

chapter.

Exercise 3: (1) Modify Turtle.java so that it sends all output to
System.err.

The previous example uses a new format specifier, ‘%s’. This indicates a

String argument and is an example of the simplest kind of format specifier—

one that has only a conversion type.

Format specifiers
To control spacing and alignment when data is inserted, you need more

elaborate format specifiers. Here’s the general syntax:

%[argument_index$][flags][width][.precision]conversion

Often, you’ll need to control the minimum size of a field. This can be

accomplished by specifying a width. The Formatter guarantees that a field

is at least a certain number of characters wide by padding it with spaces if

necessary. By default, the data is right justified, but this can be overridden by

including a ‘-’ in the flags section.

Strings 513

The opposite of width is precision, which is used to specify a maximum.

Unlike the width, which is applicable to all of the data conversion types and

behaves the same with each, precision has a different meaning for different

types. For Strings, the precision specifies the maximum number of

characters from the String to print. For floating point numbers, precision

specifies the number of decimal places to display (the default is 6), rounding

if there are too many or adding trailing zeroes if there are too few. Since

integers have no fractional part, precision isn’t applicable to them and you’ll

get an exception if you use precision with an integer conversion type.

This example uses format specifiers to print a shopping receipt:

//: strings/Receipt.java

import java.util.*;

public class Receipt {

 private double total = 0;

 private Formatter f = new Formatter(System.out);

 public void printTitle() {

 f.format("%-15s %5s %10s\n", "Item", "Qty", "Price");

 f.format("%-15s %5s %10s\n", "----", "---", "-----");

 }

 public void print(String name, int qty, double price) {

 f.format("%-15.15s %5d %10.2f\n", name, qty, price);

 total += price * qty;

 }

 public void printTotal() {

 f.format("%-15s %5s %10.2f\n", "Tax", "", total*0.06);

 f.format("%-15s %5s %10s\n", "", "", "-----");

 f.format("%-15s %5s %10.2f\n", "Total", "",

 total * 1.06);

 }

 public static void main(String[] args) {

 Receipt receipt = new Receipt();

 receipt.printTitle();

 receipt.print("Jack's Magic Beans", 4, 4.25);

 receipt.print("Princess Peas", 3, 5.1);

 receipt.print("Three Bears Porridge", 1, 14.29);

 receipt.printTotal();

 }

} /* Output:

Item Qty Price

---- --- -----

Jack's Magic Be 4 4.25

514 Thinking in Java Bruce Eckel

Princess Peas 3 5.10

Three Bears Por 1 14.29

Tax 2.80

Total 49.39

*///:~

As you can see, the Formatter provides powerful control over spacing and

alignment with fairly concise notation. Here, the format strings are simply

copied in order to produce the appropriate spacing.

Exercise 4: (3) Modify Receipt.java so that the widths are all controlled
by a single set of constant values. The goal is to allow you to easily change a
width by changing a single value in one place.

Formatter conversions
These are the conversions you’ll come across most frequently:

Conversion Characters

d Integral (as decimal)

c Unicode character

b Boolean value

s String

f Floating point (as decimal)

e Floating point (in scientific notation)

x Integral (as hex)

h Hash code (as hex)

% Literal “%”

Here’s an example that shows these conversions in action:

//: strings/Conversion.java

import java.math.*;

import java.util.*;

Strings 515

public class Conversion {

 public static void main(String[] args) {

 Formatter f = new Formatter(System.out);

 char u = 'a';

 System.out.println("u = 'a'");

 f.format("s: %s\n", u);

 // f.format("d: %d\n", u);

 f.format("c: %c\n", u);

 f.format("b: %b\n", u);

 // f.format("f: %f\n", u);

 // f.format("e: %e\n", u);

 // f.format("x: %x\n", u);

 f.format("h: %h\n", u);

 int v = 121;

 System.out.println("v = 121");

 f.format("d: %d\n", v);

 f.format("c: %c\n", v);

 f.format("b: %b\n", v);

 f.format("s: %s\n", v);

 // f.format("f: %f\n", v);

 // f.format("e: %e\n", v);

 f.format("x: %x\n", v);

 f.format("h: %h\n", v);

 BigInteger w = new BigInteger("50000000000000");

 System.out.println(

 "w = new BigInteger(\"50000000000000\")");

 f.format("d: %d\n", w);

 // f.format("c: %c\n", w);

 f.format("b: %b\n", w);

 f.format("s: %s\n", w);

 // f.format("f: %f\n", w);

 // f.format("e: %e\n", w);

 f.format("x: %x\n", w);

 f.format("h: %h\n", w);

 double x = 179.543;

 System.out.println("x = 179.543");

 // f.format("d: %d\n", x);

 // f.format("c: %c\n", x);

 f.format("b: %b\n", x);

 f.format("s: %s\n", x);

516 Thinking in Java Bruce Eckel

 f.format("f: %f\n", x);

 f.format("e: %e\n", x);

 // f.format("x: %x\n", x);

 f.format("h: %h\n", x);

 Conversion y = new Conversion();

 System.out.println("y = new Conversion()");

 // f.format("d: %d\n", y);

 // f.format("c: %c\n", y);

 f.format("b: %b\n", y);

 f.format("s: %s\n", y);

 // f.format("f: %f\n", y);

 // f.format("e: %e\n", y);

 // f.format("x: %x\n", y);

 f.format("h: %h\n", y);

 boolean z = false;

 System.out.println("z = false");

 // f.format("d: %d\n", z);

 // f.format("c: %c\n", z);

 f.format("b: %b\n", z);

 f.format("s: %s\n", z);

 // f.format("f: %f\n", z);

 // f.format("e: %e\n", z);

 // f.format("x: %x\n", z);

 f.format("h: %h\n", z);

 }

} /* Output: (Sample)

u = 'a'

s: a

c: a

b: true

h: 61

v = 121

d: 121

c: y

b: true

s: 121

x: 79

h: 79

w = new BigInteger("50000000000000")

d: 50000000000000

b: true

s: 50000000000000

Strings 517

x: 2d79883d2000

h: 8842a1a7

x = 179.543

b: true

s: 179.543

f: 179.543000

e: 1.795430e+02

h: 1ef462c

y = new Conversion()

b: true

s: Conversion@9cab16

h: 9cab16

z = false

b: false

s: false

h: 4d5

*///:~

The commented lines show conversions that are invalid for that particular

variable type; executing them will trigger an exception.

Notice that the ‘b’ conversion works for each variable above. Although it’s

valid for any argument type, it might not behave as you’d expect. For

boolean primitives or Boolean objects, the result will be true or false,

accordingly. However, for any other argument, as long as the argument type

is not null the result is always true. Even the numeric value of zero, which is

synonymous with false in many languages (including C), will produce true,

so be careful when using this conversion with non-boolean types.

There are more obscure conversion types and other format specifier options.

You can read about these in the JDK documentation for the Formatter

class.

Exercise 5: (5) For each of the basic conversion types in the above table,
write the most complex formatting expression possible. That is, use all the
possible format specifiers available for that conversion type.

String.format()
Java SE5 also took a cue from C’s sprintf(), which is used to create Strings.

String.format() is a static method which takes all the same arguments as

Formatter’s format() but returns a String. It can come in handy when

you only need to call format() once:

518 Thinking in Java Bruce Eckel

//: strings/DatabaseException.java

public class DatabaseException extends Exception {

 public DatabaseException(int transactionID, int queryID,

 String message) {

 super(String.format("(t%d, q%d) %s", transactionID,

 queryID, message));

 }

 public static void main(String[] args) {

 try {

 throw new DatabaseException(3, 7, "Write failed");

 } catch(Exception e) {

 System.out.println(e);

 }

 }

} /* Output:

DatabaseException: (t3, q7) Write failed

*///:~

Under the hood, all String.format() does is instantiate a Formatter and

pass your arguments to it, but using this convenience method can often be

clearer and easier than doing it by hand.

A hex dump tool
As a second example, often you want to look at the bytes inside a binary file

using hex format. Here’s a small utility that displays a binary array of bytes in

a readable hex format, using String.format():

//: net/mindview/util/Hex.java

package net.mindview.util;

import java.io.*;

public class Hex {

 public static String format(byte[] data) {

 StringBuilder result = new StringBuilder();

 int n = 0;

 for(byte b : data) {

 if(n % 16 == 0)

 result.append(String.format("%05X: ", n));

 result.append(String.format("%02X ", b));

 n++;

 if(n % 16 == 0) result.append("\n");

 }

 result.append("\n");

Strings 519

 return result.toString();

 }

 public static void main(String[] args) throws Exception {

 if(args.length == 0)

 // Test by displaying this class file:

 System.out.println(

 format(BinaryFile.read("Hex.class")));

 else

 System.out.println(

 format(BinaryFile.read(new File(args[0]))));

 }

} /* Output: (Sample)

00000: CA FE BA BE 00 00 00 31 00 52 0A 00 05 00 22 07

00010: 00 23 0A 00 02 00 22 08 00 24 07 00 25 0A 00 26

00020: 00 27 0A 00 28 00 29 0A 00 02 00 2A 08 00 2B 0A

00030: 00 2C 00 2D 08 00 2E 0A 00 02 00 2F 09 00 30 00

00040: 31 08 00 32 0A 00 33 00 34 0A 00 15 00 35 0A 00

00050: 36 00 37 07 00 38 0A 00 12 00 39 0A 00 33 00 3A

...

*///:~

To open and read the binary file, this uses another utility that will be

introduced in the I/O chapter: net.mindview.util.BinaryFile. The

read() method returns the entire file as a byte array.

Exercise 6: (2) Create a class that contains int, long, float and double
fields. Create a toString() method for this class that uses
String.format(), and demonstrate that your class works correctly.

Regular expressions
Regular expressions have long been integral to standard Unix utilities like

sed and awk, and languages like Python and Perl (some would argue that they

are the predominant reason for Perl’s success). String manipulation tools

were previously delegated to the String, StringBuffer, and

StringTokenizer classes in Java, which had relatively simple facilities

compared to regular expressions.

Regular expressions are powerful and flexible text-processing tools. They

allow you to specify, programmatically, complex patterns of text that can be

discovered in an input string. Once you discover these patterns, you can then

react to them any way you want. Although the syntax of regular expressions

can be intimidating at first, they provide a compact and dynamic language

520 Thinking in Java Bruce Eckel

that can be employed to solve all sorts of string processing, matching and

selection, editing, and verification problems in a completely general way.

Basics
A regular expression is a way to describe strings in general terms, so that you

can say, “If a string has these things in it, then it matches what I’m looking

for.” For example, to say that a number might or might not be preceded by a

minus sign, you put in the minus sign followed by a question mark, like this:

-?

To describe an integer, you say that it’s one or more digits. In regular

expressions, a digit is described by saying ‘\d’. If you have any experience

with regular expressions in other languages, you’ll immediately notice a

difference in the way backslashes are handled. In other languages, ‘\\’ means

“I want to insert a plain old (literal) backslash in the regular expression. Don’t

give it any special meaning.” In Java, ‘\\’ means “I’m inserting a regular

expression backslash, so that the following character has special meaning.”

For example, if you want to indicate a digit, your regular expression string

will be ‘\\d’. If you want to insert a literal backslash, you say ‘\\\\’. However,

things like newlines and tabs just use a single backslash: ‘\n\t’.

To indicate “one or more of the preceding expression,” you use a ‘+’. So to

say, “possibly a minus sign, followed by one or more digits,” you write:

-?\\d+

The simplest way to use regular expressions is to use the functionality built

into the String class. For example, we can see whether a String matches the

regular expression above:

//: strings/IntegerMatch.java

public class IntegerMatch {

 public static void main(String[] args) {

 System.out.println("-1234".matches("-?\\d+"));

 System.out.println("5678".matches("-?\\d+"));

 System.out.println("+911".matches("-?\\d+"));

 System.out.println("+911".matches("(-|\\+)?\\d+"));

 }

} /* Output:

true

true

Strings 521

false

true

*///:~

The first two expressions match, but the third one starts with a ‘+’, which is a

legitimate sign but means the number doesn’t match the regular expression.

So we need a way to say, “may start with a + or a -.” In regular expressions,

parentheses have the effect of grouping an expression, and the vertical bar ‘|’

means OR. So

(-|\\+)?

means that this part of the string may be either a ‘-’ or a ‘+’ or nothing

(because of the ‘?’). Because the ‘+’ character has special meaning in regular

expressions, it must be escaped with a ‘\\’ in order to appear as an ordinary

character in the expression.

A useful regular expression tool that’s built into String is split(), which

means, “Split this string around matches of the given regular expression.”

//: strings/Splitting.java

import java.util.*;

public class Splitting {

 public static String knights =

 "Then, when you have found the shrubbery, you must " +

 "cut down the mightiest tree in the forest... " +

 "with... a herring!";

 public static void split(String regex) {

 System.out.println(

 Arrays.toString(knights.split(regex)));

 }

 public static void main(String[] args) {

 split(" "); // Doesn't have to contain regex chars

 split("\\W+"); // Non-word characters

 split("n\\W+"); // 'n' followed by non-word characters

 }

} /* Output:

[Then,, when, you, have, found, the, shrubbery,, you, must,

cut, down, the, mightiest, tree, in, the, forest...,

with..., a, herring!]

[Then, when, you, have, found, the, shrubbery, you, must,

cut, down, the, mightiest, tree, in, the, forest, with, a,

herring]

522 Thinking in Java Bruce Eckel

[The, whe, you have found the shrubbery, you must cut dow,

the mightiest tree i, the forest... with... a herring!]

*///:~

First, note that you may use ordinary characters as regular expressions—a

regular expression doesn’t have to contain special characters, as you can see

in the first call to split(), which just splits on whitespace.

The second and third calls to split() use ‘\W’, which means a non-word

character (the lowercase version, ‘\w’, means a word character)—you can see

that the punctuation has been removed in the second case. The third call to

split() says, “the letter n followed by one or more non-word characters.”

You can see that the split patterns do not appear in the result.

An overloaded version of String.split() allows you to limit the number of

splits that occur.

The final regular expression tool built into String is replacement. You can

either replace the first occurrence, or all of them:

//: strings/Replacing.java

import static net.mindview.util.Print.*;

public class Replacing {

 static String s = Splitting.knights;

 public static void main(String[] args) {

 print(s.replaceFirst("f\\w+", "located"));

 print(s.replaceAll("shrubbery|tree|herring","banana"));

 }

} /* Output:

Then, when you have located the shrubbery, you must cut down

the mightiest tree in the forest... with... a herring!

Then, when you have found the banana, you must cut down the

mightiest banana in the forest... with... a banana!

*///:~

The first expression matches the letter f followed by one or more word

characters (note that the w is lowercase this time). It only replaces the first

match that it finds, so the word “found” is replaced by the word “located.”

The second expression matches any of the three words separated by the OR

vertical bars, and it replaces all matches that it finds.

Strings 523

You’ll see that the non-String regular expressions have more powerful

replacement tools—for example, you can call methods to perform

replacements. Non-String regular expressions are also significantly more

efficient if you need to use the regular expression more than once.

Exercise 7: (5) Using the documentation for java.util.regex.Pattern as
a resource, write and test a regular expression that checks a sentence to see
that it begins with a capital letter and ends with a period.

Exercise 8: (2) Split the string Splitting.knights on the words “the” or
“you.”

Exercise 9: (4) Using the documentation for java.util.regex.Pattern as
a resource, replace all the vowels in Splitting.knights with underscores.

Creating regular expressions
You can begin learning regular expressions with a subset of the possible

constructs. A complete list of constructs for building regular expressions can

be found in the JDK documentation for the Pattern class for package

java.util.regex.

Characters

B The specific character B

\xhh Character with hex value 0xhh

\uhhhh The Unicode character with hex representation
0xhhhh

\t Tab

\n Newline

\r Carriage return

\f Form feed

\e Escape

The power of regular expressions begins to appear when you are defining

character classes. Here are some typical ways to create character classes, and

some predefined classes:

Character Classes

. Any character

[abc] Any of the characters a, b, or c (same as

524 Thinking in Java Bruce Eckel

a|b|c)

[^abc] Any character except a, b, and c (negation)

[a-zA-Z] Any character a through z or A through Z
(range)

[abc[hij]] Any of a,b,c,h,i,j (same as a|b|c|h|i|j)
(union)

[a-z&&[hij]] Either h, i, or j (intersection)

\s A whitespace character (space, tab, newline,
form feed, carriage return)

\S A non-whitespace character ([^\s])

\d A numeric digit [0-9]

\D A non-digit [^0-9]

\w A word character [a-zA-Z_0-9]

\W A non-word character [^\w]

What’s shown here is only a sample; you’ll want to bookmark the JDK

documentation page for java.util.regex.Pattern so you can easily access all

the possible regular expression patterns.

Logical Operators

XY X followed by Y

X|Y X or Y

(X) A capturing group. You can refer to the ith
captured group later in the expression with
\i.

Boundary Matchers

^ Beginning of a line

$ End of a line

\b Word boundary

\B Non-word boundary

\G End of the previous match

As an example, each of the following successfully matches the character

sequence “Rudolph”:

Strings 525

//: strings/Rudolph.java

public class Rudolph {

 public static void main(String[] args) {

 for(String pattern : new String[]{ "Rudolph",

 "[rR]udolph", "[rR][aeiou][a-z]ol.*", "R.*" })

 System.out.println("Rudolph".matches(pattern));

 }

} /* Output:

true

true

true

true

*///:~

Of course, your goal should not be to create the most obfuscated regular

expression, but rather the simplest one necessary to do the job. You’ll find

that, once you start writing regular expressions, you’ll often use your code as

a reference when writing new regular expressions.

Quantifiers
A quantifier describes the way that a pattern absorbs input text:

• Greedy: Quantifiers are greedy unless otherwise altered. A greedy

expression finds as many possible matches for the pattern as possible.

A typical cause of problems is to assume that your pattern will only

match the first possible group of characters, when it’s actually greedy

and will keep going until it’s matched the largest possible string.

• Reluctant: Specified with a question mark, this quantifier matches

the minimum number of characters necessary to satisfy the pattern.

Also called lazy, minimal matching, non-greedy, or ungreedy.

• Possessive: Currently this is only available in Java (not in other

languages) and is more advanced, so you probably won’t use it right

away. As a regular expression is applied to a string, it generates many

states so that it can backtrack if the match fails. Possessive quantifiers

do not keep those intermediate states, and thus prevent backtracking.

They can be used to prevent a regular expression from running away

and also to make it execute more efficiently.

Greedy Reluctant Possessive Matches

526 Thinking in Java Bruce Eckel

Greedy Reluctant Possessive Matches

X? X?? X?+ X, one or none

X* X*? X*+ X, zero or more

X+ X+? X++ X, one or more

X{n} X{n}? X{n}+ X, exactly n times

X{n,} X{n,}? X{n,}+ X, at least n times

X{n,m} X{n,m}? X{n,m}+ X, at least n but not more

than m times

Keep in mind that the expression ‘X’ will often need to be surrounded in

parentheses for it to work the way you desire. For example:

abc+

might seem like it would match the sequence ‘abc’ one or more times, and if

you apply it to the input string ‘abcabcabc’, you will in fact get three matches.

However, the expression actually says, “Match ‘ab’ followed by one or more

occurrences of ‘c’.” To match the entire string ‘abc’ one or more times, you

must say:

(abc)+

You can easily be fooled when using regular expressions; it’s an orthogonal

language, on top of Java.

CharSequence

The interface called CharSequence establishes a generalized definition of a

character sequence abstracted from the CharBuffer, String,

StringBuffer, or StringBuilder classes:

interface CharSequence {

 char charAt(int i);

 int length();

 CharSequence subSequence(int start, int end);

 String toString();

}

Strings 527

The aforementioned classes implement this interface. Many regular

expression operations take CharSequence arguments.

Pattern and Matcher
In general, you’ll compile regular expression objects rather than using the

fairly limited String utilities. To do this, you import java.util.regex, then

compile a regular expression by using the static Pattern.compile()

method. This produces a Pattern object based on its String argument. You

use the Pattern by calling the matcher() method, passing the string that

you want to search. The matcher() method produces a Matcher object,

which has a set of operations to choose from (you can see all of these in the

JDK documentation for java.util.regex.Matcher). For example, the

replaceAll() method replaces all the matches with its argument.

As a first example, the following class can be used to test regular expressions

against an input string. The first command-line argument is the input string

to match against, followed by one or more regular expressions to be applied

to the input. Under Unix/Linux, the regular expressions must be quoted on

the command line. This program can be useful in testing regular expressions

as you construct them to see that they produce your intended matching

behavior.

//: strings/TestRegularExpression.java

// Allows you to easily try out regular expressions.

// {Args: abcabcabcdefabc "abc+" "(abc)+" "(abc){2,}" }

import java.util.regex.*;

import static net.mindview.util.Print.*;

public class TestRegularExpression {

 public static void main(String[] args) {

 if(args.length < 2) {

 print("Usage:\njava TestRegularExpression " +

 "characterSequence regularExpression+");

 System.exit(0);

 }

 print("Input: \"" + args[0] + "\"");

 for(String arg : args) {

 print("Regular expression: \"" + arg + "\"");

 Pattern p = Pattern.compile(arg);

 Matcher m = p.matcher(args[0]);

 while(m.find()) {

 print("Match \"" + m.group() + "\" at positions " +

528 Thinking in Java Bruce Eckel

 m.start() + "-" + (m.end() - 1));

 }

 }

 }

} /* Output:

Input: "abcabcabcdefabc"

Regular expression: "abcabcabcdefabc"

Match "abcabcabcdefabc" at positions 0-14

Regular expression: "abc+"

Match "abc" at positions 0-2

Match "abc" at positions 3-5

Match "abc" at positions 6-8

Match "abc" at positions 12-14

Regular expression: "(abc)+"

Match "abcabcabc" at positions 0-8

Match "abc" at positions 12-14

Regular expression: "(abc){2,}"

Match "abcabcabc" at positions 0-8

*///:~

A Pattern object represents the compiled version of a regular expression. As

seen in the preceding example, you can use the matcher() method and the

input string to produce a Matcher object from the compiled Pattern object.

Pattern also has a static method:

static boolean matches(String regex, CharSequence input)

to check whether regex matches the entire input CharSequence, and a

split() method that produces an array of String that has been broken

around matches of the regex.

A Matcher object is generated by calling Pattern.matcher() with the

input string as an argument. The Matcher object is then used to access the

results, using methods to evaluate the success or failure of different types of

matches:

boolean matches()

boolean lookingAt()

boolean find()

boolean find(int start)

The matches() method is successful if the pattern matches the entire input

string, while lookingAt() is successful if the input string, starting at the

beginning, is a match to the pattern.

Strings 529

Exercise 10: (2) For the phrase “Java now has regular expressions”
evaluate whether the following expressions will find a match:

^Java

\Breg.*

n.w\s+h(a|i)s

s?

s*

s+

s{4}

s{1}.

s{0,3}

Exercise 11: (2) Apply the regular expression

 (?i)((^[aeiou])|(\s+[aeiou]))\w+?[aeiou]\b

to

"Arline ate eight apples and one orange while Anita hadn't

any"

find()
Matcher.find() can be used to discover multiple pattern matches in the

CharSequence to which it is applied. For example:

//: strings/Finding.java

import java.util.regex.*;

import static net.mindview.util.Print.*;

public class Finding {

 public static void main(String[] args) {

 Matcher m = Pattern.compile("\\w+")

 .matcher("Evening is full of the linnet's wings");

 while(m.find())

 printnb(m.group() + " ");

 print();

 int i = 0;

 while(m.find(i)) {

 printnb(m.group() + " ");

 i++;

 }

 }

} /* Output:

Evening is full of the linnet s wings

530 Thinking in Java Bruce Eckel

Evening vening ening ning ing ng g is is s full full ull ll

l of of f the the he e linnet linnet innet nnet net et t s s

wings wings ings ngs gs s

*///:~

The pattern ‘\\w+’ splits the input into words. find() is like an iterator,

moving forward through the input string. However, the second version of

find() can be given an integer argument that tells it the character position

for the beginning of the search—this version resets the search position to the

value of the argument, as you can see from the output.

Groups
Groups are regular expressions set off by parentheses that can be called up

later with their group number. Group 0 indicates the whole expression

match, group 1 is the first parenthesized group, etc. Thus in

A(B(C))D

there are three groups: Group 0 is ABCD, group 1 is BC, and group 2 is C.

The Matcher object has methods to give you information about groups:

public int groupCount() returns the number of groups in this matcher’s

pattern. Group 0 is not included in this count.

public String group() returns group 0 (the entire match) from the

previous match operation (find(), for example).

public String group(int i) returns the given group number during the

previous match operation. If the match was successful, but the group

specified failed to match any part of the input string, then null is returned.

public int start(int group) returns the start index of the group found in

the previous match operation.

public int end(int group) returns the index of the last character, plus one,

of the group found in the previous match operation.

Here’s an example:

//: strings/Groups.java

import java.util.regex.*;

import static net.mindview.util.Print.*;

Strings 531

public class Groups {

 static public final String POEM =

 "Twas brillig, and the slithy toves\n" +

 "Did gyre and gimble in the wabe.\n" +

 "All mimsy were the borogoves,\n" +

 "And the mome raths outgrabe.\n\n" +

 "Beware the Jabberwock, my son,\n" +

 "The jaws that bite, the claws that catch.\n" +

 "Beware the Jubjub bird, and shun\n" +

 "The frumious Bandersnatch.";

 public static void main(String[] args) {

 Matcher m =

 Pattern.compile("(?m)(\\S+)\\s+((\\S+)\\s+(\\S+))$")

 .matcher(POEM);

 while(m.find()) {

 for(int j = 0; j <= m.groupCount(); j++)

 printnb("[" + m.group(j) + "]");

 print();

 }

 }

} /* Output:

[the slithy toves][the][slithy toves][slithy][toves]

[in the wabe.][in][the wabe.][the][wabe.]

[were the borogoves,][were][the borogoves,][the][borogoves,]

[mome raths outgrabe.][mome][raths

outgrabe.][raths][outgrabe.]

[Jabberwock, my son,][Jabberwock,][my son,][my][son,]

[claws that catch.][claws][that catch.][that][catch.]

[bird, and shun][bird,][and shun][and][shun]

[The frumious Bandersnatch.][The][frumious

Bandersnatch.][frumious][Bandersnatch.]

*///:~

The poem is the first part of Lewis Carroll’s “Jabberwocky,” from Through the

Looking Glass. You can see that the regular expression pattern has a number

of parenthesized groups, consisting of any number of non-whitespace

characters (‘\S+’) followed by any number of whitespace characters (‘\s+’).

The goal is to capture the last three words on each line; the end of a line is

delimited by ‘$’. However, the normal behavior is to match ‘$’ with the end of

the entire input sequence, so you must explicitly tell the regular expression to

pay attention to newlines within the input. This is accomplished with the

‘(?m)’ pattern flag at the beginning of the sequence (pattern flags will be

shown shortly).

532 Thinking in Java Bruce Eckel

Exercise 12: (5) Modify Groups.java to count all of the unique words
that do not start with a capital letter.

start() and end()

Following a successful matching operation, start() returns the start index of

the previous match, and end() returns the index of the last character

matched, plus one. Invoking either start() or end() following an

unsuccessful matching operation (or before attempting a matching

operation) produces an IllegalStateException. The following program also

demonstrates matches() and lookingAt():3

//: strings/StartEnd.java

import java.util.regex.*;

import static net.mindview.util.Print.*;

public class StartEnd {

 public static String input =

 "As long as there is injustice, whenever a\n" +

 "Targathian baby cries out, wherever a distress\n" +

 "signal sounds among the stars ... We'll be there.\n" +

 "This fine ship, and this fine crew ...\n" +

 "Never give up! Never surrender!";

 private static class Display {

 private boolean regexPrinted = false;

 private String regex;

 Display(String regex) { this.regex = regex; }

 void display(String message) {

 if(!regexPrinted) {

 print(regex);

 regexPrinted = true;

 }

 print(message);

 }

 }

 static void examine(String s, String regex) {

 Display d = new Display(regex);

 Pattern p = Pattern.compile(regex);

 Matcher m = p.matcher(s);

 while(m.find())

 d.display("find() '" + m.group() +

3 Quote from one of Commander Taggart’s speeches on Galaxy Quest.

Strings 533

 "' start = "+ m.start() + " end = " + m.end());

 if(m.lookingAt()) // No reset() necessary

 d.display("lookingAt() start = "

 + m.start() + " end = " + m.end());

 if(m.matches()) // No reset() necessary

 d.display("matches() start = "

 + m.start() + " end = " + m.end());

 }

 public static void main(String[] args) {

 for(String in : input.split("\n")) {

 print("input : " + in);

 for(String regex : new String[]{"\\w*ere\\w*",

 "\\w*ever", "T\\w+", "Never.*?!"})

 examine(in, regex);

 }

 }

} /* Output:

input : As long as there is injustice, whenever a

\w*ere\w*

find() 'there' start = 11 end = 16

\w*ever

find() 'whenever' start = 31 end = 39

input : Targathian baby cries out, wherever a distress

\w*ere\w*

find() 'wherever' start = 27 end = 35

\w*ever

find() 'wherever' start = 27 end = 35

T\w+

find() 'Targathian' start = 0 end = 10

lookingAt() start = 0 end = 10

input : signal sounds among the stars ... We'll be there.

\w*ere\w*

find() 'there' start = 43 end = 48

input : This fine ship, and this fine crew ...

T\w+

find() 'This' start = 0 end = 4

lookingAt() start = 0 end = 4

input : Never give up! Never surrender!

\w*ever

find() 'Never' start = 0 end = 5

find() 'Never' start = 15 end = 20

lookingAt() start = 0 end = 5

Never.*?!

find() 'Never give up!' start = 0 end = 14

534 Thinking in Java Bruce Eckel

find() 'Never surrender!' start = 15 end = 31

lookingAt() start = 0 end = 14

matches() start = 0 end = 31

*///:~

Notice that find() will locate the regular expression anywhere in the input,

but lookingAt() and matches() only succeed if the regular expression

starts matching at the very beginning of the input. While matches() only

succeeds if the entire input matches the regular expression, lookingAt()4

succeeds if only the first part of the input matches.

Exercise 13: (2) Modify StartEnd.java so that it uses Groups.POEM
as input, but still produces positive outputs for find(), lookingAt() and
matches().

Pattern flags
An alternative compile() method accepts flags that affect matching

behavior:

Pattern Pattern.compile(String regex, int flag)

where flag is drawn from among the following Pattern class constants:

Compile Flag Effect

Pattern.CANON_EQ Two characters will be considered to

match if, and only if, their full

canonical decompositions match. The

expression ‘\u003F’, for example, will

match the string ‘?’ when this flag is

specified. By default, matching does

not take canonical equivalence into

account.

Pattern.CASE_INSENSITIVE

(?i)

By default, case-insensitive matching

assumes that only characters in the US-

ASCII character set are being matched.

4 I have no idea how they came up with this method name, or what it’s supposed to refer
to. But it’s reassuring to know that whoever comes up with nonintuitive method names is
still employed. And that their apparent policy of not reviewing code designs is still in
place. Sorry for the sarcasm, but this kind of thing gets tiresome after a few years.

Strings 535

This flag allows your pattern to match

without regard to case (upper or

lower). Unicode-aware case-insensitive

matching can be enabled by specifying

the UNICODE_CASE flag in

conjunction with this flag.

Pattern.COMMENTS

(?x)

In this mode, whitespace is ignored,

and embedded comments starting with

are ignored until the end of a line.

Unix lines mode can also be enabled

via the embedded flag expression.

Pattern.DOTALL

(?s)

In dotall mode, the expression ‘.’

matches any character, including a line

terminator. By default, the ‘.’

expression does not match line

terminators.

Pattern.MULTILINE

(?m)

In multiline mode, the expressions ‘^’

and ‘$’ match the beginning and

ending of a line, respectively. ‘^’ also

matches the beginning of the input

string, and ‘$’ also matches the end of

the input string. By default, these

expressions only match at the

beginning and the end of the entire

input string.

Pattern.UNICODE_CASE

(?u)

Case-insensitive matching, when

enabled by the CASE_INSENSITIVE

flag, is done in a manner consistent

with the Unicode Standard. By default,

case-insensitive matching assumes that

only characters in the US-ASCII

character set are being matched.

Pattern.UNIX_LINES

(?d)

In this mode, only the ‘\n’ line

terminator is recognized in the

behavior of ‘.’, ‘^’, and ‘$’.

536 Thinking in Java Bruce Eckel

Particularly useful among these flags are Pattern.CASE_INSENSITIVE,

Pattern.MULTILINE, and Pattern.COMMENTS (which is helpful for

clarity and/or documentation). Note that the behavior of most of the flags can

also be obtained by inserting the parenthesized characters, shown beneath

the flags in the table, into your regular expression preceding the place where

you want the mode to take effect.

You can combine the effect of these and other flags through an “OR” (‘|’)

operation:

//: strings/ReFlags.java

import java.util.regex.*;

public class ReFlags {

 public static void main(String[] args) {

 Pattern p = Pattern.compile("^java",

 Pattern.CASE_INSENSITIVE | Pattern.MULTILINE);

 Matcher m = p.matcher(

 "java has regex\nJava has regex\n" +

 "JAVA has pretty good regular expressions\n" +

 "Regular expressions are in Java");

 while(m.find())

 System.out.println(m.group());

 }

} /* Output:

java

Java

JAVA

*///:~

This creates a pattern that will match lines starting with “java,” “Java,”

“JAVA,” etc., and attempt a match for each line within a multiline set

(matches starting at the beginning of the character sequence and following

each line terminator within the character sequence). Note that the group()

method only produces the matched portion.

split()
split() divides an input string into an array of String objects, delimited by

the regular expression.

String[] split(CharSequence input)

String[] split(CharSequence input, int limit)

Strings 537

This is a handy way to break input text on a common boundary:

//: strings/SplitDemo.java

import java.util.regex.*;

import java.util.*;

import static net.mindview.util.Print.*;

public class SplitDemo {

 public static void main(String[] args) {

 String input =

 "This!!unusual use!!of exclamation!!points";

 print(Arrays.toString(

 Pattern.compile("!!").split(input)));

 // Only do the first three:

 print(Arrays.toString(

 Pattern.compile("!!").split(input, 3)));

 }

} /* Output:

[This, unusual use, of exclamation, points]

[This, unusual use, of exclamation!!points]

*///:~

The second form of split() limits the number of splits that occur.

Exercise 14: (1) Rewrite SplitDemo using String.split().

Replace operations
Regular expressions are especially useful to replace text. Here are the

available methods:

replaceFirst(String replacement) replaces the first matching part of the

input string with replacement.

replaceAll(String replacement) replaces every matching part of the

input string with replacement.

appendReplacement(StringBuffer sbuf, String replacement)

performs step-by-step replacements into sbuf, rather than replacing only the

first one or all of them, as in replaceFirst() and replaceAll(),

respectively. This is a very important method, because it allows you to call

methods and perform other processing in order to produce replacement

(replaceFirst() and replaceAll() are only able to put in fixed strings).

538 Thinking in Java Bruce Eckel

With this method, you can programmatically pick apart the groups and create

powerful replacements.

appendTail(StringBuffer sbuf) is invoked after one or more invocations

of the appendReplacement() method in order to copy the remainder of

the input string.

Here’s an example that shows the use of all the replace operations. The block

of commented text at the beginning is extracted and processed with regular

expressions for use as input in the rest of the example:

//: strings/TheReplacements.java

import java.util.regex.*;

import net.mindview.util.*;

import static net.mindview.util.Print.*;

/*! Here's a block of text to use as input to

 the regular expression matcher. Note that we'll

 first extract the block of text by looking for

 the special delimiters, then process the

 extracted block. !*/

public class TheReplacements {

 public static void main(String[] args) throws Exception {

 String s = TextFile.read("TheReplacements.java");

 // Match the specially commented block of text above:

 Matcher mInput =

 Pattern.compile("/*!(.*)!*/", Pattern.DOTALL)

 .matcher(s);

 if(mInput.find())

 s = mInput.group(1); // Captured by parentheses

 // Replace two or more spaces with a single space:

 s = s.replaceAll(" {2,}", " ");

 // Replace one or more spaces at the beginning of each

 // line with no spaces. Must enable MULTILINE mode:

 s = s.replaceAll("(?m)^ +", "");

 print(s);

 s = s.replaceFirst("[aeiou]", "(VOWEL1)");

 StringBuffer sbuf = new StringBuffer();

 Pattern p = Pattern.compile("[aeiou]");

 Matcher m = p.matcher(s);

 // Process the find information as you

 // perform the replacements:

 while(m.find())

Strings 539

 m.appendReplacement(sbuf, m.group().toUpperCase());

 // Put in the remainder of the text:

 m.appendTail(sbuf);

 print(sbuf);

 }

} /* Output:

Here's a block of text to use as input to

the regular expression matcher. Note that we'll

first extract the block of text by looking for

the special delimiters, then process the

extracted block.

H(VOWEL1)rE's A blOck Of tExt tO UsE As InpUt tO

thE rEgUlAr ExprEssIOn mAtchEr. NOtE thAt wE'll

fIrst ExtrAct thE blOck Of tExt by lOOkIng fOr

thE spEcIAl dElImItErs, thEn prOcEss thE

ExtrActEd blOck.

*///:~

The file is opened and read using the TextFile class in the

net.mindview.util library (the code for this will be shown in the I/O

chapter). The static read() method reads the entire file and returns it as a

String. mInput is created to match all the text (notice the grouping

parentheses) between ‘/*!’ and ‘!*/’. Then, more than two spaces are reduced

to a single space, and any space at the beginning of each line is removed (in

order to do this on all lines and not just the beginning of the input, multiline

mode must be enabled). These two replacements are performed with the

equivalent (but more convenient, in this case) replaceAll() that’s part of

String. Note that since each replacement is only used once in the program,

there’s no extra cost to doing it this way rather than precompiling it as a

Pattern.

replaceFirst() only performs the first replacement that it finds. In

addition, the replacement strings in replaceFirst() and replaceAll() are

just literals, so if you want to perform some processing on each replacement,

they don’t help. In that case, you need to use appendReplacement(),

which allows you to write any amount of code in the process of performing

the replacement. In the preceding example, a group() is selected and

processed—in this situation, setting the vowel found by the regular

expression to uppercase—as the resulting sbuf is being built. Normally, you

step through and perform all the replacements and then call appendTail(),

but if you want to simulate replaceFirst() (or “replace n”), you just do the

replacement one time and then call appendTail() to put the rest into sbuf.

540 Thinking in Java Bruce Eckel

appendReplacement() also allows you to refer to captured groups directly

in the replacement string by saying “$g”, where ‘g’ is the group number.

However, this is for simpler processing and wouldn’t give you the desired

results in the preceding program.

reset()
An existing Matcher object can be applied to a new character sequence using

the reset() methods:

//: strings/Resetting.java

import java.util.regex.*;

public class Resetting {

 public static void main(String[] args) throws Exception {

 Matcher m = Pattern.compile("[frb][aiu][gx]")

 .matcher("fix the rug with bags");

 while(m.find())

 System.out.print(m.group() + " ");

 System.out.println();

 m.reset("fix the rig with rags");

 while(m.find())

 System.out.print(m.group() + " ");

 }

} /* Output:

fix rug bag

fix rig rag

*///:~

reset() without any arguments sets the Matcher to the beginning of the

current sequence.

Regular expressions and Java I/O
Most of the examples so far have shown regular expressions applied to static

strings. The following example shows one way to apply regular expressions to

search for matches in a file. Inspired by Unix’s grep, JGrep.java takes two

arguments: a file name and the regular expression that you want to match.

The output shows each line where a match occurs and the match position(s)

within the line.

//: strings/JGrep.java

// A very simple version of the "grep" program.

// {Args: JGrep.java "\\b[Ssct]\\w+"}

Strings 541

import java.util.regex.*;

import net.mindview.util.*;

public class JGrep {

 public static void main(String[] args) throws Exception {

 if(args.length < 2) {

 System.out.println("Usage: java JGrep file regex");

 System.exit(0);

 }

 Pattern p = Pattern.compile(args[1]);

 // Iterate through the lines of the input file:

 int index = 0;

 Matcher m = p.matcher("");

 for(String line : new TextFile(args[0])) {

 m.reset(line);

 while(m.find())

 System.out.println(index++ + ": " +

 m.group() + ": " + m.start());

 }

 }

} /* Output: (Sample)

0: strings: 4

1: simple: 10

2: the: 28

3: Ssct: 26

4: class: 7

5: static: 9

6: String: 26

7: throws: 41

8: System: 6

9: System: 6

10: compile: 24

11: through: 15

12: the: 23

13: the: 36

14: String: 8

15: System: 8

16: start: 31

*///:~

The file is opened as a net.mindview.util.TextFile object (which will be

shown in the I/O chapter), which reads the lines of the file into an

ArrayList. This means that the foreach syntax can iterate through the lines

in the TextFile object.

542 Thinking in Java Bruce Eckel

Although it’s possible to create a new Matcher object within the for loop, it

is slightly more optimal to create an empty Matcher object outside the loop

and use the reset() method to assign each line of the input to the Matcher.

The result is scanned with find().

The test arguments open the JGrep.java file to read as input, and search for

words starting with [Ssct].

You can learn much more about regular expressions in Mastering Regular

Expressions, 2nd Edition, by Jeffrey E. F. Friedl (O’Reilly, 2002). There are

also numerous introductions to regular expressions on the Internet, and you

can often find helpful information in the documentation for languages like

Perl and Python.

Exercise 15: (5) Modify JGrep.java to accept flags as arguments (e.g.,
Pattern.CASE_INSENSITIVE, Pattern.MULTILINE).

Exercise 16: (5) Modify JGrep.java to accept a directory name or a file
name as argument (if a directory is provided, search should include all files in
the directory). Hint: You can generate a list of file names with:

File[] files = new File(".").listFiles();

Exercise 17: (8) Write a program that reads a Java source-code file (you
provide the file name on the command line) and displays all the comments.

Exercise 18: (8) Write a program that reads a Java source-code file (you
provide the file name on the command line) and displays all the string literals
in the code.

Exercise 19: (8) Building on the previous two exercises, write a program
that examines Java source code and produces all the class names used in a
particular program.

Scanning input
Until now it has been relatively painful to read data from a human-readable

file or from standard input. The usual solution is to read in a line of text,

tokenize it, and then use the various parse methods of Integer, Double, etc.,

to parse the data:

//: strings/SimpleRead.java

import java.io.*;

Strings 543

public class SimpleRead {

 public static BufferedReader input = new BufferedReader(

 new StringReader("Sir Robin of Camelot\n22 1.61803"));

 public static void main(String[] args) {

 try {

 System.out.println("What is your name?");

 String name = input.readLine();

 System.out.println(name);

 System.out.println(

 "How old are you? What is your favorite double?");

 System.out.println("(input: <age> <double>)");

 String numbers = input.readLine();

 System.out.println(numbers);

 String[] numArray = numbers.split(" ");

 int age = Integer.parseInt(numArray[0]);

 double favorite = Double.parseDouble(numArray[1]);

 System.out.format("Hi %s.\n", name);

 System.out.format("In 5 years you will be %d.\n",

 age + 5);

 System.out.format("My favorite double is %f.",

 favorite / 2);

 } catch(IOException e) {

 System.err.println("I/O exception");

 }

 }

} /* Output:

What is your name?

Sir Robin of Camelot

How old are you? What is your favorite double?

(input: <age> <double>)

22 1.61803

Hi Sir Robin of Camelot.

In 5 years you will be 27.

My favorite double is 0.809015.

*///:~

The input field uses classes from java.io, which will not officially be

introduced until the I/O chapter. A StringReader turns a String into a

readable stream, and this object is used to create a BufferedReader

because BufferedReader has a readLine() method. The result is that the

input object can be read a line at a time, just as if it were standard input

from the console.

544 Thinking in Java Bruce Eckel

readLine() is used to get the String for each line of input. It’s fairly

straightforward when you want to get one input for each line of data, but if

two input values are on a single line, things get messy—the line must be split

so we can parse each input separately. Here, the splitting takes place when

creating numArray, but note that the split() method was introduced in

J2SE1.4, so before that you had to do something else.

The Scanner class, added in Java SE5, relieves much of the burden of

scanning input:

//: strings/BetterRead.java

import java.util.*;

public class BetterRead {

 public static void main(String[] args) {

 Scanner stdin = new Scanner(SimpleRead.input);

 System.out.println("What is your name?");

 String name = stdin.nextLine();

 System.out.println(name);

 System.out.println(

 "How old are you? What is your favorite double?");

 System.out.println("(input: <age> <double>)");

 int age = stdin.nextInt();

 double favorite = stdin.nextDouble();

 System.out.println(age);

 System.out.println(favorite);

 System.out.format("Hi %s.\n", name);

 System.out.format("In 5 years you will be %d.\n",

 age + 5);

 System.out.format("My favorite double is %f.",

 favorite / 2);

 }

} /* Output:

What is your name?

Sir Robin of Camelot

How old are you? What is your favorite double?

(input: <age> <double>)

22

1.61803

Hi Sir Robin of Camelot.

In 5 years you will be 27.

My favorite double is 0.809015.

*///:~

Strings 545

The Scanner constructor can take just about any kind of input object,

including a File object (which will also be covered in the I/O chapter), an

InputStream, a String, or in this case a Readable, which is an interface

introduced in Java SE5 to describe “something that has a read() method.”

The BufferedReader from the previous example falls into this category.

With Scanner, the input, tokenizing, and parsing are all ensconced in

various different kinds of “next” methods. A plain next() returns the next

String token, and there are “next” methods for all the primitive types (except

char) as well as for BigDecimal and BigInteger. All of the “next” methods

block, meaning they will return only after a complete data token is available

for input. There are also corresponding “hasNext” methods that return true

if the next input token is of the correct type.

An interesting difference between the two previous examples above is the lack

of a try block for IOExceptions in BetterRead.java. One of the

assumptions made by the Scanner is that an IOException signals the end

of input, and so these are swallowed by the Scanner. However, the most

recent exception is available through the ioException() method, so you are

able to examine it if necessary.

Exercise 20: (2) Create a class that contains int, long, float and double
and String fields. Create a constructor for this class that takes a single
String argument, and scans that string into the various fields. Add a
toString() method and demonstrate that your class works correctly.

Scanner delimiters
By default, a Scanner splits input tokens along whitespace, but you can also

specify your own delimiter pattern in the form of a regular expression:

//: strings/ScannerDelimiter.java

import java.util.*;

public class ScannerDelimiter {

 public static void main(String[] args) {

 Scanner scanner = new Scanner("12, 42, 78, 99, 42");

 scanner.useDelimiter("\\s*,\\s*");

 while(scanner.hasNextInt())

 System.out.println(scanner.nextInt());

 }

} /* Output:

12

546 Thinking in Java Bruce Eckel

42

78

99

42

*///:~

This example uses commas (surrounded by arbitrary amounts of whitespace)

as the delimiter when reading from the given String. This same technique

can be used to read from comma-delimited files. In addition to

useDelimiter() for setting the delimiter pattern, there is also

delimiter(), which returns the current Pattern being used as a delimiter.

Scanning with regular expressions
In addition to scanning for predefined primitive types, you can also scan for

your own user-defined patterns, which is helpful when scanning more

complex data. This example scans threat data from a log like your firewall

might produce:

//: strings/ThreatAnalyzer.java

import java.util.regex.*;

import java.util.*;

public class ThreatAnalyzer {

 static String threatData =

 "58.27.82.161@02/10/2005\n" +

 "204.45.234.40@02/11/2005\n" +

 "58.27.82.161@02/11/2005\n" +

 "58.27.82.161@02/12/2005\n" +

 "58.27.82.161@02/12/2005\n" +

 "[Next log section with different data format]";

 public static void main(String[] args) {

 Scanner scanner = new Scanner(threatData);

 String pattern = "(\\d+[.]\\d+[.]\\d+[.]\\d+)@" +

 "(\\d{2}/\\d{2}/\\d{4})";

 while(scanner.hasNext(pattern)) {

 scanner.next(pattern);

 MatchResult match = scanner.match();

 String ip = match.group(1);

 String date = match.group(2);

 System.out.format("Threat on %s from %s\n", date,ip);

 }

 }

} /* Output:

Strings 547

Threat on 02/10/2005 from 58.27.82.161

Threat on 02/11/2005 from 204.45.234.40

Threat on 02/11/2005 from 58.27.82.161

Threat on 02/12/2005 from 58.27.82.161

Threat on 02/12/2005 from 58.27.82.161

*///:~

When you use next() with a specific pattern, that pattern is matched against

the next input token. The result is made available by the match() method,

and as you can see above, it works just like the regular expression matching

you saw earlier.

There’s one caveat when scanning with regular expressions. The pattern is

matched against the next input token only, so if your pattern contains a

delimiter it will never be matched.

StringTokenizer
Before regular expressions (in J2SE1.4) or the Scanner class (in Java SE5),

the way to split a string into parts was to “tokenize” it with

StringTokenizer. But now it’s much easier and more succinct to do the

same thing with regular expressions or the Scanner class. Here’s a simple

comparison of StringTokenizer to the other two techniques:

//: strings/ReplacingStringTokenizer.java

import java.util.*;

public class ReplacingStringTokenizer {

 public static void main(String[] args) {

 String input = "But I'm not dead yet! I feel happy!";

 StringTokenizer stoke = new StringTokenizer(input);

 while(stoke.hasMoreElements())

 System.out.print(stoke.nextToken() + " ");

 System.out.println();

 System.out.println(Arrays.toString(input.split(" ")));

 Scanner scanner = new Scanner(input);

 while(scanner.hasNext())

 System.out.print(scanner.next() + " ");

 }

} /* Output:

But I'm not dead yet! I feel happy!

[But, I'm, not, dead, yet!, I, feel, happy!]

But I'm not dead yet! I feel happy!

*///:~

548 Thinking in Java Bruce Eckel

With regular expressions or Scanner objects, you can also split a string into

parts using more complex patterns—something that’s difficult with

StringTokenizer. It seems safe to say that the StringTokenizer is

obsolete.

Summary
In the past, Java support for string manipulation was rudimentary, but in

recent editions of the language we’ve seen far more sophisticated support

adopted from other languages. At this point, the support for strings is

reasonably complete, although you must sometimes pay attention to

efficiency details such as the appropriate use of StringBuilder.

Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for sale from www.MindViewLLC.com.

 549

Type Information
Runtime type information (RTTI) allows you to discover
and use type information while a program is running.

It frees you from the constraint of doing type-oriented things only at compile

time, and can enable some very powerful programs. The need for RTTI

uncovers a plethora of interesting (and often perplexing) OO design issues,

and raises fundamental questions about how you should structure your

programs.

This chapter looks at the ways that Java allows you to discover information

about objects and classes at run time. This takes two forms: “traditional”

RTTI, which assumes that you have all the types available at compile time,

and the reflection mechanism, which allows you to discover and use class

information solely at run time.

The need for RTTI
Consider the now-familiar example of a class hierarchy that uses

polymorphism. The generic type is the base class Shape, and the specific

derived types are Circle, Square, and Triangle:

Shape

draw()

Circle Square Triangle

This is a typical class hierarchy diagram, with the base class at the top and the

derived classes growing downward. The normal goal in object-oriented

programming is for your code to manipulate references to the base type

(Shape, in this case), so if you decide to extend the program by adding a new

class (such as Rhomboid, derived from Shape), the bulk of the code is not

affected. In this example, the dynamically bound method in the Shape

550 Thinking in Java Bruce Eckel

interface is draw(), so the intent is for the client programmer to call

draw() through a generic Shape reference. In all of the derived classes,

draw() is overridden, and because it is a dynamically bound method, the

proper behavior will occur even though it is called through a generic Shape

reference. That’s polymorphism.

Thus, you generally create a specific object (Circle, Square, or Triangle),

upcast it to a Shape (forgetting the specific type of the object), and use that

anonymous Shape reference in the rest of the program.

You might code the Shape hierarchy as follows:

//: typeinfo/Shapes.java

import java.util.*;

abstract class Shape {

 void draw() { System.out.println(this + ".draw()"); }

 abstract public String toString();

}

class Circle extends Shape {

 public String toString() { return "Circle"; }

}

class Square extends Shape {

 public String toString() { return "Square"; }

}

class Triangle extends Shape {

 public String toString() { return "Triangle"; }

}

public class Shapes {

 public static void main(String[] args) {

 List<Shape> shapeList = Arrays.asList(

 new Circle(), new Square(), new Triangle()

);

 for(Shape shape : shapeList)

 shape.draw();

 }

} /* Output:

Circle.draw()

Square.draw()

Triangle.draw()

Type Information 551

*///:~

The base class contains a draw() method that indirectly uses toString() to

print an identifier for the class by passing this to System.out.println()

(notice that toString() is declared abstract to force inheritors to override

it, and to prevent the instantiation of a plain Shape). If an object appears in

a string concatenation expression (involving ‘+’ and String objects), the

toString() method is automatically called to produce a String

representation for that object. Each of the derived classes overrides the

toString() method (from Object) so that draw() ends up

(polymorphically) printing something different in each case.

In this example, the upcast occurs when the shape is placed into the

List<Shape>. During the upcast to Shape, the fact that the objects are

specific types of Shape is lost. To the array, they are just Shapes.

At the point that you fetch an element out of the array, the container—which

is actually holding everything as an Object—automatically casts the result

back to a Shape. This is the most basic form of RTTI, because all casts are

checked at run time for correctness. That’s what RTTI means: At run time,

the type of an object is identified.

In this case, the RTTI cast is only partial: The Object is cast to a Shape, and

not all the way to a Circle, Square, or Triangle. That’s because the only

thing you know at this point is that the List<Shape> is full of Shapes. At

compile time, this is enforced by the container and the Java generic system,

but at run time the cast ensures it.

Now polymorphism takes over and the exact code that’s executed for the

Shape is determined by whether the reference is for a Circle, Square, or

Triangle. And in general, this is how it should be; you want the bulk of your

code to know as little as possible about specific types of objects, and to just

deal with the general representation of a family of objects (in this case,

Shape). As a result, your code will be easier to write, read, and maintain, and

your designs will be easier to implement, understand, and change. So

polymorphism is a general goal in object-oriented programming.

But what if you have a special programming problem that’s easiest to solve if

you know the exact type of a generic reference? For example, suppose you

want to allow your users to highlight all the shapes of any particular type by

turning them a special color. This way, they can find all the triangles on the

screen by highlighting them. Or perhaps your method needs to “rotate” a list

552 Thinking in Java Bruce Eckel

of shapes, but it makes no sense to rotate a circle so you’d like to skip the

circles. With RTTI, you can ask a Shape reference the exact type that it’s

referring to, and thus select and isolate special cases.

The Class object
To understand how RTTI works in Java, you must first know how type

information is represented at run time. This is accomplished through a

special kind of object called the Class object, which contains information

about the class. In fact, the Class object is used to create all of the “regular”

objects of your class. Java performs its RTTI using the Class object, even if

you’re doing something like a cast. The class Class also has a number of

other ways you can use RTTI.

There’s one Class object for each class that is part of your program. That is,

each time you write and compile a new class, a single Class object is also

created (and stored, appropriately enough, in an identically named .class

file). To make an object of that class, the Java Virtual Machine (JVM) that’s

executing your program uses a subsystem called a class loader.

The class loader subsystem can actually comprise a chain of class loaders, but

there’s only one primordial class loader, which is part of the JVM

implementation. The primordial class loader loads so-called trusted classes,

including Java API classes, typically from the local disk. It’s usually not

necessary to have additional class loaders in the chain, but if you have special

needs (such as loading classes in a special way to support Web server

applications, or downloading classes across a network), then you have a way

to hook in additional class loaders.

All classes are loaded into the JVM dynamically, upon the first use of a class.

This happens when the program makes the first reference to a static member

of that class. It turns out that the constructor is also a static method of a

class, even though the static keyword is not used for a constructor.

Therefore, creating a new object of that class using the new operator also

counts as a reference to a static member of the class.

Thus, a Java program isn’t completely loaded before it begins, but instead

pieces of it are loaded when necessary. This is different from many traditional

languages. Dynamic loading enables behavior that is difficult or impossible to

duplicate in a statically loaded language like C++.

Type Information 553

The class loader first checks to see if the Class object for that type is loaded.

If not, the default class loader finds the .class file with that name (an add-on

class loader might, for example, look for the bytecodes in a database instead).

As the bytes for the class are loaded, they are verified to ensure that they have

not been corrupted and that they do not comprise bad Java code (this is one

of the lines of defense for security in Java).

Once the Class object for that type is in memory, it is used to create all

objects of that type. Here’s a program to prove it:

//: typeinfo/SweetShop.java

// Examination of the way the class loader works.

import static net.mindview.util.Print.*;

class Candy {

 static { print("Loading Candy"); }

}

class Gum {

 static { print("Loading Gum"); }

}

class Cookie {

 static { print("Loading Cookie"); }

}

public class SweetShop {

 public static void main(String[] args) {

 print("inside main");

 new Candy();

 print("After creating Candy");

 try {

 Class.forName("Gum");

 } catch(ClassNotFoundException e) {

 print("Couldn't find Gum");

 }

 print("After Class.forName(\"Gum\")");

 new Cookie();

 print("After creating Cookie");

 }

} /* Output:

inside main

Loading Candy

After creating Candy

554 Thinking in Java Bruce Eckel

Loading Gum

After Class.forName("Gum")

Loading Cookie

After creating Cookie

*///:~

Each of the classes Candy, Gum, and Cookie has a static clause that is

executed as the class is loaded for the first time. Information will be printed

to tell you when loading occurs for that class. In main(), the object creations

are spread out between print statements to help detect the time of loading.

You can see from the output that each Class object is loaded only when it’s

needed, and the static initialization is performed upon class loading.

A particularly interesting line is:

Class.forName("Gum");

All Class objects belong to the class Class. A Class object is like any other

object, so you can get and manipulate a reference to it (that’s what the loader

does). One of the ways to get a reference to the Class object is the static

forName() method, which takes a String containing the textual name

(watch the spelling and capitalization!) of the particular class you want a

reference for. It returns a Class reference, which is being ignored here; the

call to forName() is being made for its side effect, which is to load the class

Gum if it isn’t already loaded. In the process of loading, Gum’s static clause

is executed.

In the preceding example, if Class.forName() fails because it can’t find the

class you’re trying to load, it will throw a ClassNotFoundException. Here,

we simply report the problem and move on, but in more sophisticated

programs, you might try to fix the problem inside the exception handler.

Anytime you want to use type information at run time, you must first get a

reference to the appropriate Class object. Class.forName() is one

convenient way to do this, because you don’t need an object of that type in

order to get the Class reference. However, if you already have an object of

the type you’re interested in, you can fetch the Class reference by calling a

method that’s part of the Object root class: getClass(). This returns the

Class reference representing the actual type of the object. Class has many

interesting methods; here are a few of them:

//: typeinfo/toys/ToyTest.java

Type Information 555

// Testing class Class.

package typeinfo.toys;

import static net.mindview.util.Print.*;

interface HasBatteries {}

interface Waterproof {}

interface Shoots {}

class Toy {

 // Comment out the following default constructor

 // to see NoSuchMethodError from (*1*)

 Toy() {}

 Toy(int i) {}

}

class FancyToy extends Toy

implements HasBatteries, Waterproof, Shoots {

 FancyToy() { super(1); }

}

public class ToyTest {

 static void printInfo(Class cc) {

 print("Class name: " + cc.getName() +

 " is interface? [" + cc.isInterface() + "]");

 print("Simple name: " + cc.getSimpleName());

 print("Canonical name : " + cc.getCanonicalName());

 }

 public static void main(String[] args) {

 Class c = null;

 try {

 c = Class.forName("typeinfo.toys.FancyToy");

 } catch(ClassNotFoundException e) {

 print("Can't find FancyToy");

 System.exit(1);

 }

 printInfo(c);

 for(Class face : c.getInterfaces())

 printInfo(face);

 Class up = c.getSuperclass();

 Object obj = null;

 try {

 // Requires default constructor:

 obj = up.newInstance();

 } catch(InstantiationException e) {

556 Thinking in Java Bruce Eckel

 print("Cannot instantiate");

 System.exit(1);

 } catch(IllegalAccessException e) {

 print("Cannot access");

 System.exit(1);

 }

 printInfo(obj.getClass());

 }

} /* Output:

Class name: typeinfo.toys.FancyToy is interface? [false]

Simple name: FancyToy

Canonical name : typeinfo.toys.FancyToy

Class name: typeinfo.toys.HasBatteries is interface? [true]

Simple name: HasBatteries

Canonical name : typeinfo.toys.HasBatteries

Class name: typeinfo.toys.Waterproof is interface? [true]

Simple name: Waterproof

Canonical name : typeinfo.toys.Waterproof

Class name: typeinfo.toys.Shoots is interface? [true]

Simple name: Shoots

Canonical name : typeinfo.toys.Shoots

Class name: typeinfo.toys.Toy is interface? [false]

Simple name: Toy

Canonical name : typeinfo.toys.Toy

*///:~

FancyToy inherits from Toy and implements the interfaces

HasBatteries, Waterproof, and Shoots. In main(), a Class reference is

created and initialized to the FancyToy Class using forName() inside an

appropriate try block. Notice that you must use the fully qualified name

(including the package name) in the string that you pass to forName().

printInfo() uses getName() to produce the fully qualified class name, and

getSimpleName() and getCanonicalName() (introduced in Java SE5)

to produce the name without the package, and the fully qualified name,

respectively. As its name implies, isInterface() tells you whether this Class

object represents an interface. Thus, with the Class object you can find out

just about everything you want to know about a type.

The Class.getInterfaces() method called in main() returns an array of

Class objects representing the interfaces that are contained in the Class

object of interest.

Type Information 557

If you have a Class object, you can also ask it for its direct base class using

getSuperclass(). This returns a Class reference that you can further query.

Thus you can discover an object’s entire class hierarchy at run time.

The newInstance() method of Class is a way to implement a “virtual

constructor,” which allows you to say, “I don’t know exactly what type you

are, but create yourself properly anyway.” In the preceding example, up is

just a Class reference with no further type information known at compile

time. And when you create a new instance, you get back an Object reference.

But that reference is pointing to a Toy object. Of course, before you can send

any messages other than those accepted by Object, you must investigate it a

bit and do some casting. In addition, the class that’s being created with

newInstance() must have a default constructor. Later in this chapter, you’ll

see how to dynamically create objects of classes using any constructor, with

the Java reflection API.

Exercise 1: (1) In ToyTest.java, comment out Toy’s default constructor
and explain what happens.

Exercise 2: (2) Incorporate a new kind of interface into ToyTest.java
and verify that it is detected and displayed properly.

Exercise 3: (2) Add Rhomboid to Shapes.java. Create a Rhomboid,
upcast it to a Shape, then downcast it back to a Rhomboid. Try
downcasting to a Circle and see what happens.

Exercise 4: (2) Modify the previous exercise so that it uses instanceof to
check the type before performing the downcast.

Exercise 5: (3) Implement a rotate(Shape) method in Shapes.java,
such that it checks to see if it is rotating a Circle (and, if so, doesn’t perform
the operation).

Exercise 6: (4) Modify Shapes.java so that it can “highlight” (set a flag
in) all shapes of a particular type. The toString() method for each derived
Shape should indicate whether that Shape is “highlighted.”

Exercise 7: (3) Modify SweetShop.java so that each type of object
creation is controlled by a command-line argument. That is, if your command
line is “java SweetShop Candy,” then only the Candy object is created.
Notice how you can control which Class objects are loaded via the command-
line argument.

558 Thinking in Java Bruce Eckel

Exercise 8: (5) Write a method that takes an object and recursively prints
all the classes in that object’s hierarchy.

Exercise 9: (5) Modify the previous exercise so that it uses
Class.getDeclaredFields() to also display information about the fields in
a class.

Exercise 10: (3) Write a program to determine whether an array of char
is a primitive type or a true Object.

Class literals
Java provides a second way to produce the reference to the Class object: the

class literal. In the preceding program this would look like:

FancyToy.class;

which is not only simpler, but also safer since it’s checked at compile time

(and thus does not need to be placed in a try block). Because it eliminates the

forName() method call, it’s also more efficient.

Class literals work with regular classes as well as interfaces, arrays, and

primitive types. In addition, there’s a standard field called TYPE that exists

for each of the primitive wrapper classes. The TYPE field produces a

reference to the Class object for the associated primitive type, such that:

… is equivalent to …

boolean.class Boolean.TYPE

char.class Character.TYPE

byte.class Byte.TYPE

short.class Short.TYPE

int.class Integer.TYPE

long.class Long.TYPE

float.class Float.TYPE

double.class Double.TYPE

void.class Void.TYPE

Type Information 559

My preference is to use the “.class” versions if you can, since they’re more

consistent with regular classes.

It’s interesting to note that creating a reference to a Class object using

“.class” doesn’t automatically initialize the Class object. There are actually

three steps in preparing a class for use:

1. Loading, which is performed by the class loader. This finds the

bytecodes (usually, but not necessarily, on your disk in your

classpath) and creates a Class object from those bytecodes.

2. Linking. The link phase verifies the bytecodes in the class,

allocates storage for static fields, and if necessary, resolves all

references to other classes made by this class.

3. Initialization. If there’s a superclass, initialize that. Execute static

initializers and static initialization blocks.

Initialization is delayed until the first reference to a static method (the

constructor is implicitly static) or to a non-constant static field:

//: typeinfo/ClassInitialization.java

import java.util.*;

class Initable {

 static final int staticFinal = 47;

 static final int staticFinal2 =

 ClassInitialization.rand.nextInt(1000);

 static {

 System.out.println("Initializing Initable");

 }

}

class Initable2 {

 static int staticNonFinal = 147;

 static {

 System.out.println("Initializing Initable2");

 }

}

class Initable3 {

 static int staticNonFinal = 74;

 static {

 System.out.println("Initializing Initable3");

560 Thinking in Java Bruce Eckel

 }

}

public class ClassInitialization {

 public static Random rand = new Random(47);

 public static void main(String[] args) throws Exception {

 Class initable = Initable.class;

 System.out.println("After creating Initable ref");

 // Does not trigger initialization:

 System.out.println(Initable.staticFinal);

 // Does trigger initialization:

 System.out.println(Initable.staticFinal2);

 // Does trigger initialization:

 System.out.println(Initable2.staticNonFinal);

 Class initable3 = Class.forName("Initable3");

 System.out.println("After creating Initable3 ref");

 System.out.println(Initable3.staticNonFinal);

 }

} /* Output:

After creating Initable ref

47

Initializing Initable

258

Initializing Initable2

147

Initializing Initable3

After creating Initable3 ref

74

*///:~

Effectively, initialization is “as lazy as possible.” From the creation of the

initable reference, you can see that just using the .class syntax to get a

reference to the class doesn’t cause initialization. However,

Class.forName() initializes the class immediately in order to produce the

Class reference, as you can see in the creation of initable3.

If a static final value is a “compile-time constant,” such as

Initable.staticFinal, that value can be read without causing the Initable

class to be initialized. Making a field static and final, however, does not

guarantee this behavior: accessing Initable.staticFinal2 forces class

initialization because it cannot be a compile-time constant.

Type Information 561

If a static field is not final, accessing it always requires linking (to allocate

storage for the field) and initialization (to initialize that storage) before it can

be read, as you can see in the access to Initable2.staticNonFinal.

Generic class references
A Class reference points to a Class object, which manufactures instances of

classes and contains all the method code for those instances. It also contains

the statics for that class. So a Class reference really does indicate the exact

type of what it’s pointing to: an object of the class Class.

However, the designers of Java SE5 saw an opportunity to make this a bit

more specific by allowing you to constrain the type of Class object that the

Class reference is pointing to, using the generic syntax. In the following

example, both syntaxes are correct:

//: typeinfo/GenericClassReferences.java

public class GenericClassReferences {

 public static void main(String[] args) {

 Class intClass = int.class;

 Class<Integer> genericIntClass = int.class;

 genericIntClass = Integer.class; // Same thing

 intClass = double.class;

 // genericIntClass = double.class; // Illegal

 }

} ///:~

The ordinary class reference does not produce a warning. However, you can

see that the ordinary class reference can be reassigned to any other Class

object, whereas the generic class reference can only be assigned to its

declared type. By using the generic syntax, you allow the compiler to enforce

extra type checking.

What if you’d like to loosen the constraint a little? Initially, it seems like you

ought to be able to do something like:

Class<Number> genericNumberClass = int.class;

This would seem to make sense because Integer is inherited from Number.

But this doesn’t work, because the Integer Class object is not a subclass of

the Number Class object (this may seem like a subtle distinction; we’ll look

into it more deeply in the Generics chapter).

562 Thinking in Java Bruce Eckel

To loosen the constraints when using generic Class references, I employ the

wildcard, which is part of Java generics. The wildcard symbol is ‘?’, and it

indicates “anything.” So we can add wildcards to the ordinary Class

reference in the above example and produce the same results:

//: typeinfo/WildcardClassReferences.java

public class WildcardClassReferences {

 public static void main(String[] args) {

 Class<?> intClass = int.class;

 intClass = double.class;

 }

} ///:~

In Java SE5, Class<?> is preferred over plain Class, even though they are

equivalent and the plain Class, as you saw, doesn’t produce a compiler

warning. The benefit of Class<?> is that it indicates that you aren’t just

using a non-specific class reference by accident, or out of ignorance. You

chose the non-specific version.

In order to create a Class reference that is constrained to a type or any

subtype, you combine the wildcard with the extends keyword to create a

bound. So instead of just saying Class<Number>, you say:

//: typeinfo/BoundedClassReferences.java

public class BoundedClassReferences {

 public static void main(String[] args) {

 Class<? extends Number> bounded = int.class;

 bounded = double.class;

 bounded = Number.class;

 // Or anything else derived from Number.

 }

} ///:~

The reason for adding the generic syntax to Class references is only to

provide compile-time type checking, so that if you do something wrong you

find out about it a little sooner. You can’t actually go astray with ordinary

Class references, but if you make a mistake you won’t find out until run time,

which can be inconvenient.

Here’s an example that uses the generic class syntax. It stores a class

reference, and later produces a List filled with objects that it generates using

newInstance():

Type Information 563

//: typeinfo/FilledList.java

import java.util.*;

class CountedInteger {

 private static long counter;

 private final long id = counter++;

 public String toString() { return Long.toString(id); }

}

public class FilledList<T> {

 private Class<T> type;

 public FilledList(Class<T> type) { this.type = type; }

 public List<T> create(int nElements) {

 List<T> result = new ArrayList<T>();

 try {

 for(int i = 0; i < nElements; i++)

 result.add(type.newInstance());

 } catch(Exception e) {

 throw new RuntimeException(e);

 }

 return result;

 }

 public static void main(String[] args) {

 FilledList<CountedInteger> fl =

 new FilledList<CountedInteger>(CountedInteger.class);

 System.out.println(fl.create(15));

 }

} /* Output:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

*///:~

Notice that this class must assume that any type that it works with has a

default constructor (one without arguments), and you’ll get an exception if

that isn’t the case. The compiler does not issue any warnings for this

program.

An interesting thing happens when you use the generic syntax for Class

objects: newInstance() will return the exact type of the object, rather than

just a basic Object as you saw in ToyTest.java. This is somewhat limited:

//: typeinfo/toys/GenericToyTest.java

// Testing class Class.

package typeinfo.toys;

564 Thinking in Java Bruce Eckel

public class GenericToyTest {

 public static void main(String[] args) throws Exception {

 Class<FancyToy> ftClass = FancyToy.class;

 // Produces exact type:

 FancyToy fancyToy = ftClass.newInstance();

 Class<? super FancyToy> up = ftClass.getSuperclass();

 // This won't compile:

 // Class<Toy> up2 = ftClass.getSuperclass();

 // Only produces Object:

 Object obj = up.newInstance();

 }

} ///:~

If you get the superclass, the compiler will only allow you to say that the

superclass reference is “some class that is a superclass of FancyToy” as seen

in the expression Class<? super FancyToy>. It will not accept a

declaration of Class<Toy>. This seems a bit strange because

getSuperclass() returns the base class (not interface) and the compiler

knows what that class is at compile time—in this case, Toy.class, not just

“some superclass of FancyToy.” In any event, because of the vagueness, the

return value of up.newInstance() is not a precise type, but just an Object.

New cast syntax
Java SE5 also adds a casting syntax for use with Class references, which is

the cast() method:

//: typeinfo/ClassCasts.java

class Building {}

class House extends Building {}

public class ClassCasts {

 public static void main(String[] args) {

 Building b = new House();

 Class<House> houseType = House.class;

 House h = houseType.cast(b);

 h = (House)b; // ... or just do this.

 }

} ///:~

The cast() method takes the argument object and casts it to the type of the

Class reference. Of course, if you look at the above code it seems like a lot of

extra work compared to the last line in main(), which does the same thing.

Type Information 565

The new casting syntax is useful for situations where you can’t just use an

ordinary cast. This usually happens when you’re writing generic code (which

you’ll learn about in the Generics chapter), and you’ve stored a Class

reference that you want to use to cast with at a later time. It turns out to be a

rare thing—I found only one instance where cast() was used in the entire

Java SE5 library (it was in com.sun.mirror.util.DeclarationFilter).

Another new feature had no usage in the Java SE5 library:

Class.asSubclass(). This allows you to cast the class object to a more

specific type.

Checking before a cast
So far, you’ve seen forms of RTTI, including:

1. The classic cast; e.g., “(Shape),” which uses RTTI to make sure

the cast is correct. This will throw a ClassCastException if

you’ve performed a bad cast.

2. The Class object representing the type of your object. The Class

object can be queried for useful runtime information.

In C++, the classic cast “(Shape)” does not perform RTTI. It simply tells the

compiler to treat the object as the new type. In Java, which does perform the

type check, this cast is often called a “type-safe downcast.” The reason for the

term “downcast” is the historical arrangement of the class hierarchy diagram.

If casting a Circle to a Shape is an upcast, then casting a Shape to a Circle

is a downcast. However, because it knows that a Circle is also a Shape, the

compiler freely allows an upcast assignment, without requiring any explicit

cast syntax. The compiler cannot know, given a Shape, what that Shape

actually is—it could be exactly a Shape, or it could be a subtype of Shape,

such as a Circle, Square, Triangle or some other type. At compile time, the

compiler only sees a Shape. Thus, it won’t allow you to perform a downcast

assignment without using an explicit cast, to tell it that you have extra

information that allows you to know that it is a particular type (the compiler

will check to see if that downcast is reasonable, so it won’t let you downcast

to a type that’s not actually a subclass).

There’s a third form of RTTI in Java. This is the keyword instanceof, which

tells you if an object is an instance of a particular type. It returns a boolean

so you use it in the form of a question, like this:

566 Thinking in Java Bruce Eckel

if(x instanceof Dog)

 ((Dog)x).bark();

The if statement checks to see if the object x belongs to the class Dog before

casting x to a Dog. It’s important to use instanceof before a downcast when

you don’t have other information that tells you the type of the object;

otherwise, you’ll end up with a ClassCastException.

Ordinarily, you might be hunting for one type (triangles to turn purple, for

example), but you can easily tally all of the objects by using instanceof. For

example, suppose you have a family of classes to describe Pets (and their

people, a feature which will come in handy in a later example). Each

Individual in the hierarchy has an id and an optional name. Although the

classes that follow inherit from Individual, there are some complexities in

the Individual class, so that code will be shown and explained in the

Containers in Depth chapter. As you can see, it’s not really necessary to see

the code for Individual at this point—you only need to know that you can

create it with or without a name, and that each Individual has a method

id() that returns a unique identifier (created by counting each object).

There’s also a toString() method; if you don’t provide a name for an

Individual, toString() only produces the simple type name.

Here is the class hierarchy that inherits from Individual:

//: typeinfo/pets/Person.java

package typeinfo.pets;

public class Person extends Individual {

 public Person(String name) { super(name); }

} ///:~

//: typeinfo/pets/Pet.java

package typeinfo.pets;

public class Pet extends Individual {

 public Pet(String name) { super(name); }

 public Pet() { super(); }

} ///:~

//: typeinfo/pets/Dog.java

package typeinfo.pets;

public class Dog extends Pet {

 public Dog(String name) { super(name); }

Type Information 567

 public Dog() { super(); }

} ///:~

//: typeinfo/pets/Mutt.java

package typeinfo.pets;

public class Mutt extends Dog {

 public Mutt(String name) { super(name); }

 public Mutt() { super(); }

} ///:~

//: typeinfo/pets/Pug.java

package typeinfo.pets;

public class Pug extends Dog {

 public Pug(String name) { super(name); }

 public Pug() { super(); }

} ///:~

//: typeinfo/pets/Cat.java

package typeinfo.pets;

public class Cat extends Pet {

 public Cat(String name) { super(name); }

 public Cat() { super(); }

} ///:~

//: typeinfo/pets/EgyptianMau.java

package typeinfo.pets;

public class EgyptianMau extends Cat {

 public EgyptianMau(String name) { super(name); }

 public EgyptianMau() { super(); }

} ///:~

//: typeinfo/pets/Manx.java

package typeinfo.pets;

public class Manx extends Cat {

 public Manx(String name) { super(name); }

 public Manx() { super(); }

} ///:~

//: typeinfo/pets/Cymric.java

package typeinfo.pets;

public class Cymric extends Manx {

568 Thinking in Java Bruce Eckel

 public Cymric(String name) { super(name); }

 public Cymric() { super(); }

} ///:~

//: typeinfo/pets/Rodent.java

package typeinfo.pets;

public class Rodent extends Pet {

 public Rodent(String name) { super(name); }

 public Rodent() { super(); }

} ///:~

//: typeinfo/pets/Rat.java

package typeinfo.pets;

public class Rat extends Rodent {

 public Rat(String name) { super(name); }

 public Rat() { super(); }

} ///:~

//: typeinfo/pets/Mouse.java

package typeinfo.pets;

public class Mouse extends Rodent {

 public Mouse(String name) { super(name); }

 public Mouse() { super(); }

} ///:~

//: typeinfo/pets/Hamster.java

package typeinfo.pets;

public class Hamster extends Rodent {

 public Hamster(String name) { super(name); }

 public Hamster() { super(); }

} ///:~

Next, we need a way to randomly create different types of pets, and for

convenience, to create arrays and Lists of pets. To allow this tool to evolve

through several different implementations, we’ll define it as an abstract class:

//: typeinfo/pets/PetCreator.java

// Creates random sequences of Pets.

package typeinfo.pets;

import java.util.*;

public abstract class PetCreator {

Type Information 569

 private Random rand = new Random(47);

 // The List of the different types of Pet to create:

 public abstract List<Class<? extends Pet>> types();

 public Pet randomPet() { // Create one random Pet

 int n = rand.nextInt(types().size());

 try {

 return types().get(n).newInstance();

 } catch(InstantiationException e) {

 throw new RuntimeException(e);

 } catch(IllegalAccessException e) {

 throw new RuntimeException(e);

 }

 }

 public Pet[] createArray(int size) {

 Pet[] result = new Pet[size];

 for(int i = 0; i < size; i++)

 result[i] = randomPet();

 return result;

 }

 public ArrayList<Pet> arrayList(int size) {

 ArrayList<Pet> result = new ArrayList<Pet>();

 Collections.addAll(result, createArray(size));

 return result;

 }

} ///:~

The abstract types() method defers to a derived class to get the List of

Class objects (this is a variation of the Template Method design pattern).

Notice that the type of class is specified to be “anything derived from Pet,” so

that newInstance() produces a Pet without requiring a cast.

randomPet() randomly indexes into the List and uses the selected Class

object to generate a new instance of that class with Class.newInstance().

The createArray() method uses randomPet() to fill an array, and

arrayList() uses createArray() in turn.

You can get two kinds of exceptions when calling newInstance(). You can

see these handled in the catch clauses following the try block. Again, the

names of the exceptions are relatively useful explanations of what went

wrong (IllegalAccessException relates to a violation of the Java security

mechanism, in this case if the default constructor is private).

When you derive a subclass of PetCreator, the only thing you need to supply

is the List of the types of pet that you want to create using randomPet()

570 Thinking in Java Bruce Eckel

and the other methods. The types() method will normally just return a

reference to a static List. Here’s an implementation using forName():

//: typeinfo/pets/ForNameCreator.java

package typeinfo.pets;

import java.util.*;

public class ForNameCreator extends PetCreator {

 private static List<Class<? extends Pet>> types =

 new ArrayList<Class<? extends Pet>>();

 // Types that you want to be randomly created:

 private static String[] typeNames = {

 "typeinfo.pets.Mutt",

 "typeinfo.pets.Pug",

 "typeinfo.pets.EgyptianMau",

 "typeinfo.pets.Manx",

 "typeinfo.pets.Cymric",

 "typeinfo.pets.Rat",

 "typeinfo.pets.Mouse",

 "typeinfo.pets.Hamster"

 };

 @SuppressWarnings("unchecked")

 private static void loader() {

 try {

 for(String name : typeNames)

 types.add(

 (Class<? extends Pet>)Class.forName(name));

 } catch(ClassNotFoundException e) {

 throw new RuntimeException(e);

 }

 }

 static { loader(); }

 public List<Class<? extends Pet>> types() {return types;}

} ///:~

The loader() method creates the List of Class objects using

Class.forName(). This may generate a ClassNotFoundException,

which makes sense since you’re passing it a String which cannot be validated

at compile time. Since the Pet objects are in package typeinfo, the package

name must be used when referring to the classes.

In order to produce a typed List of Class objects, a cast is required, which

produces a compile-time warning. The loader() method is defined

separately and then placed inside a static initialization clause because the

Type Information 571

@SuppressWarnings annotation cannot be placed directly onto the static

initialization clause.

To count Pets, we need a tool that keeps track of the quantities of various

different types of Pets. A Map is perfect for this; the keys are the Pet type

names and the values are Integers to hold the Pet quantities. This way, you

can say, “How many Hamster objects are there?” We can use instanceof to

count Pets:

//: typeinfo/PetCount.java

// Using instanceof.

import typeinfo.pets.*;

import java.util.*;

import static net.mindview.util.Print.*;

public class PetCount {

 static class PetCounter extends HashMap<String,Integer> {

 public void count(String type) {

 Integer quantity = get(type);

 if(quantity == null)

 put(type, 1);

 else

 put(type, quantity + 1);

 }

 }

 public static void

 countPets(PetCreator creator) {

 PetCounter counter= new PetCounter();

 for(Pet pet : creator.createArray(20)) {

 // List each individual pet:

 printnb(pet.getClass().getSimpleName() + " ");

 if(pet instanceof Pet)

 counter.count("Pet");

 if(pet instanceof Dog)

 counter.count("Dog");

 if(pet instanceof Mutt)

 counter.count("Mutt");

 if(pet instanceof Pug)

 counter.count("Pug");

 if(pet instanceof Cat)

 counter.count("Cat");

 if(pet instanceof EgyptianMau)

 counter.count("EgyptianMau");

 if(pet instanceof Manx)

572 Thinking in Java Bruce Eckel

 counter.count("Manx");

 if(pet instanceof Cymric)

 counter.count("Cymric");

 if(pet instanceof Rodent)

 counter.count("Rodent");

 if(pet instanceof Rat)

 counter.count("Rat");

 if(pet instanceof Mouse)

 counter.count("Mouse");

 if(pet instanceof Hamster)

 counter.count("Hamster");

 }

 // Show the counts:

 print();

 print(counter);

 }

 public static void main(String[] args) {

 countPets(new ForNameCreator());

 }

} /* Output:

Rat Manx Cymric Mutt Pug Cymric Pug Manx Cymric Rat

EgyptianMau Hamster EgyptianMau Mutt Mutt Cymric Mouse Pug

Mouse Cymric

{Rat=2, Cymric=5, Cat=9, Pet=20, Dog=6, Manx=7,

EgyptianMau=2, Pug=3, Mouse=2, Rodent=5, Hamster=1, Mutt=3}

*///:~

In countPets(), an array is randomly filled with Pets using a PetCreator.

Then each Pet in the array is tested and counted using instanceof.

There’s a rather narrow restriction on instanceof: You can compare it to a

named type only, and not to a Class object. In the preceding example you

might feel that it’s tedious to write out all of those instanceof expressions,

and you’re right. But there is no way to cleverly automate instanceof by

creating an array of Class objects and comparing it to those instead (stay

tuned—you’ll see an alternative). This isn’t as great a restriction as you might

think, because you’ll eventually understand that your design is probably

flawed if you end up writing a lot of instanceof expressions.

Using class literals
If we reimplement the PetCreator using class literals, the result is cleaner in

many ways:

Type Information 573

//: typeinfo/pets/LiteralPetCreator.java

// Using class literals.

package typeinfo.pets;

import java.util.*;

public class LiteralPetCreator extends PetCreator {

 // No try block needed.

 @SuppressWarnings("unchecked")

 public static final List<Class<? extends Pet>> allTypes =

 Collections.unmodifiableList(Arrays.asList(

 Pet.class, Dog.class, Cat.class, Rodent.class,

 Mutt.class, Pug.class, EgyptianMau.class, Manx.class,

 Cymric.class, Rat.class, Mouse.class,Hamster.class));

 // Types for random creation:

 private static final List<Class<? extends Pet>> types =

 allTypes.subList(allTypes.indexOf(Mutt.class),

 allTypes.size());

 public List<Class<? extends Pet>> types() {

 return types;

 }

 public static void main(String[] args) {

 System.out.println(types);

 }

} /* Output:

[class typeinfo.pets.Mutt, class typeinfo.pets.Pug, class

typeinfo.pets.EgyptianMau, class typeinfo.pets.Manx, class

typeinfo.pets.Cymric, class typeinfo.pets.Rat, class

typeinfo.pets.Mouse, class typeinfo.pets.Hamster]

*///:~

In the upcoming PetCount3.java example, we need to pre-load a Map with

all the Pet types (not just the ones that are to be randomly generated), so the

allTypes List is necessary. The types list is the portion of allTypes

(created using List.subList()) that includes the exact pet types, so it is used

for random Pet generation.

This time, the creation of types does not need to be surrounded by a try

block since it’s evaluated at compile time and thus won’t throw any

exceptions, unlike Class.forName().

We now have two implementations of PetCreator in the typeinfo.pets

library. In order to provide the second one as a default implementation, we

can create a Façade that utilizes LiteralPetCreator:

574 Thinking in Java Bruce Eckel

//: typeinfo/pets/Pets.java

// Facade to produce a default PetCreator.

package typeinfo.pets;

import java.util.*;

public class Pets {

 public static final PetCreator creator =

 new LiteralPetCreator();

 public static Pet randomPet() {

 return creator.randomPet();

 }

 public static Pet[] createArray(int size) {

 return creator.createArray(size);

 }

 public static ArrayList<Pet> arrayList(int size) {

 return creator.arrayList(size);

 }

} ///:~

This also provides indirection to randomPet(), createArray() and

arrayList().

Because PetCount.countPets() takes a PetCreator argument, we can

easily test the LiteralPetCreator (via the above Façade):

//: typeinfo/PetCount2.java

import typeinfo.pets.*;

public class PetCount2 {

 public static void main(String[] args) {

 PetCount.countPets(Pets.creator);

 }

} /* (Execute to see output) *///:~

The output is the same as that of PetCount.java.

A dynamic instanceof
The Class.isInstance() method provides a way to dynamically test the type

of an object. Thus, all those tedious instanceof statements can be removed

from PetCount.java:

//: typeinfo/PetCount3.java

// Using isInstance()

import typeinfo.pets.*;

Type Information 575

import java.util.*;

import net.mindview.util.*;

import static net.mindview.util.Print.*;

public class PetCount3 {

 static class PetCounter

 extends LinkedHashMap<Class<? extends Pet>,Integer> {

 public PetCounter() {

 super(MapData.map(LiteralPetCreator.allTypes, 0));

 }

 public void count(Pet pet) {

 // Class.isInstance() eliminates instanceofs:

 for(Map.Entry<Class<? extends Pet>,Integer> pair

 : entrySet())

 if(pair.getKey().isInstance(pet))

 put(pair.getKey(), pair.getValue() + 1);

 }

 public String toString() {

 StringBuilder result = new StringBuilder("{");

 for(Map.Entry<Class<? extends Pet>,Integer> pair

 : entrySet()) {

 result.append(pair.getKey().getSimpleName());

 result.append("=");

 result.append(pair.getValue());

 result.append(", ");

 }

 result.delete(result.length()-2, result.length());

 result.append("}");

 return result.toString();

 }

 }

 public static void main(String[] args) {

 PetCounter petCount = new PetCounter();

 for(Pet pet : Pets.createArray(20)) {

 printnb(pet.getClass().getSimpleName() + " ");

 petCount.count(pet);

 }

 print();

 print(petCount);

 }

} /* Output:

Rat Manx Cymric Mutt Pug Cymric Pug Manx Cymric Rat

EgyptianMau Hamster EgyptianMau Mutt Mutt Cymric Mouse Pug

Mouse Cymric

576 Thinking in Java Bruce Eckel

{Pet=20, Dog=6, Cat=9, Rodent=5, Mutt=3, Pug=3,

EgyptianMau=2, Manx=7, Cymric=5, Rat=2, Mouse=2, Hamster=1}

*///:~

In order to count all the different types of Pet, the PetCounter Map is pre-

loaded with the types from LiteralPetCreator.allTypes. This uses the

net.mindview.util.MapData class, which takes an Iterable (the

allTypes List) and a constant value (zero, in this case), and fills the Map

with keys taken from allTypes and values of zero). Without pre-loading the

Map, you would only end up counting the types that are randomly generated,

and not the base types like Pet and Cat.

You can see that the isInstance() method has eliminated the need for the

instanceof expressions. In addition, this means that you can add new types

of Pet simply by changing the LiteralPetCreator.types array; the rest of

the program does not need modification (as it did when using the

instanceof expressions).

The toString() method has been overloaded for easier-to-read output that

still matches the typical output that you see when printing a Map.

Counting recursively
The Map in PetCount3.PetCounter was pre-loaded with all the different

Pet classes. Instead of pre-loading the map, we can use

Class.isAssignableFrom() and create a general-purpose tool that is not

limited to counting Pets:

//: net/mindview/util/TypeCounter.java

// Counts instances of a type family.

package net.mindview.util;

import java.util.*;

public class TypeCounter extends HashMap<Class<?>,Integer>{

 private Class<?> baseType;

 public TypeCounter(Class<?> baseType) {

 this.baseType = baseType;

 }

 public void count(Object obj) {

 Class<?> type = obj.getClass();

 if(!baseType.isAssignableFrom(type))

 throw new RuntimeException(obj + " incorrect type: "

 + type + ", should be type or subtype of "

Type Information 577

 + baseType);

 countClass(type);

 }

 private void countClass(Class<?> type) {

 Integer quantity = get(type);

 put(type, quantity == null ? 1 : quantity + 1);

 Class<?> superClass = type.getSuperclass();

 if(superClass != null &&

 baseType.isAssignableFrom(superClass))

 countClass(superClass);

 }

 public String toString() {

 StringBuilder result = new StringBuilder("{");

 for(Map.Entry<Class<?>,Integer> pair : entrySet()) {

 result.append(pair.getKey().getSimpleName());

 result.append("=");

 result.append(pair.getValue());

 result.append(", ");

 }

 result.delete(result.length()-2, result.length());

 result.append("}");

 return result.toString();

 }

} ///:~

The count() method gets the Class of its argument, and uses

isAssignableFrom() to perform a runtime check to verify that the object

that you’ve passed actually belongs to the hierarchy of interest.

countClass() first counts the exact type of the class. Then, if baseType is

assignable from the superclass, countClass() is called recursively on the

superclass.

//: typeinfo/PetCount4.java

import typeinfo.pets.*;

import net.mindview.util.*;

import static net.mindview.util.Print.*;

public class PetCount4 {

 public static void main(String[] args) {

 TypeCounter counter = new TypeCounter(Pet.class);

 for(Pet pet : Pets.createArray(20)) {

 printnb(pet.getClass().getSimpleName() + " ");

 counter.count(pet);

 }

578 Thinking in Java Bruce Eckel

 print();

 print(counter);

 }

} /* Output: (Sample)

Rat Manx Cymric Mutt Pug Cymric Pug Manx Cymric Rat

EgyptianMau Hamster EgyptianMau Mutt Mutt Cymric Mouse Pug

Mouse Cymric

{Mouse=2, Dog=6, Manx=7, EgyptianMau=2, Rodent=5, Pug=3,

Mutt=3, Cymric=5, Cat=9, Hamster=1, Pet=20, Rat=2}

*///:~

As you can see from the output, both base types as well as exact types are

counted.

Exercise 11: (2) Add Gerbil to the typeinfo.pets library and modify all
the examples in this chapter to adapt to this new class.

Exercise 12: (3) Use TypeCounter with the CoffeeGenerator.java
class in the Generics chapter.

Exercise 13: (3) Use TypeCounter with the
RegisteredFactories.java example in this chapter.

Registered factories
A problem with generating objects of the Pets hierarchy is the fact that every

time you add a new type of Pet to the hierarchy you must remember to add it

to the entries in LiteralPetCreator.java. In a system where you add more

classes on a regular basis this can become problematic.

You might think of adding a static initializer to each subclass, so that the

initializer would add its class to a list somewhere. Unfortunately, static

initializers are only called when the class is first loaded, so you have a

chicken-and-egg problem: The generator doesn’t have the class in its list, so it

can never create an object of that class, so the class won’t get loaded and

placed in the list.

Basically, you’re forced to create the list yourself, by hand (unless you want to

write a tool that searches through and analyzes your source code, then creates

and compiles the list). So the best you can probably do is to put the list in one

central, obvious place. The base class for the hierarchy of interest is probably

the best place.

Type Information 579

The other change we’ll make here is to defer the creation of the object to the

class itself, using the Factory Method design pattern. A factory method can

be called polymorphically, and creates an object of the appropriate type for

you. In this very simple version, the factory method is the create() method

in the Factory interface:

//: typeinfo/factory/Factory.java

package typeinfo.factory;

public interface Factory<T> { T create(); } ///:~

The generic parameter T allows create() to return a different type for each

implementation of Factory. This also makes use of covariant return types.

In this example, the base class Part contains a List of factory objects.

Factories for types that should be produced by the createRandom()

method are “registered” with the base class by adding them to the

partFactories List:

//: typeinfo/RegisteredFactories.java

// Registering Class Factories in the base class.

import typeinfo.factory.*;

import java.util.*;

class Part {

 public String toString() {

 return getClass().getSimpleName();

 }

 static List<Factory<? extends Part>> partFactories =

 new ArrayList<Factory<? extends Part>>();

 static {

 // Collections.addAll() gives an "unchecked generic

 // array creation ... for varargs parameter" warning.

 partFactories.add(new FuelFilter.Factory());

 partFactories.add(new AirFilter.Factory());

 partFactories.add(new CabinAirFilter.Factory());

 partFactories.add(new OilFilter.Factory());

 partFactories.add(new FanBelt.Factory());

 partFactories.add(new PowerSteeringBelt.Factory());

 partFactories.add(new GeneratorBelt.Factory());

 }

 private static Random rand = new Random(47);

 public static Part createRandom() {

 int n = rand.nextInt(partFactories.size());

 return partFactories.get(n).create();

580 Thinking in Java Bruce Eckel

 }

}

class Filter extends Part {}

class FuelFilter extends Filter {

 // Create a Class Factory for each specific type:

 public static class Factory

 implements typeinfo.factory.Factory<FuelFilter> {

 public FuelFilter create() { return new FuelFilter(); }

 }

}

class AirFilter extends Filter {

 public static class Factory

 implements typeinfo.factory.Factory<AirFilter> {

 public AirFilter create() { return new AirFilter(); }

 }

}

class CabinAirFilter extends Filter {

 public static class Factory

 implements typeinfo.factory.Factory<CabinAirFilter> {

 public CabinAirFilter create() {

 return new CabinAirFilter();

 }

 }

}

class OilFilter extends Filter {

 public static class Factory

 implements typeinfo.factory.Factory<OilFilter> {

 public OilFilter create() { return new OilFilter(); }

 }

}

class Belt extends Part {}

class FanBelt extends Belt {

 public static class Factory

 implements typeinfo.factory.Factory<FanBelt> {

 public FanBelt create() { return new FanBelt(); }

 }

}

Type Information 581

class GeneratorBelt extends Belt {

 public static class Factory

 implements typeinfo.factory.Factory<GeneratorBelt> {

 public GeneratorBelt create() {

 return new GeneratorBelt();

 }

 }

}

class PowerSteeringBelt extends Belt {

 public static class Factory

 implements typeinfo.factory.Factory<PowerSteeringBelt> {

 public PowerSteeringBelt create() {

 return new PowerSteeringBelt();

 }

 }

}

public class RegisteredFactories {

 public static void main(String[] args) {

 for(int i = 0; i < 10; i++)

 System.out.println(Part.createRandom());

 }

} /* Output:

GeneratorBelt

CabinAirFilter

GeneratorBelt

AirFilter

PowerSteeringBelt

CabinAirFilter

FuelFilter

PowerSteeringBelt

PowerSteeringBelt

FuelFilter

*///:~

Not all classes in the hierarchy should be instantiated; in this case Filter and

Belt are just classifiers so you do not create an instance of either one, but

only of their subclasses. If a class should be created by createRandom(), it

contains an inner Factory class. The only way to reuse the name Factory as

seen above is by qualifying typeinfo.factory.Factory.

582 Thinking in Java Bruce Eckel

Although you can use Collections.addAll() to add the factories to the list,

the compiler expresses its unhappiness with a warning about a “generic array

creation” (which is supposed to be impossible, as you’ll see in the Generics

chapter), so I reverted to calling add(). The createRandom() method

randomly selects a factory object from partFactories and calls its create()

to produce a new Part.

Exercise 14: (4) A constructor is a kind of factory method. Modify
RegisteredFactories.java so that instead of using an explicit factory, the
class object is stored in the List, and newInstance() is used to create each
object.

Exercise 15: (4) Implement a new PetCreator using Registered
Factories, and modify the Pets Façade so that it uses this one instead of the
other two. Ensure that the rest of the examples that use Pets.java still work
correctly.

Exercise 16: (4) Modify the Coffee hierarchy in the Generics chapter to
use Registered Factories.

instanceof vs. Class equivalence
When you are querying for type information, there’s an important difference

between either form of instanceof (that is, instanceof or isInstance(),

which produce equivalent results) and the direct comparison of the Class

objects. Here’s an example that demonstrates the difference:

//: typeinfo/FamilyVsExactType.java

// The difference between instanceof and class

package typeinfo;

import static net.mindview.util.Print.*;

class Base {}

class Derived extends Base {}

public class FamilyVsExactType {

 static void test(Object x) {

 print("Testing x of type " + x.getClass());

 print("x instanceof Base " + (x instanceof Base));

 print("x instanceof Derived "+ (x instanceof Derived));

 print("Base.isInstance(x) "+ Base.class.isInstance(x));

 print("Derived.isInstance(x) " +

 Derived.class.isInstance(x));

 print("x.getClass() == Base.class " +

Type Information 583

 (x.getClass() == Base.class));

 print("x.getClass() == Derived.class " +

 (x.getClass() == Derived.class));

 print("x.getClass().equals(Base.class)) "+

 (x.getClass().equals(Base.class)));

 print("x.getClass().equals(Derived.class)) " +

 (x.getClass().equals(Derived.class)));

 }

 public static void main(String[] args) {

 test(new Base());

 test(new Derived());

 }

} /* Output:

Testing x of type class typeinfo.Base

x instanceof Base true

x instanceof Derived false

Base.isInstance(x) true

Derived.isInstance(x) false

x.getClass() == Base.class true

x.getClass() == Derived.class false

x.getClass().equals(Base.class)) true

x.getClass().equals(Derived.class)) false

Testing x of type class typeinfo.Derived

x instanceof Base true

x instanceof Derived true

Base.isInstance(x) true

Derived.isInstance(x) true

x.getClass() == Base.class false

x.getClass() == Derived.class true

x.getClass().equals(Base.class)) false

x.getClass().equals(Derived.class)) true

*///:~

The test() method performs type checking with its argument using both

forms of instanceof. It then gets the Class reference and uses == and

equals() to test for equality of the Class objects. Reassuringly, instanceof

and isInstance() produce exactly the same results, as do equals() and ==.

But the tests themselves draw different conclusions. In keeping with the

concept of type, instanceof says, “Are you this class, or a class derived from

this class?” On the other hand, if you compare the actual Class objects using

==, there is no concern with inheritance—it’s either the exact type or it isn’t.

584 Thinking in Java Bruce Eckel

Reflection: runtime
class information

If you don’t know the precise type of an object, RTTI will tell you. However,

there’s a limitation: The type must be known at compile time in order for you

to detect it using RTTI and to do something useful with the information. Put

another way, the compiler must know about all the classes you’re working

with.

This doesn’t seem like that much of a limitation at first, but suppose you’re

given a reference to an object that’s not in your program space. In fact, the

class of the object isn’t even available to your program at compile time. For

example, suppose you get a bunch of bytes from a disk file or from a network

connection, and you’re told that those bytes represent a class. Since this class

shows up long after the compiler generates the code for your program, how

can you possibly use such a class?

In a traditional programming environment, this seems like a far-fetched

scenario. But as we move into a larger programming world, there are

important cases in which this happens. The first is component-based

programming, in which you build projects using Rapid Application

Development (RAD) in an Application Builder Integrated Development

Environment, which I shall refer to simply as an IDE. This is a visual

approach to creating a program by moving icons that represent components

onto a form. These components are then configured by setting some of their

values at program time. This design-time configuration requires that any

component be instantiable, that it exposes parts of itself, and that it allows its

properties to be read and modified. In addition, components that handle

Graphical User Interface (GUI) events must expose information about

appropriate methods so that the IDE can assist the programmer in overriding

these event-handling methods. Reflection provides the mechanism to detect

the available methods and produce the method names. Java provides a

structure for component-based programming through JavaBeans (described

in the Graphical User Interfaces chapter).

Another compelling motivation for discovering class information at run time

is to provide the ability to create and execute objects on remote platforms,

across a network. This is called Remote Method Invocation (RMI), and it

allows a Java program to have objects distributed across many machines.

Type Information 585

This distribution can happen for a number of reasons. For example, perhaps

you’re doing a computation-intensive task, and in order to speed things up,

you want to break it up and put pieces on machines that are idle. In other

situations you might want to place code that handles particular types of tasks

(e.g., “Business Rules” in a multitier client/server architecture) on a

particular machine, so the machine becomes a common repository describing

those actions, and it can be easily changed to affect everyone in the system.

(This is an interesting development, since the machine exists solely to make

software changes easy!) Along these lines, distributed computing also

supports specialized hardware that might be good at a particular task—matrix

inversions, for example—but inappropriate or too expensive for general-

purpose programming.

The class Class supports the concept of reflection, along with the

java.lang.reflect library which contains the classes Field, Method, and

Constructor (each of which implements the Member interface). Objects of

these types are created by the JVM at run time to represent the

corresponding member in the unknown class. You can then use the

Constructors to create new objects, the get() and set() methods to read

and modify the fields associated with Field objects, and the invoke()

method to call a method associated with a Method object. In addition, you

can call the convenience methods getFields(), getMethods(),

getConstructors(), etc., to return arrays of the objects representing the

fields, methods, and constructors. (You can find out more by looking up the

class Class in the JDK documentation.) Thus, the class information for

anonymous objects can be completely determined at run time, and nothing

need be known at compile time.

It’s important to realize that there’s nothing magic about reflection. When

you’re using reflection to interact with an object of an unknown type, the

JVM will simply look at the object and see that it belongs to a particular class

(just like ordinary RTTI). Before anything can be done with it, the Class

object must be loaded. Thus, the .class file for that particular type must still

be available to the JVM, either on the local machine or across the network. So

the true difference between RTTI and reflection is that with RTTI, the

compiler opens and examines the .class file at compile time. Put another

way, you can call all the methods of an object in the “normal” way. With

reflection, the .class file is unavailable at compile time; it is opened and

examined by the runtime environment.

586 Thinking in Java Bruce Eckel

A class method extractor
Normally you won’t need to use the reflection tools directly, but they can be

helpful when you need to create more dynamic code. Reflection is in the

language to support other Java features, such as object serialization and

JavaBeans (both covered later in the book). However, there are times when

it’s quite useful to dynamically extract information about a class.

Consider a class method extractor. Looking at a class definition source code

or JDK documentation shows only the methods that are defined or

overridden within that class definition. But there might be dozens more

available to you that have come from base classes. To locate these is both

tedious and time consuming.1 Fortunately, reflection provides a way to write

a simple tool that will automatically show you the entire interface. Here’s the

way it works:

//: typeinfo/ShowMethods.java

// Using reflection to show all the methods of a class,

// even if the methods are defined in the base class.

// {Args: ShowMethods}

import java.lang.reflect.*;

import java.util.regex.*;

import static net.mindview.util.Print.*;

public class ShowMethods {

 private static String usage =

 "usage:\n" +

 "ShowMethods qualified.class.name\n" +

 "To show all methods in class or:\n" +

 "ShowMethods qualified.class.name word\n" +

 "To search for methods involving 'word'";

 private static Pattern p = Pattern.compile("\\w+\\.");

 public static void main(String[] args) {

 if(args.length < 1) {

 print(usage);

 System.exit(0);

 }

 int lines = 0;

 try {

1 Especially in the past. However, the HTML Java documentation has greatly improved so
it’s easier to see base-class methods.

Type Information 587

 Class<?> c = Class.forName(args[0]);

 Method[] methods = c.getMethods();

 Constructor[] ctors = c.getConstructors();

 if(args.length == 1) {

 for(Method method : methods)

 print(

 p.matcher(method.toString()).replaceAll(""));

 for(Constructor ctor : ctors)

 print(p.matcher(ctor.toString()).replaceAll(""));

 lines = methods.length + ctors.length;

 } else {

 for(Method method : methods)

 if(method.toString().indexOf(args[1]) != -1) {

 print(

 p.matcher(method.toString()).replaceAll(""));

 lines++;

 }

 for(Constructor ctor : ctors)

 if(ctor.toString().indexOf(args[1]) != -1) {

 print(p.matcher(

 ctor.toString()).replaceAll(""));

 lines++;

 }

 }

 } catch(ClassNotFoundException e) {

 print("No such class: " + e);

 }

 }

} /* Output:

public static void main(String[])

public native int hashCode()

public final native Class getClass()

public final void wait(long,int) throws InterruptedException

public final void wait() throws InterruptedException

public final native void wait(long) throws

InterruptedException

public boolean equals(Object)

public String toString()

public final native void notify()

public final native void notifyAll()

public ShowMethods()

*///:~

The Class methods getMethods() and getConstructors() return an

array of Method and array of Constructor, respectively. Each of these

588 Thinking in Java Bruce Eckel

classes has further methods to dissect the names, arguments, and return

values of the methods they represent. But you can also just use toString(),

as is done here, to produce a String with the entire method signature. The

rest of the code extracts the command-line information, determines if a

particular signature matches your target string (using indexOf()), and

strips off the name qualifiers using regular expressions (introduced in the

Strings chapter).

The result produced by Class.forName() cannot be known at compile time,

and therefore all the method signature information is being extracted at run

time. If you investigate the JDK reflection documentation, you’ll see that

there is enough support to actually set up and make a method call on an

object that’s totally unknown at compile time (there will be examples of this

later in this book). Although initially this is something you may not think

you’ll ever need, the value of full reflection can be quite surprising.

The output above is produced from the command line:

java ShowMethods ShowMethods

You can see that the output includes a public default constructor, even

though no constructor was defined. The constructor you see is the one that’s

automatically synthesized by the compiler. If you then make ShowMethods

a non-public class (that is, package access), the synthesized default

constructor no longer shows up in the output. The synthesized default

constructor is automatically given the same access as the class.

Another interesting experiment is to invoke java ShowMethods

java.lang.String with an extra argument of char, int, String, etc.

This tool can be a real time-saver while you’re programming, when you can’t

remember if a class has a particular method and you don’t want to go hunting

through the index or class hierarchy in the JDK documentation, or if you

don’t know whether that class can do anything with, for example, Color

objects.

The Graphical User Interfaces chapter contains a GUI version of this

program (customized to extract information for Swing components) so you

can leave it running while you’re writing code, to allow quick lookups.

Exercise 17: (2) Modify the regular expression in ShowMethods.java
to additionally strip off the keywords native and final (hint: use the OR
operator ‘|’).

Type Information 589

Exercise 18: (1) Make ShowMethods a non-public class and verify
that the synthesized default constructor no longer shows up in the output.

Exercise 19: (4) In ToyTest.java, use reflection to create a Toy object
using the non-default constructor.

Exercise 20: (5) Look up the interface for java.lang.Class in the JDK
documentation from http://java.oracle.com. Write a program that takes the
name of a class as a command-line argument, then uses the Class methods to
dump all the information available for that class. Test your program with a
standard library class and a class you create.

Dynamic proxies
Proxy is one of the basic design patterns. It is an object that you insert in

place of the “real” object in order to provide additional or different

operations—these usually involve communication with a “real” object, so a

proxy typically acts as a go-between. Here’s a trivial example to show the

structure of a proxy:

//: typeinfo/SimpleProxyDemo.java

import static net.mindview.util.Print.*;

interface Interface {

 void doSomething();

 void somethingElse(String arg);

}

class RealObject implements Interface {

 public void doSomething() { print("doSomething"); }

 public void somethingElse(String arg) {

 print("somethingElse " + arg);

 }

}

class SimpleProxy implements Interface {

 private Interface proxied;

 public SimpleProxy(Interface proxied) {

 this.proxied = proxied;

 }

 public void doSomething() {

 print("SimpleProxy doSomething");

 proxied.doSomething();

 }

590 Thinking in Java Bruce Eckel

 public void somethingElse(String arg) {

 print("SimpleProxy somethingElse " + arg);

 proxied.somethingElse(arg);

 }

}

class SimpleProxyDemo {

 public static void consumer(Interface iface) {

 iface.doSomething();

 iface.somethingElse("bonobo");

 }

 public static void main(String[] args) {

 consumer(new RealObject());

 consumer(new SimpleProxy(new RealObject()));

 }

} /* Output:

doSomething

somethingElse bonobo

SimpleProxy doSomething

doSomething

SimpleProxy somethingElse bonobo

somethingElse bonobo

*///:~

Because consumer() accepts an Interface, it can’t know if it’s getting a

RealObject or a SimpleProxy, because both implement Interface. But

the SimpleProxy inserted between the client and the RealObject performs

operations and then calls the identical method on a RealObject.

A proxy can be helpful anytime you’d like to separate extra operations into a

different place than the “real object,” and especially when you want to easily

change from not using the extra operations to using them, and vice versa (the

point of design patterns is to encapsulate change—so you need to be changing

things in order to justify the pattern). For example, what if you wanted to

track calls to the methods in the RealObject, or to measure the overhead of

such calls? This is not code you want to have incorporated in your

application, so a proxy allows you to add and remove it easily.

Java’s dynamic proxy takes the idea of a proxy one step further, by both

creating the proxy object dynamically and handling calls to the proxied

methods dynamically. All calls made on a dynamic proxy are redirected to a

single invocation handler, which has the job of discovering what the call is

Type Information 591

and deciding what to do about it. Here’s SimpleProxyDemo.java rewritten

to use a dynamic proxy:

//: typeinfo/SimpleDynamicProxy.java

import java.lang.reflect.*;

class DynamicProxyHandler implements InvocationHandler {

 private Object proxied;

 public DynamicProxyHandler(Object proxied) {

 this.proxied = proxied;

 }

 public Object

 invoke(Object proxy, Method method, Object[] args)

 throws Throwable {

 System.out.println("**** proxy: " + proxy.getClass() +

 ", method: " + method + ", args: " + args);

 if(args != null)

 for(Object arg : args)

 System.out.println(" " + arg);

 return method.invoke(proxied, args);

 }

}

class SimpleDynamicProxy {

 public static void consumer(Interface iface) {

 iface.doSomething();

 iface.somethingElse("bonobo");

 }

 public static void main(String[] args) {

 RealObject real = new RealObject();

 consumer(real);

 // Insert a proxy and call again:

 Interface proxy = (Interface)Proxy.newProxyInstance(

 Interface.class.getClassLoader(),

 new Class[]{ Interface.class },

 new DynamicProxyHandler(real));

 consumer(proxy);

 }

} /* Output: (95% match)

doSomething

somethingElse bonobo

**** proxy: class $Proxy0, method: public abstract void

Interface.doSomething(), args: null

doSomething

592 Thinking in Java Bruce Eckel

**** proxy: class $Proxy0, method: public abstract void

Interface.somethingElse(java.lang.String), args:

[Ljava.lang.Object;@42e816

 bonobo

somethingElse bonobo

*///:~

You create a dynamic proxy by calling the static method

Proxy.newProxyInstance(), which requires a class loader (you can

generally just hand it a class loader from an object that has already been

loaded), a list of interfaces (not classes or abstract classes) that you wish the

proxy to implement, and an implementation of the interface

InvocationHandler. The dynamic proxy will redirect all calls to the

invocation handler, so the constructor for the invocation handler is usually

given the reference to the “real” object so that it can forward requests once it

performs its intermediary task.

The invoke() method is handed the proxy object, in case you need to

distinguish where the request came from—but in many cases you won’t care.

However, be careful when calling methods on the proxy inside invoke(),

because calls through the interface are redirected through the proxy.

In general you will perform the proxied operation and then use

Method.invoke() to forward the request to the proxied object, passing the

necessary arguments. This may initially seem limiting, as if you can only

perform generic operations. However, you can filter for certain method calls,

while passing others through:

//: typeinfo/SelectingMethods.java

// Looking for particular methods in a dynamic proxy.

import java.lang.reflect.*;

import static net.mindview.util.Print.*;

class MethodSelector implements InvocationHandler {

 private Object proxied;

 public MethodSelector(Object proxied) {

 this.proxied = proxied;

 }

 public Object

 invoke(Object proxy, Method method, Object[] args)

 throws Throwable {

 if(method.getName().equals("interesting"))

 print("Proxy detected the interesting method");

Type Information 593

 return method.invoke(proxied, args);

 }

}

interface SomeMethods {

 void boring1();

 void boring2();

 void interesting(String arg);

 void boring3();

}

class Implementation implements SomeMethods {

 public void boring1() { print("boring1"); }

 public void boring2() { print("boring2"); }

 public void interesting(String arg) {

 print("interesting " + arg);

 }

 public void boring3() { print("boring3"); }

}

class SelectingMethods {

 public static void main(String[] args) {

 SomeMethods proxy= (SomeMethods)Proxy.newProxyInstance(

 SomeMethods.class.getClassLoader(),

 new Class[]{ SomeMethods.class },

 new MethodSelector(new Implementation()));

 proxy.boring1();

 proxy.boring2();

 proxy.interesting("bonobo");

 proxy.boring3();

 }

} /* Output:

boring1

boring2

Proxy detected the interesting method

interesting bonobo

boring3

*///:~

Here, we are just looking for method names, but you could also be looking for

other aspects of the method signature, and you could even search for

particular argument values.

594 Thinking in Java Bruce Eckel

The dynamic proxy is not a tool that you’ll use every day, but it can solve

certain types of problems very nicely. You can learn more about Proxy and

other design patterns in On Java 8 at www.MindViewLLC.com and Design

Patterns, by Erich Gamma et al. (Addison-Wesley, 1995).

Exercise 21: (3) Modify SimpleProxyDemo.java so that it measures
method-call times.

Exercise 22: (3) Modify SimpleDynamicProxy.java so that it
measures method-call times.

Exercise 23: (3) Inside invoke() in SimpleDynamicProxy.java, try
to print the proxy argument and explain what happens.

Project:2 Write a system using dynamic proxies to implement transactions,

where the proxy performs a commit if the proxied call is successful (doesn’t

throw any exceptions) and a rollback if it fails. Your commit and rollback

should work on an external text file, which is outside the control of Java

exceptions. You will have to pay attention to the atomicity of operations.

Null Objects
When you use the built-in null to indicate the absence of an object, you must

test a reference for null-ness every time you use it. This can get very tedious

and produce ponderous code. The problem is that null has no behavior of its

own except for producing a NullPointerException if you try to do anything

with it. Sometimes it is useful to introduce the idea of a Null Object3 that will

accept messages for the object that it’s “standing in” for, but will return

values indicating that no “real” object is actually there. This way, you can

assume that all objects are valid and you don’t have to waste programming

time checking for null (and reading the resulting code).

Although it’s fun to imagine a programming language that would

automatically create Null Objects for you, in practice it doesn’t make sense to

2 Projects are suggestions to be used (for example) as term projects. Solutions to projects
are not included in the solution guide.

3 Discovered by Bobby Woolf and Bruce Anderson. This can be seen as a special case of the
Strategy pattern. A variant of Null Object is the Null Iterator pattern, which makes
iteration over the nodes in a composite hierarchy transparent to the client (the client can
then use the same logic for iterating over the composite and leaf nodes).

Type Information 595

use them everywhere—sometimes checking for null is fine, and sometimes

you can reasonably assume that you won’t encounter null, and sometimes

even detecting aberrations via NullPointerException is acceptable. The

place where Null Objects seem to be most useful is “closer to the data,” with

objects that represent entities in the problem space. As a simple example,

many systems will have a Person class, and there are situations in the code

where you don’t have an actual person (or you do, but you don’t have all the

information about that person yet), so traditionally you’d use a null reference

and test for it. Instead, we can make a Null Object. But even though the Null

Object will respond to all messages that the “real” object will respond to, you

still need a way to test for nullness. The simplest way to do this is to create a

tagging interface:

//: net/mindview/util/Null.java

package net.mindview.util;

public interface Null {} ///:~

This allows instanceof to detect the Null Object, and more importantly,

does not require you to add an isNull() method to all your classes (which

would be, after all, just a different way of performing RTTI—why not use the

built-in facility instead?).

//: typeinfo/Person.java

// A class with a Null Object.

import net.mindview.util.*;

class Person {

 public final String first;

 public final String last;

 public final String address;

 // etc.

 public Person(String first, String last, String address){

 this.first = first;

 this.last = last;

 this.address = address;

 }

 public String toString() {

 return "Person: " + first + " " + last + " " + address;

 }

 public static class NullPerson

 extends Person implements Null {

 private NullPerson() { super("None", "None", "None"); }

 public String toString() { return "NullPerson"; }

596 Thinking in Java Bruce Eckel

 }

 public static final Person NULL = new NullPerson();

} ///:~

In general, the Null Object will be a Singleton, so here it is created as a static

final instance. This works because Person is immutable—you can only set

the values in the constructor, and then read those values, but you can’t

modify them (because Strings themselves are inherently immutable). If you

want to change a NullPerson, you can only replace it with a new Person

object. Notice that you have the option of detecting the generic Null or the

more specific NullPerson using instanceof, but with the Singleton

approach you can also just use equals() or even == to compare to

Person.NULL.

Now suppose you’re back in the high-flying days of Internet startups and

you’ve been given a big pile of venture funding for your Amazing Idea. You’re

ready to staff up, but while you’re waiting for positions to be filled, you can

use Person Null Objects as placeholders for each Position:

//: typeinfo/Position.java

class Position {

 private String title;

 private Person person;

 public Position(String jobTitle, Person employee) {

 title = jobTitle;

 person = employee;

 if(person == null)

 person = Person.NULL;

 }

 public Position(String jobTitle) {

 title = jobTitle;

 person = Person.NULL;

 }

 public String getTitle() { return title; }

 public void setTitle(String newTitle) {

 title = newTitle;

 }

 public Person getPerson() { return person; }

 public void setPerson(Person newPerson) {

 person = newPerson;

 if(person == null)

 person = Person.NULL;

 }

Type Information 597

 public String toString() {

 return "Position: " + title + " " + person;

 }

} ///:~

With Position, we don’t need to make a Null Object because the existence of

Person.NULL implies a null Position (it’s possible that, later, you’ll

discover the need to add an explicit Null Object for Position, but YAGNI4

(You Aren’t Going to Need It) says to try “the simplest thing that could

possibly work” for your first draft, and to wait until some aspect of the

program requires you to add in the extra feature, rather than assuming it’s

necessary).

The Staff class can now look for Null Objects when you are filling positions:

//: typeinfo/Staff.java

import java.util.*;

public class Staff extends ArrayList<Position> {

 public void add(String title, Person person) {

 add(new Position(title, person));

 }

 public void add(String... titles) {

 for(String title : titles)

 add(new Position(title));

 }

 public Staff(String... titles) { add(titles); }

 public boolean positionAvailable(String title) {

 for(Position position : this)

 if(position.getTitle().equals(title) &&

 position.getPerson() == Person.NULL)

 return true;

 return false;

 }

 public void fillPosition(String title, Person hire) {

 for(Position position : this)

 if(position.getTitle().equals(title) &&

 position.getPerson() == Person.NULL) {

 position.setPerson(hire);

 return;

4 A tenet of Extreme Programming (XP), as is “Do the simplest thing that could possibly
work.”

598 Thinking in Java Bruce Eckel

 }

 throw new RuntimeException(

 "Position " + title + " not available");

 }

 public static void main(String[] args) {

 Staff staff = new Staff("President", "CTO",

 "Marketing Manager", "Product Manager",

 "Project Lead", "Software Engineer",

 "Software Engineer", "Software Engineer",

 "Software Engineer", "Test Engineer",

 "Technical Writer");

 staff.fillPosition("President",

 new Person("Me", "Last", "The Top, Lonely At"));

 staff.fillPosition("Project Lead",

 new Person("Janet", "Planner", "The Burbs"));

 if(staff.positionAvailable("Software Engineer"))

 staff.fillPosition("Software Engineer",

 new Person("Bob", "Coder", "Bright Light City"));

 System.out.println(staff);

 }

} /* Output:

[Position: President Person: Me Last The Top, Lonely At,

Position: CTO NullPerson, Position: Marketing Manager

NullPerson, Position: Product Manager NullPerson, Position:

Project Lead Person: Janet Planner The Burbs, Position:

Software Engineer Person: Bob Coder Bright Light City,

Position: Software Engineer NullPerson, Position: Software

Engineer NullPerson, Position: Software Engineer NullPerson,

Position: Test Engineer NullPerson, Position: Technical

Writer NullPerson]

*///:~

Notice that you must still test for Null Objects in some places, which is not

that different from checking for null, but in other places (such as

toString() conversions, in this case), you don’t have to perform extra tests;

you can just assume that all object references are valid.

If you are working with interfaces instead of concrete classes, it’s possible to

use a DynamicProxy to automatically create the Null Objects. Suppose we

have a Robot interface that defines a name, model, and a List<Operation>

that describes what the Robot is capable of doing. Operation contains a

description and a command (it’s a type of Command pattern):

//: typeinfo/Operation.java

Type Information 599

public interface Operation {

 String description();

 void command();

} ///:~

You can access a Robot’s services by calling operations():

//: typeinfo/Robot.java

import java.util.*;

import net.mindview.util.*;

public interface Robot {

 String name();

 String model();

 List<Operation> operations();

 class Test {

 public static void test(Robot r) {

 if(r instanceof Null)

 System.out.println("[Null Robot]");

 System.out.println("Robot name: " + r.name());

 System.out.println("Robot model: " + r.model());

 for(Operation operation : r.operations()) {

 System.out.println(operation.description());

 operation.command();

 }

 }

 }

} ///:~

This also incorporates a nested class to perform tests.

We can now create a Robot that removes snow:

//: typeinfo/SnowRemovalRobot.java

import java.util.*;

public class SnowRemovalRobot implements Robot {

 private String name;

 public SnowRemovalRobot(String name) {this.name = name;}

 public String name() { return name; }

 public String model() { return "SnowBot Series 11"; }

 public List<Operation> operations() {

 return Arrays.asList(

 new Operation() {

 public String description() {

600 Thinking in Java Bruce Eckel

 return name + " can shovel snow";

 }

 public void command() {

 System.out.println(name + " shoveling snow");

 }

 },

 new Operation() {

 public String description() {

 return name + " can chip ice";

 }

 public void command() {

 System.out.println(name + " chipping ice");

 }

 },

 new Operation() {

 public String description() {

 return name + " can clear the roof";

 }

 public void command() {

 System.out.println(name + " clearing roof");

 }

 }

);

 }

 public static void main(String[] args) {

 Robot.Test.test(new SnowRemovalRobot("Slusher"));

 }

} /* Output:

Robot name: Slusher

Robot model: SnowBot Series 11

Slusher can shovel snow

Slusher shoveling snow

Slusher can chip ice

Slusher chipping ice

Slusher can clear the roof

Slusher clearing roof

*///:~

There will presumably be many different types of Robot, and we’d like to

have each Null Object do something special for each Robot type—in this

case, incorporate information about the exact type of Robot the Null Object

is standing for. This information will be captured by the dynamic proxy:

//: typeinfo/NullRobot.java

// Using a dynamic proxy to create a Null Object.

Type Information 601

import java.lang.reflect.*;

import java.util.*;

import net.mindview.util.*;

class NullRobotProxyHandler implements InvocationHandler {

 private String nullName;

 private Robot proxied = new NRobot();

 NullRobotProxyHandler(Class<? extends Robot> type) {

 nullName = type.getSimpleName() + " NullRobot";

 }

 private class NRobot implements Null, Robot {

 public String name() { return nullName; }

 public String model() { return nullName; }

 public List<Operation> operations() {

 return Collections.emptyList();

 }

 }

 public Object

 invoke(Object proxy, Method method, Object[] args)

 throws Throwable {

 return method.invoke(proxied, args);

 }

}

public class NullRobot {

 public static Robot

 newNullRobot(Class<? extends Robot> type) {

 return (Robot)Proxy.newProxyInstance(

 NullRobot.class.getClassLoader(),

 new Class[]{ Null.class, Robot.class },

 new NullRobotProxyHandler(type));

 }

 public static void main(String[] args) {

 Robot[] bots = {

 new SnowRemovalRobot("SnowBee"),

 newNullRobot(SnowRemovalRobot.class)

 };

 for(Robot bot : bots)

 Robot.Test.test(bot);

 }

} /* Output:

Robot name: SnowBee

Robot model: SnowBot Series 11

SnowBee can shovel snow

602 Thinking in Java Bruce Eckel

SnowBee shoveling snow

SnowBee can chip ice

SnowBee chipping ice

SnowBee can clear the roof

SnowBee clearing roof

[Null Robot]

Robot name: SnowRemovalRobot NullRobot

Robot model: SnowRemovalRobot NullRobot

*///:~

Whenever you need a null Robot object, you just call newNullRobot(),

passing the type of Robot you want a proxy for. The proxy fulfills the

requirements of the Robot and Null interfaces, and provides the specific

name of the type that it proxies.

Mock Objects & Stubs
Logical variations of the Null Object are the Mock Object and the Stub. Like

Null Object, both of these are stand-ins for the “real” object that will be used

in the finished program. However, both Mock Object and Stub pretend to be

live objects that deliver real information, rather than being a more intelligent

placeholder for null, as Null Object is.

The distinction between Mock Object and Stub is one of degree. Mock Objects

tend to be lightweight and self-testing, and usually many of them are created

to handle various testing situations. Stubs just return stubbed data, are

typically heavyweight and are often reused between tests. Stubs can be

configured to change depending on how they are called. So a Stub is a

sophisticated object that does lots of things, whereas you usually create lots of

small, simple Mock Objects if you need to do many things.

Exercise 24: (4) Add Null Objects to RegisteredFactories.java.

Interfaces and type information
An important goal of the interface keyword is to allow the programmer to

isolate components, and thus reduce coupling. If you write to interfaces, you

accomplish this, but with type information it’s possible to get around that—

interfaces are not airtight guarantees of decoupling. Here’s an example,

starting with an interface:

//: typeinfo/interfacea/A.java

package typeinfo.interfacea;

Type Information 603

public interface A {

 void f();

} ///:~

This interface is then implemented, and you can see how to sneak around to

the actual implementation type:

//: typeinfo/InterfaceViolation.java

// Sneaking around an interface.

import typeinfo.interfacea.*;

class B implements A {

 public void f() {}

 public void g() {}

}

public class InterfaceViolation {

 public static void main(String[] args) {

 A a = new B();

 a.f();

 // a.g(); // Compile error

 System.out.println(a.getClass().getName());

 if(a instanceof B) {

 B b = (B)a;

 b.g();

 }

 }

} /* Output:

B

*///:~

Using RTTI, we discover that a has been implemented as a B. By casting to B,

we can call a method that’s not in A.

This is perfectly legal and acceptable, but you may not want client

programmers to do this, because it gives them an opportunity to couple more

closely to your code than you’d like. That is, you may think that the interface

keyword is protecting you, but it isn’t, and the fact that you’re using B to

implement A in this case is effectively a matter of public record.5

5 The most famous case of this is the Windows operating system, which had a published
API that you were supposed to write to, and an unpublished but visible set of functions

604 Thinking in Java Bruce Eckel

One solution is to simply say that programmers are on their own if they

decide to use the actual class rather than the interface. This is probably

reasonable in many cases, but if “probably” isn’t enough, you might want to

apply more stringent controls.

The easiest approach is to use package access for the implementation, so that

clients outside the package may not see it:

//: typeinfo/packageaccess/HiddenC.java

package typeinfo.packageaccess;

import typeinfo.interfacea.*;

import static net.mindview.util.Print.*;

class C implements A {

 public void f() { print("public C.f()"); }

 public void g() { print("public C.g()"); }

 void u() { print("package C.u()"); }

 protected void v() { print("protected C.v()"); }

 private void w() { print("private C.w()"); }

}

public class HiddenC {

 public static A makeA() { return new C(); }

} ///:~

The only public part of this package, HiddenC, produces an A interface

when you call it. What’s interesting about this is that even if you were to

return a C from makeA(), you still couldn’t use anything but an A from

outside the package, since you cannot name C outside the package.

Now if you try to downcast to C, you can’t do it because there is no ‘C’ type

available outside the package:

//: typeinfo/HiddenImplementation.java

// Sneaking around package access.

import typeinfo.interfacea.*;

import typeinfo.packageaccess.*;

import java.lang.reflect.*;

that you could discover and call. To solve problems, programmers used the hidden API
functions, which forced Microsoft to maintain them as if they were part of the public API.
This became a source of great cost and effort for the company.

Type Information 605

public class HiddenImplementation {

 public static void main(String[] args) throws Exception {

 A a = HiddenC.makeA();

 a.f();

 System.out.println(a.getClass().getName());

 // Compile error: cannot find symbol 'C':

 /* if(a instanceof C) {

 C c = (C)a;

 c.g();

 } */

 // Oops! Reflection still allows us to call g():

 callHiddenMethod(a, "g");

 // And even methods that are less accessible!

 callHiddenMethod(a, "u");

 callHiddenMethod(a, "v");

 callHiddenMethod(a, "w");

 }

 static void callHiddenMethod(Object a, String methodName)

 throws Exception {

 Method g = a.getClass().getDeclaredMethod(methodName);

 g.setAccessible(true);

 g.invoke(a);

 }

} /* Output:

public C.f()

typeinfo.packageaccess.C

public C.g()

package C.u()

protected C.v()

private C.w()

*///:~

As you can see, it’s still possible to reach in and call all of the methods using

reflection, even private methods! If you know the name of the method, you

can call setAccessible(true) on the Method object to make it callable, as

seen in callHiddenMethod().

You may think that you can prevent this by only distributing compiled code,

but that’s no solution. All you must do is run javap, which is the decompiler

that comes with the JDK. Here’s the command line:

javap -private C

The -private flag indicates that all members should be displayed, even

private ones. Here’s the output:

606 Thinking in Java Bruce Eckel

class typeinfo.packageaccess.C extends

java.lang.Object implements typeinfo.interfacea.A {

 typeinfo.packageaccess.C();

 public void f();

 public void g();

 void u();

 protected void v();

 private void w();

}

So anyone can get the names and signatures of your most private methods,

and call them.

What if you implement the interface as a private inner class? Here’s what it

looks like:

//: typeinfo/InnerImplementation.java

// Private inner classes can't hide from reflection.

import typeinfo.interfacea.*;

import static net.mindview.util.Print.*;

class InnerA {

 private static class C implements A {

 public void f() { print("public C.f()"); }

 public void g() { print("public C.g()"); }

 void u() { print("package C.u()"); }

 protected void v() { print("protected C.v()"); }

 private void w() { print("private C.w()"); }

 }

 public static A makeA() { return new C(); }

}

public class InnerImplementation {

 public static void main(String[] args) throws Exception {

 A a = InnerA.makeA();

 a.f();

 System.out.println(a.getClass().getName());

 // Reflection still gets into the private class:

 HiddenImplementation.callHiddenMethod(a, "g");

 HiddenImplementation.callHiddenMethod(a, "u");

 HiddenImplementation.callHiddenMethod(a, "v");

 HiddenImplementation.callHiddenMethod(a, "w");

 }

} /* Output:

public C.f()

Type Information 607

InnerA$C

public C.g()

package C.u()

protected C.v()

private C.w()

*///:~

That didn’t hide anything from reflection. What about an anonymous class?

//: typeinfo/AnonymousImplementation.java

// Anonymous inner classes can't hide from reflection.

import typeinfo.interfacea.*;

import static net.mindview.util.Print.*;

class AnonymousA {

 public static A makeA() {

 return new A() {

 public void f() { print("public C.f()"); }

 public void g() { print("public C.g()"); }

 void u() { print("package C.u()"); }

 protected void v() { print("protected C.v()"); }

 private void w() { print("private C.w()"); }

 };

 }

}

public class AnonymousImplementation {

 public static void main(String[] args) throws Exception {

 A a = AnonymousA.makeA();

 a.f();

 System.out.println(a.getClass().getName());

 // Reflection still gets into the anonymous class:

 HiddenImplementation.callHiddenMethod(a, "g");

 HiddenImplementation.callHiddenMethod(a, "u");

 HiddenImplementation.callHiddenMethod(a, "v");

 HiddenImplementation.callHiddenMethod(a, "w");

 }

} /* Output:

public C.f()

AnonymousA$1

public C.g()

package C.u()

protected C.v()

private C.w()

*///:~

608 Thinking in Java Bruce Eckel

There doesn’t seem to be any way to prevent reflection from reaching in and

calling methods that have non-public access. This is also true for fields, even

private fields:

//: typeinfo/ModifyingPrivateFields.java

import java.lang.reflect.*;

class WithPrivateFinalField {

 private int i = 1;

 private final String s = "I'm totally safe";

 private String s2 = "Am I safe?";

 public String toString() {

 return "i = " + i + ", " + s + ", " + s2;

 }

}

public class ModifyingPrivateFields {

 public static void main(String[] args) throws Exception {

 WithPrivateFinalField pf = new WithPrivateFinalField();

 System.out.println(pf);

 Field f = pf.getClass().getDeclaredField("i");

 f.setAccessible(true);

 System.out.println("f.getInt(pf): " + f.getInt(pf));

 f.setInt(pf, 47);

 System.out.println(pf);

 f = pf.getClass().getDeclaredField("s");

 f.setAccessible(true);

 System.out.println("f.get(pf): " + f.get(pf));

 f.set(pf, "No, you're not!");

 System.out.println(pf);

 f = pf.getClass().getDeclaredField("s2");

 f.setAccessible(true);

 System.out.println("f.get(pf): " + f.get(pf));

 f.set(pf, "No, you're not!");

 System.out.println(pf);

 }

} /* Output:

i = 1, I'm totally safe, Am I safe?

f.getInt(pf): 1

i = 47, I'm totally safe, Am I safe?

f.get(pf): I'm totally safe

i = 47, I'm totally safe, Am I safe?

f.get(pf): Am I safe?

i = 47, I'm totally safe, No, you're not!

Type Information 609

*///:~

However, final fields are actually safe from change. The runtime system

accepts any attempts at change without complaint, but nothing actually

happens.

In general, all these access violations are not the worst thing in the world. If

someone uses such a technique to call methods that you marked with

private or package access (thus clearly indicating they should not call them),

then it’s difficult for them to complain if you change some aspect of those

methods. On the other hand, the fact that you always have a back door into a

class may allow you to solve certain types of problems that could otherwise be

difficult or impossible, and the benefits of reflection in general are

undeniable.

Exercise 25: (2) Create a class containing private, protected and
package-access methods. Write code to access these methods from outside of
the class’s package.

Summary
RTTI allows you to discover type information from an anonymous base-class

reference. Thus, it’s ripe for misuse by the novice, since it might make sense

before polymorphic method calls do. For people coming from a procedural

background, it’s difficult not to organize programs into sets of switch

statements. You can accomplish this with RTTI and thus lose the important

value of polymorphism in code development and maintenance. The intent of

OO programming is to use polymorphic method calls everywhere you can,

and RTTI only when you must.

However, using polymorphic method calls as they are intended requires that

you have control of the base-class definition, because at some point in the

extension of your program you might discover that the base class doesn’t

include the method you need. If the base class comes from someone else’s

library, one solution is RTTI: You can inherit a new type and add your extra

method. Elsewhere in the code you can detect your particular type and call

that special method. This doesn’t destroy the polymorphism and extensibility

of the program, because adding a new type will not require you to hunt for

switch statements in your program. However, when you add code that

requires your new feature, you must use RTTI to detect your particular type.

610 Thinking in Java Bruce Eckel

Putting a feature in a base class might mean that, for the benefit of one

particular class, all of the other classes derived from that base require some

meaningless stub of a method. This makes the interface less clear and annoys

those who must override abstract methods when they derive from that base

class. For example, consider a class hierarchy representing musical

instruments. Suppose you want to clear the spit valves of all the appropriate

instruments in your orchestra. One option is to put a clearSpitValve()

method in the base class Instrument, but this is confusing because it

implies that Percussion, Stringed and Electronic instruments also have

spit valves. RTTI provides a much more reasonable solution because you can

place the method in the specific class where it’s appropriate (Wind, in this

case). At the same time, you may discover that there’s a more sensible

solution—here, a prepareInstrument() method in the base class.

However, you might not see such a solution when you’re first solving the

problem and could mistakenly assume that you must use RTTI.

Finally, RTTI will sometimes solve efficiency problems. Suppose your code

nicely uses polymorphism, but it turns out that one of your objects reacts to

this general-purpose code in a horribly inefficient way. You can pick out that

type using RTTI and write case-specific code to improve the efficiency. Be

wary, however, of programming for efficiency too soon. It’s a seductive trap.

It’s best to get the program working first, then decide if it’s running fast

enough, and only then should you attack efficiency issues—with a profiler.

We’ve also seen that reflection opens up a new world of programming

possibilities by allowing a much more dynamic style of programming. There

are some for whom the dynamic nature of reflection is disturbing. The fact

that you can do things that can only be checked at run time and reported with

exceptions seems, to a mind grown comfortable with the security of static

type checking, to be the wrong direction. Some people go so far as to say that

introducing the possibility of a runtime exception is a clear indicator that

such code should be avoided. I find that this sense of security is an illusion—

there are always things that can happen at run time and throw exceptions,

even in a program that contains no try blocks or exception specifications.

Instead, I think that the existence of a consistent error-reporting model

empowers us to write dynamic code using reflection. Of course it’s worth

trying to write code that can be statically checked … when you can. But I

believe that dynamic code is one of the important facilities that separate Java

from languages like C++.

Type Information 611

Exercise 26: (3) Implement clearSpitValve() as described in the
summary.

Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for sale from www.MindViewLLC.com.

 613

Generics
Ordinary classes and methods work with specific types:
either primitives or class types. If you are writing code
that might be used across more types, this rigidity can be
overconstraining.1

One way that object-oriented languages allow generalization is through

polymorphism. You can write (for example) a method that takes a base class

object as an argument, and then use that method with any class derived from

that base class. Now your method is a little more general and can be used in

more places. The same is true within classes—anyplace you use a specific

type, a base type provides more flexibility. Of course, anything but a final

class2 can be extended, so this flexibility is automatic much of the time.

Sometimes, being constrained to a single hierarchy is too limiting. If a

method argument is an interface instead of a class, the limitations are

loosened to include anything that implements the interface—including classes

that haven’t been created yet. This gives the client programmer the option of

implementing an interface in order to conform to your class or method. So

interfaces allow you to cut across class hierarchies, as long as you have the

option to create a new class in order to do so.

Sometimes even an interface is too restrictive. An interface still requires that

your code work with that particular interface. You could write even more

general code if you could say that your code works with “some unspecified

type,” rather than a specific interface or class.

This is the concept of generics, one of the more significant changes in Java

SE5. Generics implement the concept of parameterized types, which allow

1 Angelika Langer’s Java Generics FAQ (see
www.angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.html) as well as her other
writings (together with Klaus Kreft) have been invaluable during the preparation of this
chapter.

2 Or a class with all private constructors.

614 Thinking in Java Bruce Eckel

you to create components (most notably containers) that are easy to use with

multiple types. The term “generic” means “pertaining or appropriate to large

groups of classes.” The original intent of generics in programming languages

was to allow the programmer the greatest amount of expressiveness possible

when writing classes or methods, by loosening the constraints on the types

that those classes or methods work with. As you will see in this chapter, the

Java implementation of generics is not that broad reaching—indeed, you may

question whether the term “generic” is even appropriate for this feature.

If you’ve never seen any kind of parameterized type mechanism before, Java

generics will probably seem like a convenient addition to the language. When

you create an instance of a parameterized type, casts will be taken care of for

you and the type correctness will be ensured at compile time. This seems like

an improvement.

However, if you’ve had experience with a parameterized type mechanism, in

C++, for example, you will find that you can’t do everything that you might

expect when using Java generics. While using someone else’s generic type is

fairly easy, when creating your own you will encounter a number of surprises.

One of the things I shall try to explain is how the feature came to be like it is.

This is not to say that Java generics are useless. In many cases they make

code more straightforward and even elegant. But if you’re coming from a

language that has implemented a more pure version of generics, you may be

disappointed. In this chapter, we will examine both the strengths and the

limitations of Java generics so that you can use this new feature more

effectively.

Comparison with C++
The Java designers stated that much of the inspiration for the language came

as a reaction to C++. Despite this, it is possible to teach Java largely without

reference to C++, and I have endeavored to do so except when the

comparison will give you greater depth of understanding.

Generics require more comparison with C++ for two reasons. First,

understanding certain aspects of C++ templates (the main inspiration for

generics, including the basic syntax) will help you understand the

foundations of the concept, as well as—and this is very important—the

limitations of what you can do with Java generics and why. The ultimate goal

is to give you a clear understanding of where the boundaries lie, because my

Generics 615

experience is that by understanding the boundaries, you become a more

powerful programmer. By knowing what you can’t do, you can make better

use of what you can do (partly because you don’t waste time bumping up

against walls).

The second reason is that there is significant misunderstanding in the Java

community about C++ templates, and this misunderstanding may further

confuse you about the intent of generics.

So although I will introduce a few C++ template examples in this chapter, I

will keep them to a minimum.

Simple generics
One of the most compelling initial motivations for generics is to create

container classes, which you saw in the Holding Your Objects chapter (you’ll

learn more about these in the Containers in Depth chapter). A container is a

place to hold objects while you’re working with them. Although this is also

true of arrays, containers tend to be more flexible and have different

characteristics than simple arrays. Virtually all programs require that you

hold a group of objects while you use them, so containers are one of the most

reusable of class libraries.

Let’s look at a class that holds a single object. Of course, the class could

specify the exact type of the object, like this:

//: generics/Holder1.java

class Automobile {}

public class Holder1 {

 private Automobile a;

 public Holder1(Automobile a) { this.a = a; }

 Automobile get() { return a; }

} ///:~

But this is not a very reusable tool, since it can’t be used to hold anything else.

We would prefer not to write a new one of these for every type we encounter.

Before Java SE5, we would simply make it hold an Object:

//: generics/Holder2.java

616 Thinking in Java Bruce Eckel

public class Holder2 {

 private Object a;

 public Holder2(Object a) { this.a = a; }

 public void set(Object a) { this.a = a; }

 public Object get() { return a; }

 public static void main(String[] args) {

 Holder2 h2 = new Holder2(new Automobile());

 Automobile a = (Automobile)h2.get();

 h2.set("Not an Automobile");

 String s = (String)h2.get();

 h2.set(1); // Autoboxes to Integer

 Integer x = (Integer)h2.get();

 }

} ///:~

Now a Holder2 can hold anything—and in this example, a single Holder2

holds three different types of objects.

There are some cases where you want a container to hold multiple types of

objects, but typically you only put one type of object into a container. One of

the primary motivations for generics is to specify what type of object a

container holds, and to have that specification backed up by the compiler.

So instead of Object, we’d like to use an unspecified type, which can be

decided at a later time. To do this, you put a type parameter inside angle

brackets after the class name, and then substitute an actual type when you

use the class. For the “holder” class, it looks like this, where T is the type

parameter:

//: generics/Holder3.java

public class Holder3<T> {

 private T a;

 public Holder3(T a) { this.a = a; }

 public void set(T a) { this.a = a; }

 public T get() { return a; }

 public static void main(String[] args) {

 Holder3<Automobile> h3 =

 new Holder3<Automobile>(new Automobile());

 Automobile a = h3.get(); // No cast needed

 // h3.set("Not an Automobile"); // Error

 // h3.set(1); // Error

 }

} ///:~

Generics 617

Now when you create a Holder3, you must specify what type you want to put

into it using the same angle-bracket syntax, as you can see in main(). You

are only allowed to put objects of that type (or a subtype, since the

substitution principle still works with generics) into the holder. And when

you get a value out, it is automatically the right type.

That’s the core idea of Java generics: You tell it what type you want to use,

and it takes care of the details.

In general, you can treat generics as if they are any other type—they just

happen to have type parameters. But as you’ll see, you can use generics just

by naming them along with their type argument list.

Exercise 1: (1) Use Holder3 with the typeinfo.pets library to show that
a Holder3 that is specified to hold a base type can also hold a derived type.

Exercise 2: (1) Create a holder class that holds three objects of the same
type, along with the methods to store and fetch those objects and a
constructor to initialize all three.

A tuple library
One of the things you often want to do is return multiple objects from a

method call. The return statement only allows you to specify a single object,

so the answer is to create an object that holds the multiple objects that you

want to return. Of course, you can write a special class every time you

encounter the situation, but with generics it’s possible to solve the problem

once and save yourself the effort in the future. At the same time, you are

ensuring compile-time type safety.

This concept is called a tuple, and it is simply a group of objects wrapped

together into a single object. The recipient of the object is allowed to read the

elements but not put new ones in. (This concept is also called a Data

Transfer Object (or Messenger.)

Tuples can typically be any length, but each object in the tuple can be of a

different type. However, we want to specify the type of each object and ensure

that when the recipient reads the value, they get the right type. To deal with

the problem of multiple lengths, we create multiple different tuples. Here’s

one that holds two objects:

//: net/mindview/util/TwoTuple.java

package net.mindview.util;

618 Thinking in Java Bruce Eckel

public class TwoTuple<A,B> {

 public final A first;

 public final B second;

 public TwoTuple(A a, B b) { first = a; second = b; }

 public String toString() {

 return "(" + first + ", " + second + ")";

 }

} ///:~

The constructor captures the object to be stored, and toString() is a

convenience function to display the values in a list. Note that a tuple

implicitly keeps its elements in order.

Upon first reading, you may think that this could violate common safety

principles of Java programming. Shouldn’t first and second be private,

and only accessed with methods named getFirst() and getSecond()?

Consider the safety that you would get in that case: Clients could still read the

objects and do whatever they want with them, but they could not assign first

or second to anything else. The final declaration buys you the same safety,

but the above form is shorter and simpler.

Another design observation is that you might want to allow a client

programmer to point first or second to another object. However, it’s safer

to leave it in the above form, and just force the user to create a new

TwoTuple if they want one that has different elements.

The longer-length tuples can be created with inheritance. You can see that

adding more type parameters is a simple matter:

//: net/mindview/util/ThreeTuple.java

package net.mindview.util;

public class ThreeTuple<A,B,C> extends TwoTuple<A,B> {

 public final C third;

 public ThreeTuple(A a, B b, C c) {

 super(a, b);

 third = c;

 }

 public String toString() {

 return "(" + first + ", " + second + ", " + third +")";

 }

} ///:~

Generics 619

//: net/mindview/util/FourTuple.java

package net.mindview.util;

public class FourTuple<A,B,C,D> extends ThreeTuple<A,B,C> {

 public final D fourth;

 public FourTuple(A a, B b, C c, D d) {

 super(a, b, c);

 fourth = d;

 }

 public String toString() {

 return "(" + first + ", " + second + ", " +

 third + ", " + fourth + ")";

 }

} ///:~

//: net/mindview/util/FiveTuple.java

package net.mindview.util;

public class FiveTuple<A,B,C,D,E>

extends FourTuple<A,B,C,D> {

 public final E fifth;

 public FiveTuple(A a, B b, C c, D d, E e) {

 super(a, b, c, d);

 fifth = e;

 }

 public String toString() {

 return "(" + first + ", " + second + ", " +

 third + ", " + fourth + ", " + fifth + ")";

 }

} ///:~

To use a tuple, you simply define the appropriate-length tuple as the return

value for your function, and then create and return it in your return

statement:

//: generics/TupleTest.java

import net.mindview.util.*;

class Amphibian {}

class Vehicle {}

public class TupleTest {

 static TwoTuple<String,Integer> f() {

 // Autoboxing converts the int to Integer:

 return new TwoTuple<String,Integer>("hi", 47);

620 Thinking in Java Bruce Eckel

 }

 static ThreeTuple<Amphibian,String,Integer> g() {

 return new ThreeTuple<Amphibian, String, Integer>(

 new Amphibian(), "hi", 47);

 }

 static

 FourTuple<Vehicle,Amphibian,String,Integer> h() {

 return

 new FourTuple<Vehicle,Amphibian,String,Integer>(

 new Vehicle(), new Amphibian(), "hi", 47);

 }

 static

 FiveTuple<Vehicle,Amphibian,String,Integer,Double> k() {

 return new

 FiveTuple<Vehicle,Amphibian,String,Integer,Double>(

 new Vehicle(), new Amphibian(), "hi", 47, 11.1);

 }

 public static void main(String[] args) {

 TwoTuple<String,Integer> ttsi = f();

 System.out.println(ttsi);

 // ttsi.first = "there"; // Compile error: final

 System.out.println(g());

 System.out.println(h());

 System.out.println(k());

 }

} /* Output: (80% match)

(hi, 47)

(Amphibian@1f6a7b9, hi, 47)

(Vehicle@35ce36, Amphibian@757aef, hi, 47)

(Vehicle@9cab16, Amphibian@1a46e30, hi, 47, 11.1)

*///:~

Because of generics, you can easily create any tuple to return any group of

types, just by writing the expression.

You can see how the final specification on the public fields prevents them

from being reassigned after construction, in the failure of the statement

ttsi.first = “there”.

The new expressions are a little verbose. Later in this chapter you’ll see how

to simplify them using generic methods.

Exercise 3: (1) Create and test a SixTuple generic.

Exercise 4: (3) “Generify” innerclasses/Sequence.java.

Generics 621

A stack class
Let’s look at something slightly more complicated: the traditional pushdown

stack. In the Holding Your Objects chapter, you saw this implemented using

a LinkedList as the net.mindview.util.Stack class (page 408). In that

example, you can see that a LinkedList already has the necessary methods

to create a stack. The Stack was constructed by composing one generic class

(Stack<T>) with another generic class (LinkedList<T>). In that example,

notice that (with a few exceptions that we shall look at later) a generic type is

just another type.

Instead of using LinkedList, we can implement our own internal linked

storage mechanism.

//: generics/LinkedStack.java

// A stack implemented with an internal linked structure.

public class LinkedStack<T> {

 private static class Node<U> {

 U item;

 Node<U> next;

 Node() { item = null; next = null; }

 Node(U item, Node<U> next) {

 this.item = item;

 this.next = next;

 }

 boolean end() { return item == null && next == null; }

 }

 private Node<T> top = new Node<T>(); // End sentinel

 public void push(T item) {

 top = new Node<T>(item, top);

 }

 public T pop() {

 T result = top.item;

 if(!top.end())

 top = top.next;

 return result;

 }

 public static void main(String[] args) {

 LinkedStack<String> lss = new LinkedStack<String>();

 for(String s : "Phasers on stun!".split(" "))

 lss.push(s);

 String s;

 while((s = lss.pop()) != null)

622 Thinking in Java Bruce Eckel

 System.out.println(s);

 }

} /* Output:

stun!

on

Phasers

*///:~

The inner class Node is also a generic, and has its own type parameter.

This example makes use of an end sentinel to determine when the stack is

empty. The end sentinel is created when the LinkedStack is constructed,

and each time you call push() a new Node<T> is created and linked to the

previous Node<T>. When you call pop(), you always return the top.item,

and then you discard the current Node<T> and move to the next one—

except when you hit the end sentinel, in which case you don’t move. That way,

if the client keeps calling pop(), they keep getting null back to indicate that

the stack is empty.

Exercise 5: (2) Remove the type parameter on the Node class and modify
the rest of the code in LinkedStack.java to show that an inner class has
access to the generic type parameters of its outer class.

RandomList
For another example of a holder, suppose you’d like a special type of list that

randomly selects one of its elements each time you call select(). When doing

this you want to build a tool that works with all objects, so you use generics:

//: generics/RandomList.java

import java.util.*;

public class RandomList<T> {

 private ArrayList<T> storage = new ArrayList<T>();

 private Random rand = new Random(47);

 public void add(T item) { storage.add(item); }

 public T select() {

 return storage.get(rand.nextInt(storage.size()));

 }

 public static void main(String[] args) {

 RandomList<String> rs = new RandomList<String>();

 for(String s: ("The quick brown fox jumped over " +

 "the lazy brown dog").split(" "))

 rs.add(s);

Generics 623

 for(int i = 0; i < 11; i++)

 System.out.print(rs.select() + " ");

 }

} /* Output:

brown over fox quick quick dog brown The brown lazy brown

*///:~

Exercise 6: (1) Use RandomList with two more types in addition to the
one shown in main().

Generic interfaces
Generics also work with interfaces. For example, a generator is a class that

creates objects. It’s actually a specialization of the Factory Method design

pattern, but when you ask a generator for new object, you don’t pass it any

arguments, whereas you typically do pass arguments to a Factory Method.

The generator knows how to create new objects without any extra

information.

Typically, a generator just defines one method, the method that produces new

objects. Here, we’ll call it next(), and include it in the standard utilities:

//: net/mindview/util/Generator.java

// A generic interface.

package net.mindview.util;

public interface Generator<T> { T next(); } ///:~

The return type of next() is parameterized to T. As you can see, using

generics with interfaces is no different than using generics with classes.

To demonstrate the implementation of a Generator, we’ll need some

classes. Here’s a coffee hierarchy:

//: generics/coffee/Coffee.java

package generics.coffee;

public class Coffee {

 private static long counter = 0;

 private final long id = counter++;

 public String toString() {

 return getClass().getSimpleName() + " " + id;

 }

} ///:~

//: generics/coffee/Latte.java

624 Thinking in Java Bruce Eckel

package generics.coffee;

public class Latte extends Coffee {} ///:~

//: generics/coffee/Mocha.java

package generics.coffee;

public class Mocha extends Coffee {} ///:~

//: generics/coffee/Cappuccino.java

package generics.coffee;

public class Cappuccino extends Coffee {} ///:~

//: generics/coffee/Americano.java

package generics.coffee;

public class Americano extends Coffee {} ///:~

//: generics/coffee/Breve.java

package generics.coffee;

public class Breve extends Coffee {} ///:~

Now we can implement a Generator<Coffee> that produces random

different types of Coffee objects:

//: generics/coffee/CoffeeGenerator.java

// Generate different types of Coffee:

package generics.coffee;

import java.util.*;

import net.mindview.util.*;

public class CoffeeGenerator

implements Generator<Coffee>, Iterable<Coffee> {

 private Class<?>[] types = { Latte.class, Mocha.class,

 Cappuccino.class, Americano.class, Breve.class, };

 private static Random rand = new Random(47);

 public CoffeeGenerator() {}

 // For iteration:

 private int size = 0;

 public CoffeeGenerator(int sz) { size = sz; }

 public Coffee next() {

 try {

 return (Coffee)

 types[rand.nextInt(types.length)].newInstance();

 // Report programmer errors at run time:

 } catch(Exception e) {

 throw new RuntimeException(e);

 }

 }

Generics 625

 class CoffeeIterator implements Iterator<Coffee> {

 int count = size;

 public boolean hasNext() { return count > 0; }

 public Coffee next() {

 count--;

 return CoffeeGenerator.this.next();

 }

 public void remove() { // Not implemented

 throw new UnsupportedOperationException();

 }

 };

 public Iterator<Coffee> iterator() {

 return new CoffeeIterator();

 }

 public static void main(String[] args) {

 CoffeeGenerator gen = new CoffeeGenerator();

 for(int i = 0; i < 5; i++)

 System.out.println(gen.next());

 for(Coffee c : new CoffeeGenerator(5))

 System.out.println(c);

 }

} /* Output:

Americano 0

Latte 1

Americano 2

Mocha 3

Mocha 4

Breve 5

Americano 6

Latte 7

Cappuccino 8

Cappuccino 9

*///:~

The parameterized Generator interface ensures that next() returns the

parameter type. CoffeeGenerator also implements the Iterable interface,

so it can be used in a foreach statement. However, it requires an “end

sentinel” to know when to stop, and this is produced using the second

constructor.

Here’s a second implementation of Generator<T>, this time to produce

Fibonacci numbers:

//: generics/Fibonacci.java

626 Thinking in Java Bruce Eckel

// Generate a Fibonacci sequence.

import net.mindview.util.*;

public class Fibonacci implements Generator<Integer> {

 private int count = 0;

 public Integer next() { return fib(count++); }

 private int fib(int n) {

 if(n < 2) return 1;

 return fib(n-2) + fib(n-1);

 }

 public static void main(String[] args) {

 Fibonacci gen = new Fibonacci();

 for(int i = 0; i < 18; i++)

 System.out.print(gen.next() + " ");

 }

} /* Output:

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584

*///:~

Although we are working with ints both inside and outside the class, the type

parameter is Integer. This brings up one of the limitations of Java generics:

You cannot use primitives as type parameters. However, Java SE5

conveniently added autoboxing and autounboxing to convert from primitive

types to wrapper types and back. You can see the effect here because ints are

seamlessly used and produced by the class.

We can go one step further and make an Iterable Fibonacci generator. One

option is to reimplement the class and add the Iterable interface, but you

don’t always have control of the original code, and you don’t want to rewrite

when you don’t have to. Instead, we can create an adapter to produce the

desired interface—this design pattern was introduced earlier in the book.

Adapters can be implemented in multiple ways. For example, you could use

inheritance to generate the adapted class:

//: generics/IterableFibonacci.java

// Adapt the Fibonacci class to make it Iterable.

import java.util.*;

public class IterableFibonacci

extends Fibonacci implements Iterable<Integer> {

 private int n;

 public IterableFibonacci(int count) { n = count; }

 public Iterator<Integer> iterator() {

Generics 627

 return new Iterator<Integer>() {

 public boolean hasNext() { return n > 0; }

 public Integer next() {

 n--;

 return IterableFibonacci.this.next();

 }

 public void remove() { // Not implemented

 throw new UnsupportedOperationException();

 }

 };

 }

 public static void main(String[] args) {

 for(int i : new IterableFibonacci(18))

 System.out.print(i + " ");

 }

} /* Output:

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584

*///:~

To use IterableFibonacci in a foreach statement, you give the constructor a

boundary so that hasNext() can know when to return false.

Exercise 7: (2) Use composition instead of inheritance to adapt
Fibonacci to make it Iterable.

Exercise 8: (2) Following the form of the Coffee example, create a
hierarchy of StoryCharacters from your favorite movie, dividing them into
GoodGuys and BadGuys. Create a generator for StoryCharacters,
following the form of CoffeeGenerator.

Generic methods
So far we’ve looked at parameterizing entire classes. You can also

parameterize methods within a class. The class itself may or may not be

generic—this is independent of whether you have a generic method.

A generic method allows the method to vary independently of the class. As a

guideline, you should use generic methods “whenever you can.” That is, if it’s

possible to make a method generic rather than the entire class, it’s probably

going to be clearer to do so. In addition, if a method is static, it has no access

to the generic type parameters of the class, so if it needs to use genericity it

must be a generic method.

628 Thinking in Java Bruce Eckel

To define a generic method, you simply place a generic parameter list before

the return value, like this:

//: generics/GenericMethods.java

public class GenericMethods {

 public <T> void f(T x) {

 System.out.println(x.getClass().getName());

 }

 public static void main(String[] args) {

 GenericMethods gm = new GenericMethods();

 gm.f("");

 gm.f(1);

 gm.f(1.0);

 gm.f(1.0F);

 gm.f('c');

 gm.f(gm);

 }

} /* Output:

java.lang.String

java.lang.Integer

java.lang.Double

java.lang.Float

java.lang.Character

GenericMethods

*///:~

The class GenericMethods is not parameterized, although both a class and

its methods may be parameterized at the same time. But in this case, only the

method f() has a type parameter, indicated by the parameter list before the

method’s return type.

Notice that with a generic class, you must specify the type parameters when

you instantiate the class. But with a generic method, you don’t usually have to

specify the parameter types, because the compiler can figure that out for you.

This is called type argument inference. So calls to f() look like normal

method calls, and it appears that f() has been infinitely overloaded. It will

even take an argument of the type GenericMethods.

For the calls to f() that use primitive types, autoboxing comes into play,

automatically wrapping the primitive types in their associated objects. In fact,

generic methods and autoboxing can eliminate some code that previously

required hand conversion.

Generics 629

Exercise 9: (1) Modify GenericMethods.java so that f() accepts three
arguments, all of which are of a different parameterized type.

Exercise 10: (1) Modify the previous exercise so that one of f()’s
arguments is non-parameterized.

Leveraging type argument inference
One of the complaints about generics is that it adds even more text to your

code. Consider holding/MapOfList.java from the Holding Your Objects

chapter. The creation of the Map of List looks like this:

Map<Person, List<? extends Pet>> petPeople =

 new HashMap<Person, List<? extends Pet>>();

(This use of extends and the question marks will be explained later in this

chapter.) It appears that you are repeating yourself, and that the compiler

should figure out one of the generic argument lists from the other. Alas, it

cannot, but type argument inference in a generic method can produce some

simplification. For example, we can create a utility containing various static

methods, which produces the most commonly used implementations of the

various containers:

//: net/mindview/util/New.java

// Utilities to simplify generic container creation

// by using type argument inference.

package net.mindview.util;

import java.util.*;

public class New {

 public static <K,V> Map<K,V> map() {

 return new HashMap<K,V>();

 }

 public static <T> List<T> list() {

 return new ArrayList<T>();

 }

 public static <T> LinkedList<T> lList() {

 return new LinkedList<T>();

 }

 public static <T> Set<T> set() {

 return new HashSet<T>();

 }

 public static <T> Queue<T> queue() {

 return new LinkedList<T>();

630 Thinking in Java Bruce Eckel

 }

 // Examples:

 public static void main(String[] args) {

 Map<String, List<String>> sls = New.map();

 List<String> ls = New.list();

 LinkedList<String> lls = New.lList();

 Set<String> ss = New.set();

 Queue<String> qs = New.queue();

 }

} ///:~

In main() you can see examples of how this is used—type argument

inference eliminates the need to repeat the generic parameter list. This can be

applied to holding/MapOfList.java:

//: generics/SimplerPets.java

import typeinfo.pets.*;

import java.util.*;

import net.mindview.util.*;

public class SimplerPets {

 public static void main(String[] args) {

 Map<Person, List<? extends Pet>> petPeople = New.map();

 // Rest of the code is the same...

 }

} ///:~

Although this is an interesting example of type argument inference, it’s

difficult to say how much it actually buys you. The person reading the code is

required to parse and understand this additional library and its implications,

so it might be just as productive to leave the original (admittedly repetitious)

definition in place—ironically, for simplicity. However, if the standard Java

library were to add something like the New.java utility above, it would make

sense to use it.

Type inference doesn’t work for anything other than assignment. If you pass

the result of a method call such as New.map() as an argument to another

method, the compiler will not try to perform type inference. Instead it will

treat the method call as though the return value is assigned to a variable of

type Object. Here’s an example that fails:

//: generics/LimitsOfInference.java

import typeinfo.pets.*;

import java.util.*;

Generics 631

public class LimitsOfInference {

 static void

 f(Map<Person, List<? extends Pet>> petPeople) {}

 public static void main(String[] args) {

 // f(New.map()); // Does not compile

 }

} ///:~

Exercise 11: (1) Test New.java by creating your own classes and
ensuring that New will work properly with them.

Explicit type specification
It is possible to explicitly specify the type in a generic method, although the

syntax is rarely needed. To do so, you place the type in angle brackets after

the dot and immediately preceding the method name. When calling a method

from within the same class, you must use this before the dot, and when

working with static methods, you must use the class name before the dot.

The problem shown in LimitsOfInference.java can be solved using this

syntax:

//: generics/ExplicitTypeSpecification.java

import typeinfo.pets.*;

import java.util.*;

import net.mindview.util.*;

public class ExplicitTypeSpecification {

 static void f(Map<Person, List<Pet>> petPeople) {}

 public static void main(String[] args) {

 f(New.<Person, List<Pet>>map());

 }

} ///:~

Of course, this eliminates the benefit of using the New class to reduce the

amount of typing, but the extra syntax is only required when you are not

writing an assignment statement.

Exercise 12: (1) Repeat the previous exercise using explicit type
specification.

Varargs and generic methods
Generic methods and variable argument lists coexist nicely:

632 Thinking in Java Bruce Eckel

//: generics/GenericVarargs.java

import java.util.*;

public class GenericVarargs {

 public static <T> List<T> makeList(T... args) {

 List<T> result = new ArrayList<T>();

 for(T item : args)

 result.add(item);

 return result;

 }

 public static void main(String[] args) {

 List<String> ls = makeList("A");

 System.out.println(ls);

 ls = makeList("A", "B", "C");

 System.out.println(ls);

 ls = makeList("ABCDEFFHIJKLMNOPQRSTUVWXYZ".split(""));

 System.out.println(ls);

 }

} /* Output:

[A]

[A, B, C]

[, A, B, C, D, E, F, F, H, I, J, K, L, M, N, O, P, Q, R, S,

T, U, V, W, X, Y, Z]

*///:~

The makeList() method shown here produces the same functionality as the

standard library’s java.util.Arrays.asList() method.

A generic method to use with

Generators
It is convenient to use a generator to fill a Collection, and it makes sense to

“generify” this operation:

//: generics/Generators.java

// A utility to use with Generators.

import generics.coffee.*;

import java.util.*;

import net.mindview.util.*;

public class Generators {

 public static <T> Collection<T>

 fill(Collection<T> coll, Generator<T> gen, int n) {

 for(int i = 0; i < n; i++)

Generics 633

 coll.add(gen.next());

 return coll;

 }

 public static void main(String[] args) {

 Collection<Coffee> coffee = fill(

 new ArrayList<Coffee>(), new CoffeeGenerator(), 4);

 for(Coffee c : coffee)

 System.out.println(c);

 Collection<Integer> fnumbers = fill(

 new ArrayList<Integer>(), new Fibonacci(), 12);

 for(int i : fnumbers)

 System.out.print(i + ", ");

 }

} /* Output:

Americano 0

Latte 1

Americano 2

Mocha 3

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,

*///:~

Notice how the generic method fill() can be transparently applied to both

Coffee and Integer containers and generators.

Exercise 13: (4) Overload the fill() method so that the arguments and
return types are the specific subtypes of Collection: List, Queue and Set.
This way, you don’t lose the type of container. Can you overload to
distinguish between List and LinkedList?

A general-purpose Generator
Here’s a class that produces a Generator for any class that has a default

constructor. To reduce typing, it also includes a generic method to produce a

BasicGenerator:

//: net/mindview/util/BasicGenerator.java

// Automatically create a Generator, given a class

// with a default (no-arg) constructor.

package net.mindview.util;

public class BasicGenerator<T> implements Generator<T> {

 private Class<T> type;

 public BasicGenerator(Class<T> type){ this.type = type; }

 public T next() {

 try {

634 Thinking in Java Bruce Eckel

 // Assumes type is a public class:

 return type.newInstance();

 } catch(Exception e) {

 throw new RuntimeException(e);

 }

 }

 // Produce a Default generator given a type token:

 public static <T> Generator<T> create(Class<T> type) {

 return new BasicGenerator<T>(type);

 }

} ///:~

This class provides a basic implementation that will produce objects of a class

that (1) is public (because BasicGenerator is in a separate package, the

class in question must have public and not just package access) and (2) has a

default constructor (one that takes no arguments). To create one of these

BasicGenerator objects, you call the create() method and pass it the type

token for the type you want generated. The generic create() method allows

you to say BasicGenerator.create(MyType.class) instead of the more

awkward new BasicGenerator<MyType>(MyType.class).

For example, here’s a simple class that has a default constructor:

//: generics/CountedObject.java

public class CountedObject {

 private static long counter = 0;

 private final long id = counter++;

 public long id() { return id; }

 public String toString() { return "CountedObject " + id;}

} ///:~

The CountedObject class keeps track of how many instances of itself have

been created, and reports these in its toString().

Using BasicGenerator, you can easily create a Generator for

CountedObject:

//: generics/BasicGeneratorDemo.java

import net.mindview.util.*;

public class BasicGeneratorDemo {

 public static void main(String[] args) {

 Generator<CountedObject> gen =

 BasicGenerator.create(CountedObject.class);

Generics 635

 for(int i = 0; i < 5; i++)

 System.out.println(gen.next());

 }

} /* Output:

CountedObject 0

CountedObject 1

CountedObject 2

CountedObject 3

CountedObject 4

*///:~

You can see how the generic method reduces the amount of typing necessary

to produce the Generator object. Java generics force you to pass in the

Class object anyway, so you might as well use it for type inference in the

create() method.

Exercise 14: (1) Modify BasicGeneratorDemo.java to use the explicit
form of creation for the Generator (that is, use the explicit constructor
instead of the generic create() method).

Simplifying tuple use
Type argument inference, together with static imports, allows the tuples we

saw earlier to be rewritten into a more general-purpose library. Here, tuples

can be created using an overloaded static method:

//: net/mindview/util/Tuple.java

// Tuple library using type argument inference.

package net.mindview.util;

public class Tuple {

 public static <A,B> TwoTuple<A,B> tuple(A a, B b) {

 return new TwoTuple<A,B>(a, b);

 }

 public static <A,B,C> ThreeTuple<A,B,C>

 tuple(A a, B b, C c) {

 return new ThreeTuple<A,B,C>(a, b, c);

 }

 public static <A,B,C,D> FourTuple<A,B,C,D>

 tuple(A a, B b, C c, D d) {

 return new FourTuple<A,B,C,D>(a, b, c, d);

 }

 public static <A,B,C,D,E>

 FiveTuple<A,B,C,D,E> tuple(A a, B b, C c, D d, E e) {

 return new FiveTuple<A,B,C,D,E>(a, b, c, d, e);

636 Thinking in Java Bruce Eckel

 }

} ///:~

Here’s a modification of TupleTest.java to test Tuple.java:

//: generics/TupleTest2.java

import net.mindview.util.*;

import static net.mindview.util.Tuple.*;

public class TupleTest2 {

 static TwoTuple<String,Integer> f() {

 return tuple("hi", 47);

 }

 static TwoTuple f2() { return tuple("hi", 47); }

 static ThreeTuple<Amphibian,String,Integer> g() {

 return tuple(new Amphibian(), "hi", 47);

 }

 static

 FourTuple<Vehicle,Amphibian,String,Integer> h() {

 return tuple(new Vehicle(), new Amphibian(), "hi", 47);

 }

 static

 FiveTuple<Vehicle,Amphibian,String,Integer,Double> k() {

 return tuple(new Vehicle(), new Amphibian(),

 "hi", 47, 11.1);

 }

 public static void main(String[] args) {

 TwoTuple<String,Integer> ttsi = f();

 System.out.println(ttsi);

 System.out.println(f2());

 System.out.println(g());

 System.out.println(h());

 System.out.println(k());

 }

} /* Output: (80% match)

(hi, 47)

(hi, 47)

(Amphibian@7d772e, hi, 47)

(Vehicle@757aef, Amphibian@d9f9c3, hi, 47)

(Vehicle@1a46e30, Amphibian@3e25a5, hi, 47, 11.1)

*///:~

Notice that f() returns a parameterized TwoTuple object, while f2()

returns an unparameterized TwoTuple object. The compiler doesn’t warn

about f2() in this case because the return value is not being used in a

Generics 637

parameterized fashion; in a sense, it is being “upcast” to an unparameterized

TwoTuple. However, if you were to try to capture the result of f2() into a

parameterized TwoTuple, the compiler would issue a warning.

Exercise 15: (1) Verify the previous statement.

Exercise 16: (2) Add a SixTuple to Tuple.java, and test it in
TupleTest2.java.

A Set utility
For another example of the use of generic methods, consider the

mathematical relationships that can be expressed using Sets. These can be

conveniently defined as generic methods, to be used with all different types:

//: net/mindview/util/Sets.java

package net.mindview.util;

import java.util.*;

public class Sets {

 public static <T> Set<T> union(Set<T> a, Set<T> b) {

 Set<T> result = new HashSet<T>(a);

 result.addAll(b);

 return result;

 }

 public static <T>

 Set<T> intersection(Set<T> a, Set<T> b) {

 Set<T> result = new HashSet<T>(a);

 result.retainAll(b);

 return result;

 }

 // Subtract subset from superset:

 public static <T> Set<T>

 difference(Set<T> superset, Set<T> subset) {

 Set<T> result = new HashSet<T>(superset);

 result.removeAll(subset);

 return result;

 }

 // Reflexive--everything not in the intersection:

 public static <T> Set<T> complement(Set<T> a, Set<T> b) {

 return difference(union(a, b), intersection(a, b));

 }

} ///:~

638 Thinking in Java Bruce Eckel

The first three methods duplicate the first argument by copying its references

into a new HashSet object, so the argument Sets are not directly modified.

The return value is thus a new Set object.

The four methods represent mathematical set operations: union() returns a

Set containing the combination of the two arguments, intersection()

returns a Set containing the common elements between the two arguments,

difference() performs a subtraction of the subset elements from the

superset, and complement() returns a Set of all the elements that are not

in the intersection. To create a simple example showing the effects of these

methods, here’s an enum containing different names of watercolors:

//: generics/watercolors/Watercolors.java

package generics.watercolors;

public enum Watercolors {

 ZINC, LEMON_YELLOW, MEDIUM_YELLOW, DEEP_YELLOW, ORANGE,

 BRILLIANT_RED, CRIMSON, MAGENTA, ROSE_MADDER, VIOLET,

 CERULEAN_BLUE_HUE, PHTHALO_BLUE, ULTRAMARINE,

 COBALT_BLUE_HUE, PERMANENT_GREEN, VIRIDIAN_HUE,

 SAP_GREEN, YELLOW_OCHRE, BURNT_SIENNA, RAW_UMBER,

 BURNT_UMBER, PAYNES_GRAY, IVORY_BLACK

} ///:~

For convenience (so that all the names don’t have to be qualified), this is

imported statically into the following example. This example uses the

EnumSet, which is a Java SE5 tool for easy creation of Sets from enums.

(You’ll learn more about EnumSet in the Enumerated Types chapter.) Here,

the static method EnumSet.range() is given the first and last elements of

the range to create in the resulting Set:

//: generics/WatercolorSets.java

import generics.watercolors.*;

import java.util.*;

import static net.mindview.util.Print.*;

import static net.mindview.util.Sets.*;

import static generics.watercolors.Watercolors.*;

public class WatercolorSets {

 public static void main(String[] args) {

 Set<Watercolors> set1 =

 EnumSet.range(BRILLIANT_RED, VIRIDIAN_HUE);

 Set<Watercolors> set2 =

 EnumSet.range(CERULEAN_BLUE_HUE, BURNT_UMBER);

Generics 639

 print("set1: " + set1);

 print("set2: " + set2);

 print("union(set1, set2): " + union(set1, set2));

 Set<Watercolors> subset = intersection(set1, set2);

 print("intersection(set1, set2): " + subset);

 print("difference(set1, subset): " +

 difference(set1, subset));

 print("difference(set2, subset): " +

 difference(set2, subset));

 print("complement(set1, set2): " +

 complement(set1, set2));

 }

} /* Output: (Sample)

set1: [BRILLIANT_RED, CRIMSON, MAGENTA, ROSE_MADDER, VIOLET,

CERULEAN_BLUE_HUE, PHTHALO_BLUE, ULTRAMARINE,

COBALT_BLUE_HUE, PERMANENT_GREEN, VIRIDIAN_HUE]

set2: [CERULEAN_BLUE_HUE, PHTHALO_BLUE, ULTRAMARINE,

COBALT_BLUE_HUE, PERMANENT_GREEN, VIRIDIAN_HUE, SAP_GREEN,

YELLOW_OCHRE, BURNT_SIENNA, RAW_UMBER, BURNT_UMBER]

union(set1, set2): [SAP_GREEN, ROSE_MADDER, YELLOW_OCHRE,

PERMANENT_GREEN, BURNT_UMBER, COBALT_BLUE_HUE, VIOLET,

BRILLIANT_RED, RAW_UMBER, ULTRAMARINE, BURNT_SIENNA,

CRIMSON, CERULEAN_BLUE_HUE, PHTHALO_BLUE, MAGENTA,

VIRIDIAN_HUE]

intersection(set1, set2): [ULTRAMARINE, PERMANENT_GREEN,

COBALT_BLUE_HUE, PHTHALO_BLUE, CERULEAN_BLUE_HUE,

VIRIDIAN_HUE]

difference(set1, subset): [ROSE_MADDER, CRIMSON, VIOLET,

MAGENTA, BRILLIANT_RED]

difference(set2, subset): [RAW_UMBER, SAP_GREEN,

YELLOW_OCHRE, BURNT_SIENNA, BURNT_UMBER]

complement(set1, set2): [SAP_GREEN, ROSE_MADDER,

YELLOW_OCHRE, BURNT_UMBER, VIOLET, BRILLIANT_RED, RAW_UMBER,

BURNT_SIENNA, CRIMSON, MAGENTA]

*///:~

You can see the results of each operation from the output.

The following example uses Sets.difference() to show the method

differences between various Collection and Map classes in java.util:

//: net/mindview/util/ContainerMethodDifferences.java

package net.mindview.util;

import java.lang.reflect.*;

import java.util.*;

640 Thinking in Java Bruce Eckel

public class ContainerMethodDifferences {

 static Set<String> methodSet(Class<?> type) {

 Set<String> result = new TreeSet<String>();

 for(Method m : type.getMethods())

 result.add(m.getName());

 return result;

 }

 static void interfaces(Class<?> type) {

 System.out.print("Interfaces in " +

 type.getSimpleName() + ": ");

 List<String> result = new ArrayList<String>();

 for(Class<?> c : type.getInterfaces())

 result.add(c.getSimpleName());

 System.out.println(result);

 }

 static Set<String> object = methodSet(Object.class);

 static { object.add("clone"); }

 static void

 difference(Class<?> superset, Class<?> subset) {

 System.out.print(superset.getSimpleName() +

 " extends " + subset.getSimpleName() + ", adds: ");

 Set<String> comp = Sets.difference(

 methodSet(superset), methodSet(subset));

 comp.removeAll(object); // Don't show 'Object' methods

 System.out.println(comp);

 interfaces(superset);

 }

 public static void main(String[] args) {

 System.out.println("Collection: " +

 methodSet(Collection.class));

 interfaces(Collection.class);

 difference(Set.class, Collection.class);

 difference(HashSet.class, Set.class);

 difference(LinkedHashSet.class, HashSet.class);

 difference(TreeSet.class, Set.class);

 difference(List.class, Collection.class);

 difference(ArrayList.class, List.class);

 difference(LinkedList.class, List.class);

 difference(Queue.class, Collection.class);

 difference(PriorityQueue.class, Queue.class);

 System.out.println("Map: " + methodSet(Map.class));

 difference(HashMap.class, Map.class);

 difference(LinkedHashMap.class, HashMap.class);

Generics 641

 difference(SortedMap.class, Map.class);

 difference(TreeMap.class, Map.class);

 }

} ///:~

The output of this program was used in the “Summary” section of the

Holding Your Objects chapter.

Exercise 17: (4) Study the JDK documentation for EnumSet. You’ll see
that there’s a clone() method defined. However, you cannot clone() from
the reference to the Set interface passed in Sets.java. Can you modify
Sets.java to handle both the general case of a Set interface as shown, and
the special case of an EnumSet, using clone() instead of creating a new
HashSet?

Anonymous inner classes
Generics can also be used with inner classes and anonymous inner classes.

Here’s an example that implements the Generator interface using

anonymous inner classes:

//: generics/BankTeller.java

// A very simple bank teller simulation.

import java.util.*;

import net.mindview.util.*;

class Customer {

 private static long counter = 1;

 private final long id = counter++;

 private Customer() {}

 public String toString() { return "Customer " + id; }

 // A method to produce Generator objects:

 public static Generator<Customer> generator() {

 return new Generator<Customer>() {

 public Customer next() { return new Customer(); }

 };

 }

}

class Teller {

 private static long counter = 1;

 private final long id = counter++;

 private Teller() {}

 public String toString() { return "Teller " + id; }

642 Thinking in Java Bruce Eckel

 // A single Generator object:

 public static Generator<Teller> generator =

 new Generator<Teller>() {

 public Teller next() { return new Teller(); }

 };

}

public class BankTeller {

 public static void serve(Teller t, Customer c) {

 System.out.println(t + " serves " + c);

 }

 public static void main(String[] args) {

 Random rand = new Random(47);

 Queue<Customer> line = new LinkedList<Customer>();

 Generators.fill(line, Customer.generator(), 15);

 List<Teller> tellers = new ArrayList<Teller>();

 Generators.fill(tellers, Teller.generator, 4);

 for(Customer c : line)

 serve(tellers.get(rand.nextInt(tellers.size())), c);

 }

} /* Output:

Teller 3 serves Customer 1

Teller 2 serves Customer 2

Teller 3 serves Customer 3

Teller 1 serves Customer 4

Teller 1 serves Customer 5

Teller 3 serves Customer 6

Teller 1 serves Customer 7

Teller 2 serves Customer 8

Teller 3 serves Customer 9

Teller 3 serves Customer 10

Teller 2 serves Customer 11

Teller 4 serves Customer 12

Teller 2 serves Customer 13

Teller 1 serves Customer 14

Teller 1 serves Customer 15

*///:~

Both Customer and Teller have private constructors, thereby forcing you

to use Generator objects. Customer has a generator() method that

produces a new Generator<Customer> object each time you call it. You

may not need multiple Generator objects, and Teller creates a single public

generator object. You can see both of these approaches used in the fill()

methods in main().

Generics 643

Since both the generator() method in Customer and the Generator

object in Teller are static, they cannot be part of an interface, so there is no

way to “generify” this particular idiom. Despite that, it works reasonably well

with the fill() method.

We’ll look at other versions of this queuing problem in the Concurrency

chapter.

Exercise 18: (3) Following the form of BankTeller.java, create an
example where BigFish eat LittleFish in the Ocean.

Building complex models
An important benefit of generics is the ability to simply and safely create

complex models. For example, we can easily create a List of tuples:

//: generics/TupleList.java

// Combining generic types to make complex generic types.

import java.util.*;

import net.mindview.util.*;

public class TupleList<A,B,C,D>

extends ArrayList<FourTuple<A,B,C,D>> {

 public static void main(String[] args) {

 TupleList<Vehicle, Amphibian, String, Integer> tl =

 new TupleList<Vehicle, Amphibian, String, Integer>();

 tl.add(TupleTest.h());

 tl.add(TupleTest.h());

 for(FourTuple<Vehicle,Amphibian,String,Integer> i: tl)

 System.out.println(i);

 }

} /* Output: (75% match)

(Vehicle@11b86e7, Amphibian@35ce36, hi, 47)

(Vehicle@757aef, Amphibian@d9f9c3, hi, 47)

*///:~

Although it gets somewhat verbose (especially the creation of the iterator),

you end up with a fairly powerful data structure without too much code.

Here’s another example showing how straightforward it is to build complex

models using generic types. Even though each class is created as a building

block, the total has many parts. In this case, the model is a retail store with

aisles, shelves and products:

644 Thinking in Java Bruce Eckel

//: generics/Store.java

// Building up a complex model using generic containers.

import java.util.*;

import net.mindview.util.*;

class Product {

 private final int id;

 private String description;

 private double price;

 public Product(int IDnumber, String descr, double price){

 id = IDnumber;

 description = descr;

 this.price = price;

 System.out.println(toString());

 }

 public String toString() {

 return id + ": " + description + ", price: $" + price;

 }

 public void priceChange(double change) {

 price += change;

 }

 public static Generator<Product> generator =

 new Generator<Product>() {

 private Random rand = new Random(47);

 public Product next() {

 return new Product(rand.nextInt(1000), "Test",

 Math.round(rand.nextDouble() * 1000.0) + 0.99);

 }

 };

}

class Shelf extends ArrayList<Product> {

 public Shelf(int nProducts) {

 Generators.fill(this, Product.generator, nProducts);

 }

}

class Aisle extends ArrayList<Shelf> {

 public Aisle(int nShelves, int nProducts) {

 for(int i = 0; i < nShelves; i++)

 add(new Shelf(nProducts));

 }

}

Generics 645

class CheckoutStand {}

class Office {}

public class Store extends ArrayList<Aisle> {

 private ArrayList<CheckoutStand> checkouts =

 new ArrayList<CheckoutStand>();

 private Office office = new Office();

 public Store(int nAisles, int nShelves, int nProducts) {

 for(int i = 0; i < nAisles; i++)

 add(new Aisle(nShelves, nProducts));

 }

 public String toString() {

 StringBuilder result = new StringBuilder();

 for(Aisle a : this)

 for(Shelf s : a)

 for(Product p : s) {

 result.append(p);

 result.append("\n");

 }

 return result.toString();

 }

 public static void main(String[] args) {

 System.out.println(new Store(14, 5, 10));

 }

} /* Output:

258: Test, price: $400.99

861: Test, price: $160.99

868: Test, price: $417.99

207: Test, price: $268.99

551: Test, price: $114.99

278: Test, price: $804.99

520: Test, price: $554.99

140: Test, price: $530.99

...

*///:~

As you can see in Store.toString(), the result is many layers of containers

that are nonetheless type-safe and manageable. What’s impressive is that it is

not intellectually prohibitive to assemble such a model.

Exercise 19: (2) Following the form of Store.java, build a model of a
containerized cargo ship.

646 Thinking in Java Bruce Eckel

The mystery of erasure
As you begin to delve more deeply into generics, there are a number of things

that won’t initially make sense. For example, although you can say

ArrayList.class, you cannot say ArrayList<Integer>.class. And

consider the following:

//: generics/ErasedTypeEquivalence.java

import java.util.*;

public class ErasedTypeEquivalence {

 public static void main(String[] args) {

 Class c1 = new ArrayList<String>().getClass();

 Class c2 = new ArrayList<Integer>().getClass();

 System.out.println(c1 == c2);

 }

} /* Output:

true

*///:~

ArrayList<String> and ArrayList<Integer> could easily be argued to be

distinct types. Different types behave differently, and if you try, for example,

to put an Integer into an ArrayList<String>, you get different behavior (it

fails) than if you put an Integer into an ArrayList<Integer> (it succeeds).

And yet the above program suggests that they are the same type.

Here’s an example that adds to this puzzle:

//: generics/LostInformation.java

import java.util.*;

class Frob {}

class Fnorkle {}

class Quark<Q> {}

class Particle<POSITION,MOMENTUM> {}

public class LostInformation {

 public static void main(String[] args) {

 List<Frob> list = new ArrayList<Frob>();

 Map<Frob,Fnorkle> map = new HashMap<Frob,Fnorkle>();

 Quark<Fnorkle> quark = new Quark<Fnorkle>();

 Particle<Long,Double> p = new Particle<Long,Double>();

 System.out.println(Arrays.toString(

 list.getClass().getTypeParameters()));

Generics 647

 System.out.println(Arrays.toString(

 map.getClass().getTypeParameters()));

 System.out.println(Arrays.toString(

 quark.getClass().getTypeParameters()));

 System.out.println(Arrays.toString(

 p.getClass().getTypeParameters()));

 }

} /* Output:

[E]

[K, V]

[Q]

[POSITION, MOMENTUM]

*///:~

According to the JDK documentation, Class.getTypeParameters()

“returns an array of TypeVariable objects that represent the type variables

declared by the generic declaration…” This seems to suggest that you might

be able to find out what the parameter types are. However, as you can see

from the output, all you find out is the identifiers that are used as the

parameter placeholders, which is not such an interesting piece of

information.

The cold truth is:

There’s no information about generic parameter types available inside

generic code.

Thus, you can know things like the identifier of the type parameter and the

bounds of the generic type—you just can’t know the actual type parameter(s)

used to create a particular instance. This fact, which is especially frustrating if

you’re coming from C++, is the most fundamental issue that you must deal

with when working with Java generics.

Java generics are implemented using erasure. This means that any specific

type information is erased when you use a generic. Inside the generic, the

only thing that you know is that you’re using an object. So List<String> and

List<Integer> are, in fact, the same type at run time. Both forms are

“erased” to their raw type, List. Understanding erasure and how you must

deal with it will be one of the biggest hurdles you will face when learning Java

generics, and that’s what we’ll explore in this section.

648 Thinking in Java Bruce Eckel

The C++ approach
Here’s a C++ example which uses templates. You’ll notice that the syntax for

parameterized types is quite similar, because Java took inspiration from C++:

//: generics/Templates.cpp

#include <iostream>

using namespace std;

template<class T> class Manipulator {

 T obj;

public:

 Manipulator(T x) { obj = x; }

 void manipulate() { obj.f(); }

};

class HasF {

public:

 void f() { cout << "HasF::f()" << endl; }

};

int main() {

 HasF hf;

 Manipulator<HasF> manipulator(hf);

 manipulator.manipulate();

} /* Output:

HasF::f()

///:~

The Manipulator class stores an object of type T. What’s interesting is the

manipulate() method, which calls a method f() on obj. How can it know

that the f() method exists for the type parameter T? The C++ compiler

checks when you instantiate the template, so at the point of instantiation of

Manipulator<HasF>, it sees that HasF has a method f(). If it were not

the case, you’d get a compile-time error, and thus type safety is preserved.

Writing this kind of code in C++ is straightforward because when a template

is instantiated, the template code knows the type of its template parameters.

Java generics are different. Here’s the translation of HasF:

//: generics/HasF.java

public class HasF {

 public void f() { System.out.println("HasF.f()"); }

Generics 649

} ///:~

If we take the rest of the example and translate it to Java, it won’t compile:

//: generics/Manipulation.java

// {CompileTimeError} (Won’t compile)

class Manipulator<T> {

 private T obj;

 public Manipulator(T x) { obj = x; }

 // Error: cannot find symbol: method f():

 public void manipulate() { obj.f(); }

}

public class Manipulation {

 public static void main(String[] args) {

 HasF hf = new HasF();

 Manipulator<HasF> manipulator =

 new Manipulator<HasF>(hf);

 manipulator.manipulate();

 }

} ///:~

Because of erasure, the Java compiler can’t map the requirement that

manipulate() must be able to call f() on obj to the fact that HasF has a

method f(). In order to call f(), we must assist the generic class by giving it a

bound that tells the compiler to only accept types that conform to that bound.

This reuses the extends keyword. Because of the bound, the following

compiles:

//: generics/Manipulator2.java

class Manipulator2<T extends HasF> {

 private T obj;

 public Manipulator2(T x) { obj = x; }

 public void manipulate() { obj.f(); }

} ///:~

The bound <T extends HasF> says that T must be of type HasF or

something derived from HasF. If this is true, then it is safe to call f() on obj.

We say that a generic type parameter erases to its first bound (it’s possible to

have multiple bounds, as you shall see later). We also talk about the erasure

of the type parameter. The compiler actually replaces the type parameter

650 Thinking in Java Bruce Eckel

with its erasure, so in the above case, T erases to HasF, which is the same as

replacing T with HasF in the class body.

You may correctly observe that in Manipulation2.java, generics do not

contribute anything. You could just as easily perform the erasure yourself and

produce a class without generics:

//: generics/Manipulator3.java

class Manipulator3 {

 private HasF obj;

 public Manipulator3(HasF x) { obj = x; }

 public void manipulate() { obj.f(); }

} ///:~

This brings up an important point: Generics are only useful when you want to

use type parameters that are more “generic” than a specific type (and all its

subtypes)—that is, when you want code to work across multiple classes. As a

result, the type parameters and their application in useful generic code will

usually be more complex than simple class replacement. However, you can’t

just say that anything of the form <T extends HasF> is therefore flawed.

For example, if a class has a method that returns T, then generics are helpful,

because they will then return the exact type:

//: generics/ReturnGenericType.java

class ReturnGenericType<T extends HasF> {

 private T obj;

 public ReturnGenericType(T x) { obj = x; }

 public T get() { return obj; }

} ///:~

You have to look at all the code and understand whether it is “complex

enough” to warrant the use of generics.

We’ll look at bounds in more detail later in the chapter.

Exercise 20: (1) Create an interface with two methods, and a class that
implements that interface and adds another method. In another class, create
a generic method with an argument type that is bounded by the interface, and
show that the methods in the interface are callable inside this generic
method. In main(), pass an instance of the implementing class to the
generic method.

Generics 651

Migration compatibility
To allay any potential confusion about erasure, you must clearly understand

that it is not a language feature. It is a compromise in the implementation of

Java generics, necessary because generics were not made part of the language

from the beginning. This compromise will cause you pain, so you need to get

used to it early and to understand why it’s there.

If generics had been part of Java 1.0, the feature would not have been

implemented using erasure—it would have used reification to retain the type

parameters as first-class entities, so you would have been able to perform

type-based language and reflective operations on type parameters. You’ll see

later in this chapter that erasure reduces the “genericity” of generics.

Generics are still useful in Java, just not as useful as they could be, and the

reason is erasure.

In an erasure-based implementation, generic types are treated as second-

class types that cannot be used in some important contexts. The generic types

are present only during static type checking, after which every generic type in

the program is erased by replacing it with a non-generic upper bound. For

example, type annotations such as List<T> are erased to List, and ordinary

type variables are erased to Object unless a bound is specified.

The core motivation for erasure is that it allows generified clients to be used

with non-generified libraries, and vice versa. This is often called migration

compatibility. In the ideal world, we would have had a single day when

everything was generified at once. In reality, even if programmers are only

writing generic code, they will have to deal with non-generic libraries that

were written before Java SE5. The authors of those libraries may never have

the incentive to generify their code, or they may just take their time in getting

to it.

So Java generics not only must support backwards compatibility—existing

code and class files are still legal, and continue to mean what they meant

before—but also must support migration compatibility, so that libraries can

become generic at their own pace, and when a library does become generic, it

doesn’t break code and applications that depend upon it. After deciding that

this was the goal, the Java designers and the various groups working on the

problem decided that erasure was the only feasible solution. Erasure enables

this migration towards generics by allowing non-generic code to coexist with

generic code.

652 Thinking in Java Bruce Eckel

For example, suppose an application uses two libraries, X and Y, and Y uses

library Z. With the advent of Java SE5, the creators of this application and

these libraries will probably, eventually, want to migrate to generics. Each of

them, however, will have different motivations and constraints as to when

that migration happens. To achieve migration compatibility, each library and

application must be independent of all the others regarding whether generics

are used. Thus, they must not be able to detect whether other libraries are or

are not using generics. Ergo, the evidence that a particular library is using

generics must be “erased.”

Without some kind of migration path, all the libraries that had been built up

over time stood the chance of being cut off from the developers that chose to

move to Java generics. Libraries are arguably the part of a programming

language that has the greatest productivity impact, so this was not an

acceptable cost. Whether or not erasure was the best or only migration path is

something that only time will tell.

The problem with erasure
So the primary justification for erasure is the transition process from non-

generified code to generified code, and to incorporate generics into the

language without breaking existing libraries. Erasure allows existing non-

generic client code to continue to be used without change, until clients are

ready to rewrite code for generics. This is a noble motivation, because it

doesn’t suddenly break all existing code.

The cost of erasure is significant. Generic types cannot be used in operations

that explicitly refer to runtime types, such as casts, instanceof operations,

and new expressions. Because all the type information about the parameters

is lost, whenever you’re writing generic code you must constantly be

reminding yourself that it only appears that you have type information about

a parameter. So when you write a piece of code like this:

class Foo<T> {

 T var;

}

it appears that when you create an instance of Foo:

Foo<Cat> f = new Foo<Cat>();

the code in class Foo ought to know that it is now working with a Cat. The

syntax strongly suggests that the type T is being substituted everywhere

Generics 653

throughout the class. But it isn’t, and you must remind yourself, “No, it’s just

an Object,” whenever you’re writing the code for the class.

In addition, erasure and migration compatibility mean that the use of

generics is not enforced when you might want it to be:

//: generics/ErasureAndInheritance.java

class GenericBase<T> {

 private T element;

 public void set(T arg) { element = arg; }

 public T get() { return element; }

}

class Derived1<T> extends GenericBase<T> {}

class Derived2 extends GenericBase {} // No warning

// class Derived3 extends GenericBase<?> {}

// Strange error:

// unexpected type found : ?

// required: class or interface without bounds

public class ErasureAndInheritance {

 @SuppressWarnings("unchecked")

 public static void main(String[] args) {

 Derived2 d2 = new Derived2();

 Object obj = d2.get();

 d2.set(obj); // Warning here!

 }

} ///:~

Derived2 inherits from GenericBase with no generic parameters, and the

compiler doesn’t issue a warning. The warning doesn’t occur until set() is

called.

To turn off the warning, Java provides an annotation, the one that you see in

the listing (this annotation was not supported in earlier releases of Java SE5):

@SuppressWarnings("unchecked")

Notice that this is placed on the method that generates the warning, rather

than the entire class. It’s best to be as “focused” as possible when you turn off

a warning, so that you don’t accidentally cloak a real problem by turning off

warnings too broadly.

654 Thinking in Java Bruce Eckel

Presumably, the error produced by Derived3 means that the compiler

expects a raw base class.

Add to this the extra effort of managing bounds when you want to treat your

type parameter as more than just an Object, and you have far more effort for

much less payoff than you get in parameterized types in languages like C++,

Ada or Eiffel. This is not to say that those languages in general buy you more

than Java does for the majority of programming problems, but rather that

their parameterized type mechanisms are more flexible and powerful than

Java’s.

The action at the boundaries
Because of erasure, I find that the most confusing aspect of generics is the

fact that you can represent things that have no meaning. For example:

//: generics/ArrayMaker.java

import java.lang.reflect.*;

import java.util.*;

public class ArrayMaker<T> {

 private Class<T> kind;

 public ArrayMaker(Class<T> kind) { this.kind = kind; }

 @SuppressWarnings("unchecked")

 T[] create(int size) {

 return (T[])Array.newInstance(kind, size);

 }

 public static void main(String[] args) {

 ArrayMaker<String> stringMaker =

 new ArrayMaker<String>(String.class);

 String[] stringArray = stringMaker.create(9);

 System.out.println(Arrays.toString(stringArray));

 }

} /* Output:

[null, null, null, null, null, null, null, null, null]

*///:~

Even though kind is stored as Class<T>, erasure means that it is actually

just being stored as a Class, with no parameter. So, when you do something

with it, as in creating an array, Array.newInstance() doesn’t actually have

the type information that’s implied in kind; so it cannot produce the specific

result, which must therefore be cast, which produces a warning that you

cannot satisfy.

Generics 655

Note that using Array.newInstance() is the recommended approach for

creating arrays in generics.

If we create a container instead of an array, things are different:

//: generics/ListMaker.java

import java.util.*;

public class ListMaker<T> {

 List<T> create() { return new ArrayList<T>(); }

 public static void main(String[] args) {

 ListMaker<String> stringMaker= new ListMaker<String>();

 List<String> stringList = stringMaker.create();

 }

} ///:~

The compiler gives no warnings, even though we know (from erasure) that

the <T> in new ArrayList<T>() inside create() is removed—at run time

there’s no <T> inside the class, so it seems meaningless. But if you follow this

idea and change the expression to new ArrayList(), the compiler gives a

warning.

Is it really meaningless in this case? What if you were to put some objects in

the list before returning it, like this:

//: generics/FilledListMaker.java

import java.util.*;

public class FilledListMaker<T> {

 List<T> create(T t, int n) {

 List<T> result = new ArrayList<T>();

 for(int i = 0; i < n; i++)

 result.add(t);

 return result;

 }

 public static void main(String[] args) {

 FilledListMaker<String> stringMaker =

 new FilledListMaker<String>();

 List<String> list = stringMaker.create("Hello", 4);

 System.out.println(list);

 }

} /* Output:

[Hello, Hello, Hello, Hello]

*///:~

656 Thinking in Java Bruce Eckel

Even though the compiler is unable to know anything about T inside

create(), it can still ensure—at compile time—that what you put into result

is of type T, so that it agrees with ArrayList<T>. Thus, even though erasure

removes the information about the actual type inside a method or class, the

compiler can still ensure internal consistency in the way that the type is used

within the method or class.

Because erasure removes type information in the body of a method, what

matters at run time is the boundaries: the points where objects enter and

leave a method. These are the points at which the compiler performs type

checks at compile time, and inserts casting code. Consider the following non-

generic example:

//: generics/SimpleHolder.java

public class SimpleHolder {

 private Object obj;

 public void set(Object obj) { this.obj = obj; }

 public Object get() { return obj; }

 public static void main(String[] args) {

 SimpleHolder holder = new SimpleHolder();

 holder.set("Item");

 String s = (String)holder.get();

 }

} ///:~

If we decompile the result with javap -c SimpleHolder, we get (after

editing):

public void set(java.lang.Object);

 0: aload_0

 1: aload_1

 2: putfield #2; //Field obj:Object;

 5: return

public java.lang.Object get();

 0: aload_0

 1: getfield #2; //Field obj:Object;

 4: areturn

public static void main(java.lang.String[]);

 0: new #3; //class SimpleHolder

 3: dup

 4: invokespecial #4; //Method "<init>":()V

Generics 657

 7: astore_1

 8: aload_1

 9: ldc #5; //String Item

 11: invokevirtual #6; //Method set:(Object;)V

 14: aload_1

 15: invokevirtual #7; //Method get:()Object;

 18: checkcast #8; //class java/lang/String

 21: astore_2

 22: return

The set() and get() methods simply store and produce the value, and the

cast is checked at the point of the call to get().

Now incorporate generics into the above code:

//: generics/GenericHolder.java

public class GenericHolder<T> {

 private T obj;

 public void set(T obj) { this.obj = obj; }

 public T get() { return obj; }

 public static void main(String[] args) {

 GenericHolder<String> holder =

 new GenericHolder<String>();

 holder.set("Item");

 String s = holder.get();

 }

} ///:~

The need for the cast from get() has disappeared, but we also know that the

value passed to set() is being type-checked at compile time. Here are the

relevant bytecodes:

public void set(java.lang.Object);

 0: aload_0

 1: aload_1

 2: putfield #2; //Field obj:Object;

 5: return

public java.lang.Object get();

 0: aload_0

 1: getfield #2; //Field obj:Object;

 4: areturn

public static void main(java.lang.String[]);

658 Thinking in Java Bruce Eckel

 0: new #3; //class GenericHolder

 3: dup

 4: invokespecial #4; //Method "<init>":()V

 7: astore_1

 8: aload_1

 9: ldc #5; //String Item

 11: invokevirtual #6; //Method set:(Object;)V

 14: aload_1

 15: invokevirtual #7; //Method get:()Object;

 18: checkcast #8; //class java/lang/String

 21: astore_2

 22: return

The resulting code is identical. The extra work of checking the incoming type

in set() is free, because it is performed by the compiler. And the cast for the

outgoing value of get() is still there, but it’s no less than you’d have to do

yourself—and it’s automatically inserted by the compiler, so the code you

write (and read) is less noisy.

Since get() and set() produce the same bytecodes, all the action in generics

happens at the boundaries—the extra compile-time check for incoming

values, and the inserted cast for outgoing values. It helps to counter the

confusion of erasure to remember that “the boundaries are where the action

takes place.”

Compensating for erasure
As we’ve seen, erasure loses the ability to perform certain operations in

generic code. Anything that requires the knowledge of the exact type at run

time won’t work:

//: generics/Erased.java

// {CompileTimeError} (Won't compile)

public class Erased<T> {

 private final int SIZE = 100;

 public static void f(Object arg) {

 if(arg instanceof T) {} // Error

 T var = new T(); // Error

 T[] array = new T[SIZE]; // Error

 T[] array = (T)new Object[SIZE]; // Unchecked warning

 }

} ///:~

Generics 659

Occasionally you can program around these issues, but sometimes you must

compensate for erasure by introducing a type tag. This means you explicitly

pass in the Class object for your type so that you can use it in type

expressions.

For example, the attempt to use instanceof in the previous program fails

because the type information has been erased. If you introduce a type tag, a

dynamic isInstance() can be used instead:

//: generics/ClassTypeCapture.java

class Building {}

class House extends Building {}

public class ClassTypeCapture<T> {

 Class<T> kind;

 public ClassTypeCapture(Class<T> kind) {

 this.kind = kind;

 }

 public boolean f(Object arg) {

 return kind.isInstance(arg);

 }

 public static void main(String[] args) {

 ClassTypeCapture<Building> ctt1 =

 new ClassTypeCapture<Building>(Building.class);

 System.out.println(ctt1.f(new Building()));

 System.out.println(ctt1.f(new House()));

 ClassTypeCapture<House> ctt2 =

 new ClassTypeCapture<House>(House.class);

 System.out.println(ctt2.f(new Building()));

 System.out.println(ctt2.f(new House()));

 }

} /* Output:

true

true

false

true

*///:~

The compiler ensures that the type tag matches the generic argument.

Exercise 21: (4) Modify ClassTypeCapture.java by adding a
Map<String,Class<?>>, a method addType(String typename,
Class<?> kind), and a method createNew(String typename).

660 Thinking in Java Bruce Eckel

createNew() will either produce a new instance of the class associated with
its argument string, or produce an error message.

Creating instances of types
The attempt to create a new T() in Erased.java won’t work, partly because

of erasure, and partly because the compiler cannot verify that T has a default

(no-arg) constructor. But in C++ this operation is natural, straightforward,

and safe (it’s checked at compile time):

//: generics/InstantiateGenericType.cpp

// C++, not Java!

template<class T> class Foo {

 T x; // Create a field of type T

 T* y; // Pointer to T

public:

 // Initialize the pointer:

 Foo() { y = new T(); }

};

class Bar {};

int main() {

 Foo<Bar> fb;

 Foo<int> fi; // ... and it works with primitives

} ///:~

The solution in Java is to pass in a factory object, and use that to make the

new instance. A convenient factory object is just the Class object, so if you

use a type tag, you can use newInstance() to create a new object of that

type:

//: generics/InstantiateGenericType.java

import static net.mindview.util.Print.*;

class ClassAsFactory<T> {

 T x;

 public ClassAsFactory(Class<T> kind) {

 try {

 x = kind.newInstance();

 } catch(Exception e) {

 throw new RuntimeException(e);

 }

 }

Generics 661

}

class Employee {}

public class InstantiateGenericType {

 public static void main(String[] args) {

 ClassAsFactory<Employee> fe =

 new ClassAsFactory<Employee>(Employee.class);

 print("ClassAsFactory<Employee> succeeded");

 try {

 ClassAsFactory<Integer> fi =

 new ClassAsFactory<Integer>(Integer.class);

 } catch(Exception e) {

 print("ClassAsFactory<Integer> failed");

 }

 }

} /* Output:

ClassAsFactory<Employee> succeeded

ClassAsFactory<Integer> failed

*///:~

This compiles, but fails with ClassAsFactory<Integer> because Integer

has no default constructor. Because the error is not caught at compile time,

this approach is frowned upon by the Java designers. They suggest instead

that you use an explicit factory and constrain the type so that it only takes a

class that implements this factory:

//: generics/FactoryConstraint.java

interface FactoryI<T> {

 T create();

}

class Foo2<T> {

 private T x;

 public <F extends FactoryI<T>> Foo2(F factory) {

 x = factory.create();

 }

 // ...

}

class IntegerFactory implements FactoryI<Integer> {

 public Integer create() {

 return new Integer(0);

662 Thinking in Java Bruce Eckel

 }

}

class Widget {

 public static class Factory implements FactoryI<Widget> {

 public Widget create() {

 return new Widget();

 }

 }

}

public class FactoryConstraint {

 public static void main(String[] args) {

 new Foo2<Integer>(new IntegerFactory());

 new Foo2<Widget>(new Widget.Factory());

 }

} ///:~

Note that this is really just a variation of passing Class<T>. Both approaches

pass factory objects; Class<T> happens to be the built-in factory object,

whereas the above approach creates an explicit factory object. But you get

compile-time checking.

Another approach is the Template Method design pattern. In the following

example, get() is the Template Method, and create() is defined in the

subclass to produce an object of that type:

//: generics/CreatorGeneric.java

abstract class GenericWithCreate<T> {

 final T element;

 GenericWithCreate() { element = create(); }

 abstract T create();

}

class X {}

class Creator extends GenericWithCreate<X> {

 X create() { return new X(); }

 void f() {

 System.out.println(element.getClass().getSimpleName());

 }

}

Generics 663

public class CreatorGeneric {

 public static void main(String[] args) {

 Creator c = new Creator();

 c.f();

 }

} /* Output:

X

*///:~

Exercise 22: (6) Use a type tag along with reflection to create a method
that uses the argument version of newInstance() to create an object of a
class with a constructor that has arguments.

Exercise 23: (1) Modify FactoryConstraint.java so that create()
takes an argument.

Exercise 24: (3) Modify Exercise 21 so that factory objects are held in the
Map instead of Class<?>.

Arrays of generics
As you saw in Erased.java, you can’t create arrays of generics. The general

solution is to use an ArrayList everywhere that you are tempted to create an

array of generics:

//: generics/ListOfGenerics.java

import java.util.*;

public class ListOfGenerics<T> {

 private List<T> array = new ArrayList<T>();

 public void add(T item) { array.add(item); }

 public T get(int index) { return array.get(index); }

} ///:~

Here you get the behavior of an array but the compile-time type safety

afforded by generics.

At times, you will still want to create an array of generic types (the

ArrayList, for example, uses arrays internally). Interestingly enough, you

can define a reference in a way that makes the compiler happy. For example:

//: generics/ArrayOfGenericReference.java

class Generic<T> {}

664 Thinking in Java Bruce Eckel

public class ArrayOfGenericReference {

 static Generic<Integer>[] gia;

} ///:~

The compiler accepts this without producing warnings. But you can never

create an array of that exact type (including the type parameters), so it’s a

little confusing. Since all arrays have the same structure (size of each array

slot and array layout) regardless of the type they hold, it seems that you

should be able to create an array of Object and cast that to the desired array

type. This does in fact compile, but it won’t run; it produces a

ClassCastException:

//: generics/ArrayOfGeneric.java

public class ArrayOfGeneric {

 static final int SIZE = 100;

 static Generic<Integer>[] gia;

 @SuppressWarnings("unchecked")

 public static void main(String[] args) {

 // Compiles; produces ClassCastException:

 //! gia = (Generic<Integer>[])new Object[SIZE];

 // Runtime type is the raw (erased) type:

 gia = (Generic<Integer>[])new Generic[SIZE];

 System.out.println(gia.getClass().getSimpleName());

 gia[0] = new Generic<Integer>();

 //! gia[1] = new Object(); // Compile-time error

 // Discovers type mismatch at compile time:

 //! gia[2] = new Generic<Double>();

 }

} /* Output:

Generic[]

*///:~

The problem is that arrays keep track of their actual type, and that type is

established at the point of creation of the array. So even though gia has been

cast to a Generic<Integer>[], that information only exists at compile time

(and without the @SuppressWarnings annotation, you’d get a warning for

that cast). At run time, it’s still an array of Object, and that causes problems.

The only way to successfully create an array of a generic type is to create a

new array of the erased type, and cast that.

Let’s look at a slightly more sophisticated example. Consider a simple generic

wrapper around an array:

Generics 665

//: generics/GenericArray.java

public class GenericArray<T> {

 private T[] array;

 @SuppressWarnings("unchecked")

 public GenericArray(int sz) {

 array = (T[])new Object[sz];

 }

 public void put(int index, T item) {

 array[index] = item;

 }

 public T get(int index) { return array[index]; }

 // Method that exposes the underlying representation:

 public T[] rep() { return array; }

 public static void main(String[] args) {

 GenericArray<Integer> gai =

 new GenericArray<Integer>(10);

 // This causes a ClassCastException:

 //! Integer[] ia = gai.rep();

 // This is OK:

 Object[] oa = gai.rep();

 }

} ///:~

As before, we can’t say T[] array = new T[sz], so we create an array of

objects and cast it.

The rep() method returns a T[], which in main() should be an Integer[]

for gai, but if you call it and try to capture the result as an Integer[]

reference, you get a ClassCastException, again because the actual runtime

type is Object[].

If you compile GenericArray.java after commenting out the

@SuppressWarnings annotation, the compiler produces a warning:

Note: GenericArray.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

In this case, we’ve gotten a single warning, and we believe that it’s about the

cast. But if you really want to make sure, you should compile with

-Xlint:unchecked:

GenericArray.java:7: warning: [unchecked] unchecked cast

found : java.lang.Object[]

required: T[]

666 Thinking in Java Bruce Eckel

 array = (T[])new Object[sz];

 ^

1 warning

It is indeed complaining about that cast. Because warnings become noise, the

best thing we could possibly do, once we verify that a particular warning is

expected, is to turn it off using @SuppressWarnings. That way, when a

warning does appear, we’ll actually investigate it.

Because of erasure, the runtime type of the array can only be Object[]. If we

immediately cast it to T[], then at compile time the actual type of the array is

lost, and the compiler may miss out on some potential error checks. Because

of this, it’s better to use an Object[] inside the collection, and add a cast to T

when you use an array element. Let’s see how that would look with the

GenericArray.java example:

//: generics/GenericArray2.java

public class GenericArray2<T> {

 private Object[] array;

 public GenericArray2(int sz) {

 array = new Object[sz];

 }

 public void put(int index, T item) {

 array[index] = item;

 }

 @SuppressWarnings("unchecked")

 public T get(int index) { return (T)array[index]; }

 @SuppressWarnings("unchecked")

 public T[] rep() {

 return (T[])array; // Warning: unchecked cast

 }

 public static void main(String[] args) {

 GenericArray2<Integer> gai =

 new GenericArray2<Integer>(10);

 for(int i = 0; i < 10; i ++)

 gai.put(i, i);

 for(int i = 0; i < 10; i ++)

 System.out.print(gai.get(i) + " ");

 System.out.println();

 try {

 Integer[] ia = gai.rep();

 } catch(Exception e) { System.out.println(e); }

 }

Generics 667

} /* Output: (Sample)

0 1 2 3 4 5 6 7 8 9

java.lang.ClassCastException: [Ljava.lang.Object; cannot be

cast to [Ljava.lang.Integer;

*///:~

Initially, this doesn’t look very different, just that the cast has been moved.

Without the @SuppressWarnings annotations, you will still get

“unchecked” warnings. However, the internal representation is now Object[]

rather than T[]. When get() is called, it casts the object to T, which is in fact

the correct type, so that is safe. However, if you call rep(), it again attempts

to cast the Object[] to a T[], which is still incorrect, and produces a warning

at compile time and an exception at run time. Thus there’s no way to subvert

the type of the underlying array, which can only be Object[]. The advantage

of treating array internally as Object[] instead of T[] is that it’s less likely

that you’ll forget the runtime type of the array and accidentally introduce a

bug (although the majority, and perhaps all, of such bugs would be rapidly

detected at run time).

For new code, you should pass in a type token. In that case, the

GenericArray looks like this:

//: generics/GenericArrayWithTypeToken.java

import java.lang.reflect.*;

public class GenericArrayWithTypeToken<T> {

 private T[] array;

 @SuppressWarnings("unchecked")

 public GenericArrayWithTypeToken(Class<T> type, int sz) {

 array = (T[])Array.newInstance(type, sz);

 }

 public void put(int index, T item) {

 array[index] = item;

 }

 public T get(int index) { return array[index]; }

 // Expose the underlying representation:

 public T[] rep() { return array; }

 public static void main(String[] args) {

 GenericArrayWithTypeToken<Integer> gai =

 new GenericArrayWithTypeToken<Integer>(

 Integer.class, 10);

 // This now works:

 Integer[] ia = gai.rep();

 }

668 Thinking in Java Bruce Eckel

} ///:~

The type token Class<T> is passed into the constructor in order to recover

from the erasure, so that we can create the actual type of array that we need,

although the warning from the cast must be suppressed with

@SuppressWarnings. Once we do get the actual type, we can return it and

get the desired results, as you see in main(). The runtime type of the array is

the exact type T[].

Unfortunately, if you look at the source code in the Java SE5 standard

libraries, you’ll see there are casts from Object arrays to parameterized types

everywhere. For example, here’s the copy-ArrayList-from-Collection

constructor, after cleaning up and simplifying:

public ArrayList(Collection c) {

 size = c.size();

 elementData = (E[])new Object[size];

 c.toArray(elementData);

}

If you look through ArrayList.java, you’ll find plenty of these casts. And

what happens when we compile it?

Note: ArrayList.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

Sure enough, the standard libraries produce lots of warnings. If you’ve

worked with C, especially pre-ANSI C, you remember a particular effect of

warnings: When you discover you can ignore them, you do. For that reason,

it’s best to not issue any kind of message from the compiler unless the

programmer must do something about it.

In his weblog,3 Neal Gafter (one of the lead developers for Java SE5) points

out that he was lazy when rewriting the Java libraries, and that we should not

do what he did. Neal also points out that he could not fix some of the Java

library code without breaking the existing interface. So even if certain idioms

appear in the Java library sources, that’s not necessarily the right way to do it.

When you look at library code, you cannot assume that it’s an example that

you should follow in your own code.

3 http://gafter.blogspot.com/2004/09/puzzling-through-erasure-answer.html

Generics 669

Bounds
Bounds were briefly introduced earlier in the chapter (see page 648). Bounds

allow you to place constraints on the parameter types that can be used with

generics. Although this allows you to enforce rules about the types that your

generics can be applied to, a potentially more important effect is that you can

call methods that are in your bound types.

Because erasure removes type information, the only methods you can call for

an unbounded generic parameter are those available for Object. If, however,

you are able to constrain that parameter to be a subset of types, then you can

call the methods in that subset. To perform this constraint, Java generics

reuse the extends keyword. It’s important for you to understand that

extends has a significantly different meaning in the context of generic

bounds than it does ordinarily. This example shows the basics of bounds:

//: generics/BasicBounds.java

interface HasColor { java.awt.Color getColor(); }

class Colored<T extends HasColor> {

 T item;

 Colored(T item) { this.item = item; }

 T getItem() { return item; }

 // The bound allows you to call a method:

 java.awt.Color color() { return item.getColor(); }

}

class Dimension { public int x, y, z; }

// This won't work -- class must be first, then interfaces:

// class ColoredDimension<T extends HasColor & Dimension> {

// Multiple bounds:

class ColoredDimension<T extends Dimension & HasColor> {

 T item;

 ColoredDimension(T item) { this.item = item; }

 T getItem() { return item; }

 java.awt.Color color() { return item.getColor(); }

 int getX() { return item.x; }

 int getY() { return item.y; }

 int getZ() { return item.z; }

}

670 Thinking in Java Bruce Eckel

interface Weight { int weight(); }

// As with inheritance, you can have only one

// concrete class but multiple interfaces:

class Solid<T extends Dimension & HasColor & Weight> {

 T item;

 Solid(T item) { this.item = item; }

 T getItem() { return item; }

 java.awt.Color color() { return item.getColor(); }

 int getX() { return item.x; }

 int getY() { return item.y; }

 int getZ() { return item.z; }

 int weight() { return item.weight(); }

}

class Bounded

extends Dimension implements HasColor, Weight {

 public java.awt.Color getColor() { return null; }

 public int weight() { return 0; }

}

public class BasicBounds {

 public static void main(String[] args) {

 Solid<Bounded> solid =

 new Solid<Bounded>(new Bounded());

 solid.color();

 solid.getY();

 solid.weight();

 }

} ///:~

You might observe that BasicBounds.java seems to contain redundancies

that could be eliminated through inheritance. Here, you can see how each

level of inheritance also adds bounds constraints:

//: generics/InheritBounds.java

class HoldItem<T> {

 T item;

 HoldItem(T item) { this.item = item; }

 T getItem() { return item; }

}

class Colored2<T extends HasColor> extends HoldItem<T> {

Generics 671

 Colored2(T item) { super(item); }

 java.awt.Color color() { return item.getColor(); }

}

class ColoredDimension2<T extends Dimension & HasColor>

extends Colored2<T> {

 ColoredDimension2(T item) { super(item); }

 int getX() { return item.x; }

 int getY() { return item.y; }

 int getZ() { return item.z; }

}

class Solid2<T extends Dimension & HasColor & Weight>

extends ColoredDimension2<T> {

 Solid2(T item) { super(item); }

 int weight() { return item.weight(); }

}

public class InheritBounds {

 public static void main(String[] args) {

 Solid2<Bounded> solid2 =

 new Solid2<Bounded>(new Bounded());

 solid2.color();

 solid2.getY();

 solid2.weight();

 }

} ///:~

HoldItem simply holds an object, so this behavior is inherited into

Colored2, which also requires that its parameter conforms to HasColor.

ColoredDimension2 and Solid2 further extend the hierarchy and add

bounds at each level. Now the methods are inherited and they don’t have to

be repeated in each class.

Here’s an example with more layers:

//: generics/EpicBattle.java

// Demonstrating bounds in Java generics.

import java.util.*;

interface SuperPower {}

interface XRayVision extends SuperPower {

 void seeThroughWalls();

}

interface SuperHearing extends SuperPower {

672 Thinking in Java Bruce Eckel

 void hearSubtleNoises();

}

interface SuperSmell extends SuperPower {

 void trackBySmell();

}

class SuperHero<POWER extends SuperPower> {

 POWER power;

 SuperHero(POWER power) { this.power = power; }

 POWER getPower() { return power; }

}

class SuperSleuth<POWER extends XRayVision>

extends SuperHero<POWER> {

 SuperSleuth(POWER power) { super(power); }

 void see() { power.seeThroughWalls(); }

}

class CanineHero<POWER extends SuperHearing & SuperSmell>

extends SuperHero<POWER> {

 CanineHero(POWER power) { super(power); }

 void hear() { power.hearSubtleNoises(); }

 void smell() { power.trackBySmell(); }

}

class SuperHearSmell implements SuperHearing, SuperSmell {

 public void hearSubtleNoises() {}

 public void trackBySmell() {}

}

class DogBoy extends CanineHero<SuperHearSmell> {

 DogBoy() { super(new SuperHearSmell()); }

}

public class EpicBattle {

 // Bounds in generic methods:

 static <POWER extends SuperHearing>

 void useSuperHearing(SuperHero<POWER> hero) {

 hero.getPower().hearSubtleNoises();

 }

 static <POWER extends SuperHearing & SuperSmell>

 void superFind(SuperHero<POWER> hero) {

 hero.getPower().hearSubtleNoises();

 hero.getPower().trackBySmell();

Generics 673

 }

 public static void main(String[] args) {

 DogBoy dogBoy = new DogBoy();

 useSuperHearing(dogBoy);

 superFind(dogBoy);

 // You can do this:

 List<? extends SuperHearing> audioBoys;

 // But you can't do this:

 // List<? extends SuperHearing & SuperSmell> dogBoys;

 }

} ///:~

Notice that wildcards (which we shall study next) are limited to a single

bound.

Exercise 25: (2) Create two interfaces and a class that implements both.
Create two generic methods, one whose argument parameter is bounded by
the first interface and one whose argument parameter is bounded by the
second interface. Create an instance of the class that implements both
interfaces, and show that it can be used with both generic methods.

Wildcards
You’ve already seen some simple uses of wildcards—question marks in

generic argument expressions—in the Holding Your Objects chapter and

more in the Type Information chapter. This section will explore the issue

more deeply.

We’ll start with an example that shows a particular behavior of arrays: You

can assign an array of a derived type to an array reference of the base type:

//: generics/CovariantArrays.java

class Fruit {}

class Apple extends Fruit {}

class Jonathan extends Apple {}

class Orange extends Fruit {}

public class CovariantArrays {

 public static void main(String[] args) {

 Fruit[] fruit = new Apple[10];

 fruit[0] = new Apple(); // OK

 fruit[1] = new Jonathan(); // OK

 // Runtime type is Apple[], not Fruit[] or Orange[]:

674 Thinking in Java Bruce Eckel

 try {

 // Compiler allows you to add Fruit:

 fruit[0] = new Fruit(); // ArrayStoreException

 } catch(Exception e) { System.out.println(e); }

 try {

 // Compiler allows you to add Oranges:

 fruit[0] = new Orange(); // ArrayStoreException

 } catch(Exception e) { System.out.println(e); }

 }

} /* Output:

java.lang.ArrayStoreException: Fruit

java.lang.ArrayStoreException: Orange

*///:~

The first line in main() creates an array of Apple and assigns it to a

reference to an array of Fruit. This makes sense—an Apple is a kind of

Fruit, so an array of Apple should also be an array of Fruit.

However, if the actual array type is Apple[], you should only be able to place

an Apple or a subtype of Apple into the array, which in fact works at both

compile time and run time. But notice that the compiler allows you to place a

Fruit object into the array. This makes sense to the compiler, because it has a

Fruit[] reference—why shouldn’t it allow a Fruit object, or anything

descended from Fruit, such as Orange, to be placed into the array? So at

compile time, this is allowed. The runtime array mechanism, however, knows

that it’s dealing with an Apple[] and throws an exception when a foreign

type is placed into the array.

“Upcast” is actually rather a misnomer here. What you’re really doing is

assigning one array to another. The array behavior is that it holds other

objects, but because we are able to upcast, it’s clear that the array objects can

preserve the rules about the type of objects they contain. It’s as if the arrays

are conscious of what they are holding, so between the compile-time checks

and the runtime checks, you can’t abuse them.

This arrangement for arrays is not so terrible, because you do find out at run

time that you’ve inserted an improper type. But one of the primary goals of

generics is to move such error detection to compile time. So what happens

when we try to use generic containers instead of arrays?

//: generics/NonCovariantGenerics.java

// {CompileTimeError} (Won't compile)

import java.util.*;

Generics 675

public class NonCovariantGenerics {

 // Compile Error: incompatible types:

 List<Fruit> flist = new ArrayList<Apple>();

} ///:~

Although you may at first read this as saying, “You can’t assign a container of

Apple to a container of Fruit,” remember that generics are not just about

containers. What it’s really saying is, “You can’t assign a generic involving

Apples to a generic involving Fruit.” If, as in the case of arrays, the compiler

knew enough about the code to determine that containers were involved,

perhaps it could give some leeway. But it doesn’t know anything like that, so

it refuses to allow the “upcast.” But it really isn’t an “upcast” anyway—a List

of Apple is not a List of Fruit. A List of Apple will hold Apples and

subtypes of Apple, and a List of Fruit will hold any kind of Fruit. Yes,

including Apples, but that doesn’t make it a List of Apple; it’s still a List of

Fruit. A List of Apple is not type-equivalent to a List of Fruit, even if an

Apple is a type of Fruit.

The real issue is that we are talking about the type of the container, rather

than the type that the container is holding. Unlike arrays, generics do not

have built-in covariance. This is because arrays are completely defined in the

language and can thus have both compile-time and runtime checks built in,

but with generics, the compiler and runtime system cannot know what you

want to do with your types and what the rules should be.

Sometimes, however, you’d like to establish some kind of upcasting

relationship between the two. This is what wildcards allow.

//: generics/GenericsAndCovariance.java

import java.util.*;

public class GenericsAndCovariance {

 public static void main(String[] args) {

 // Wildcards allow covariance:

 List<? extends Fruit> flist = new ArrayList<Apple>();

 // Compile Error: can't add any type of object:

 // flist.add(new Apple());

 // flist.add(new Fruit());

 // flist.add(new Object());

 flist.add(null); // Legal but uninteresting

 // We know that it returns at least Fruit:

 Fruit f = flist.get(0);

676 Thinking in Java Bruce Eckel

 }

} ///:~

The type of flist is now List<? extends Fruit>, which you can read as “a

list of any type that’s inherited from Fruit.” This doesn’t actually mean that

the List will hold any type of Fruit, however. The wildcard refers to a

definite type, so it means “some specific type which the flist reference doesn’t

specify.” So the List that’s assigned has to be holding some specified type

such as Fruit or Apple, but in order to upcast to flist, that type is a “don’t

actually care.”

If the only constraint is that the List hold a specific Fruit or subtype of

Fruit, but you don’t actually care what it is, then what can you do with such a

List? If you don’t know what type the List is holding, how can you safely add

an object? Just as with the “upcast” array in CovariantArrays.java, you

can’t, except that the compiler prevents it from happening rather than the

runtime system. You discover the problem sooner.

You might argue that things have gone a bit overboard, because now you can’t

even add an Apple to a List that you just said would hold Apples. Yes, but

the compiler doesn’t know that. A List<? extends Fruit> could legally

point to a List<Orange>. Once you do this kind of “upcast,” you lose the

ability to pass anything in, even an Object.

On the other hand, if you call a method that returns Fruit, that’s safe because

you know that anything in the List must at least be of type Fruit, so the

compiler allows it.

Exercise 26: (2) Demonstrate array covariance using Numbers and
Integers.

Exercise 27: (2) Show that covariance doesn’t work with Lists, using
Numbers and Integers, then introduce wildcards.

How smart is the compiler?
Now, you might guess that you are prevented from calling any methods that

take arguments, but consider this:

//: generics/CompilerIntelligence.java

import java.util.*;

public class CompilerIntelligence {

Generics 677

 public static void main(String[] args) {

 List<? extends Fruit> flist =

 Arrays.asList(new Apple());

 Apple a = (Apple)flist.get(0); // No warning

 flist.contains(new Apple()); // Argument is 'Object'

 flist.indexOf(new Apple()); // Argument is 'Object'

 }

} ///:~

You can see calls to contains() and indexOf() that take Apple objects as

arguments, and those are just fine. Does this mean that the compiler actually

examines the code to see if a particular method modifies its object?

By looking at the documentation for ArrayList, we find that the compiler is

not that smart. While add() takes an argument of the generic parameter

type, contains() and indexOf() take arguments of type Object. So when

you specify an ArrayList<? extends Fruit>, the argument for add()

becomes ‘? extends Fruit’. From that description, the compiler cannot

know which specific subtype of Fruit is required there, so it won’t accept any

type of Fruit. It doesn’t matter if you upcast the Apple to a Fruit first—the

compiler simply refuses to call a method (such as add()) if a wildcard is

involved in the argument list.

With contains() and indexOf(), the arguments are of type Object, so

there are no wildcards involved and the compiler allows the call. This means

that it’s up to the generic class designer to decide which calls are “safe,” and

to use Object types for their arguments. To disallow a call when the type is

used with wildcards, use the type parameter in the argument list.

You can see this in a very simple Holder class:

//: generics/Holder.java

public class Holder<T> {

 private T value;

 public Holder() {}

 public Holder(T val) { value = val; }

 public void set(T val) { value = val; }

 public T get() { return value; }

 public boolean equals(Object obj) {

 return value.equals(obj);

 }

 public static void main(String[] args) {

 Holder<Apple> Apple = new Holder<Apple>(new Apple());

678 Thinking in Java Bruce Eckel

 Apple d = Apple.get();

 Apple.set(d);

 // Holder<Fruit> Fruit = Apple; // Cannot upcast

 Holder<? extends Fruit> fruit = Apple; // OK

 Fruit p = fruit.get();

 d = (Apple)fruit.get(); // Returns 'Object'

 try {

 Orange c = (Orange)fruit.get(); // No warning

 } catch(Exception e) { System.out.println(e); }

 // fruit.set(new Apple()); // Cannot call set()

 // fruit.set(new Fruit()); // Cannot call set()

 System.out.println(fruit.equals(d)); // OK

 }

} /* Output: (Sample)

java.lang.ClassCastException: Apple cannot be cast to Orange

true

*///:~

Holder has a set() which takes a T, a get() which returns a T, and an

equals() that takes an Object. As you’ve already seen, if you create a

Holder<Apple>, you cannot upcast it to a Holder<Fruit>, but you can

upcast to a Holder<? extends Fruit>. If you call get(), it only returns a

Fruit—that’s as much as it knows given the “anything that extends Fruit”

bound. If you know more about what’s there, you can cast to a specific type of

Fruit and there won’t be any warning about it, but you risk a

ClassCastException. The set() method won’t work with either an Apple

or a Fruit, because the set() argument is also “? Extends Fruit,” which

means it can be anything and the compiler can’t verify type safety for

“anything.”

However, the equals() method works fine because it takes an Object

instead of a T as an argument. Thus, the compiler is only paying attention to

the types of objects that are passed and returned. It is not analyzing the code

to see if you perform any actual writes or reads.

Contravariance
It’s also possible to go the other way, and use supertype wildcards. Here, you

say that the wildcard is bounded by any base class of a particular class, by

specifying <? super MyClass> or even using a type parameter: <? super

T> (although you cannot give a generic parameter a supertype bound; that is,

you cannot say <T super MyClass>). This allows you to safely pass a typed

Generics 679

object into a generic type. Thus, with supertype wildcards you can write into a

Collection:

//: generics/SuperTypeWildcards.java

import java.util.*;

public class SuperTypeWildcards {

 static void writeTo(List<? super Apple> apples) {

 apples.add(new Apple());

 apples.add(new Jonathan());

 // apples.add(new Fruit()); // Error

 }

} ///:~

The argument apples is a List of some type that is the base type of Apple;

thus you know that it is safe to add an Apple or a subtype of Apple. Since

the lower bound is Apple, however, you don’t know that it is safe to add

Fruit to such a List, because that would allow the List to be opened up to

the addition of non-Apple types, which would violate static type safety.

You can thus begin to think of subtype and supertype bounds in terms of how

you can “write” (pass into a method) to a generic type, and “read” (return

from a method) from a generic type.

Supertype bounds relax the constraints on what you can pass into a method:

//: generics/GenericWriting.java

import java.util.*;

public class GenericWriting {

 static <T> void writeExact(List<T> list, T item) {

 list.add(item);

 }

 static List<Apple> apples = new ArrayList<Apple>();

 static List<Fruit> fruit = new ArrayList<Fruit>();

 static void f1() {

 writeExact(apples, new Apple());

 writeExact(fruit, new Apple()); // Error JDK5, OK in 6

 // Was: Incompatible types: found Fruit, required Apple

 }

 static <T> void

 writeWithWildcard(List<? super T> list, T item) {

 list.add(item);

 }

680 Thinking in Java Bruce Eckel

 static void f2() {

 writeWithWildcard(apples, new Apple());

 writeWithWildcard(fruit, new Apple());

 }

 public static void main(String[] args) { f1(); f2(); }

} ///:~

The writeExact() method uses an exact parameter type (no wildcards). In

f1() you can see that this works fine—as long as you only put an Apple into a

List<Apple>. However, writeExact() does not allow you to put an Apple

into a List<Fruit>, even though you know that should be possible.

In writeWithWildcard(), the argument is now a List<? super T>, so the

List holds a specific type that is derived from T; thus it is safe to pass a T or

anything derived from T as an argument to List methods. You can see this in

f2(), where it’s still possible to put an Apple into a List<Apple>, as before,

but it is now also possible to put an Apple into a List<Fruit>, as you

expect.

We can perform this same type of analysis as a review of covariance and

wildcards:

//: generics/GenericReading.java

import java.util.*;

public class GenericReading {

 static <T> T readExact(List<T> list) {

 return list.get(0);

 }

 static List<Apple> apples = Arrays.asList(new Apple());

 static List<Fruit> fruit = Arrays.asList(new Fruit());

 // A static method adapts to each call:

 static void f1() {

 Apple a = readExact(apples);

 Fruit f = readExact(fruit);

 f = readExact(apples);

 }

 // If, however, you have a class, then its type is

 // established when the class is instantiated:

 static class Reader<T> {

 T readExact(List<T> list) { return list.get(0); }

 }

 static void f2() {

 Reader<Fruit> fruitReader = new Reader<Fruit>();

Generics 681

 Fruit f = fruitReader.readExact(fruit);

 // Fruit a = fruitReader.readExact(apples); // Error:

 // readExact(List<Fruit>) cannot be

 // applied to (List<Apple>).

 }

 static class CovariantReader<T> {

 T readCovariant(List<? extends T> list) {

 return list.get(0);

 }

 }

 static void f3() {

 CovariantReader<Fruit> fruitReader =

 new CovariantReader<Fruit>();

 Fruit f = fruitReader.readCovariant(fruit);

 Fruit a = fruitReader.readCovariant(apples);

 }

 public static void main(String[] args) {

 f1(); f2(); f3();

 }

} ///:~

As before, the first method readExact() uses the precise type. So if you use

the precise type with no wildcards, you can both write and read that precise

type into and out of a List. In addition, for the return value, the static

generic method readExact() effectively “adapts” to each method call, and

returns an Apple from a List<Apple> and a Fruit from a List<Fruit>, as

you can see in f1(). Thus, if you can get away with a static generic method,

you don’t necessarily need covariance if you’re just reading.

If you have a generic class, however, the parameter is established for the class

when you make an instance of that class. As you can see in f2(), the

fruitReader instance can read a piece of Fruit from a List<Fruit>, since

that is its exact type. But a List<Apple> should also produce Fruit objects,

and the fruitReader doesn’t allow this.

To fix the problem, the CovariantReader.readCovariant() method takes

a List<? extends T>, and so it’s safe to read a T from that list (you know

that everything in that list is at least a T, and possibly something derived

from a T). In f3() you can see that it’s now possible to read a Fruit from a

List<Apple>.

Exercise 28: (4) Create a generic class Generic1<T> with a single
method that takes an argument of type T. Create a second generic class

682 Thinking in Java Bruce Eckel

Generic2<T> with a single method that returns an argument of type T.
Write a generic method with a contravariant argument of the first generic
class that calls its method. Write a second generic method with a covariant
argument of the second generic class that calls its method. Test using the
typeinfo.pets library.

Unbounded wildcards
The unbounded wildcard <?> appears to mean “anything,” and so using an

unbounded wildcard seems equivalent to using a raw type. Indeed, the

compiler seems at first to agree with this assessment:

//: generics/UnboundedWildcards1.java

import java.util.*;

public class UnboundedWildcards1 {

 static List list1;

 static List<?> list2;

 static List<? extends Object> list3;

 static void assign1(List list) {

 list1 = list;

 list2 = list;

 // list3 = list; // Warning: unchecked conversion

 // Found: List, Required: List<? extends Object>

 }

 static void assign2(List<?> list) {

 list1 = list;

 list2 = list;

 list3 = list;

 }

 static void assign3(List<? extends Object> list) {

 list1 = list;

 list2 = list;

 list3 = list;

 }

 public static void main(String[] args) {

 assign1(new ArrayList());

 assign2(new ArrayList());

 // assign3(new ArrayList()); // Warning:

 // Unchecked conversion. Found: ArrayList

 // Required: List<? extends Object>

 assign1(new ArrayList<String>());

 assign2(new ArrayList<String>());

 assign3(new ArrayList<String>());

 // Both forms are acceptable as List<?>:

Generics 683

 List<?> wildList = new ArrayList();

 wildList = new ArrayList<String>();

 assign1(wildList);

 assign2(wildList);

 assign3(wildList);

 }

} ///:~

There are many cases like the ones you see here where the compiler could

care less whether you use a raw type or <?>. In those cases, <?> can be

thought of as a decoration; and yet it is valuable because, in effect, it says, “I

wrote this code with Java generics in mind, and I don’t mean here that I’m

using a raw type, but that in this case the generic parameter can hold any

type.”

A second example shows an important use of unbounded wildcards. When

you are dealing with multiple generic parameters, it’s sometimes important to

allow one parameter to be any type while establishing a particular type for the

other parameter:

//: generics/UnboundedWildcards2.java

import java.util.*;

public class UnboundedWildcards2 {

 static Map map1;

 static Map<?,?> map2;

 static Map<String,?> map3;

 static void assign1(Map map) { map1 = map; }

 static void assign2(Map<?,?> map) { map2 = map; }

 static void assign3(Map<String,?> map) { map3 = map; }

 public static void main(String[] args) {

 assign1(new HashMap());

 assign2(new HashMap());

 // assign3(new HashMap()); // Warning:

 // Unchecked conversion. Found: HashMap

 // Required: Map<String,?>

 assign1(new HashMap<String,Integer>());

 assign2(new HashMap<String,Integer>());

 assign3(new HashMap<String,Integer>());

 }

} ///:~

But again, when you have all unbounded wildcards, as seen in Map<?,?>,

the compiler doesn’t seem to distinguish it from a raw Map. In addition,

684 Thinking in Java Bruce Eckel

UnboundedWildcards1.java shows that the compiler treats List<?> and

List<? extends Object> differently.

What’s confusing is that the compiler doesn’t always care about the difference

between, for example, List and List<?>, so they can seem like the same

thing. Indeed, since a generic argument erases to its first bound, List<?>

would seem to be equivalent to List<Object>, and List is effectively

List<Object> as well—except neither of those statements is exactly true.

List actually means “a raw List that holds any Object type,” whereas

List<?> means “a non-raw List of some specific type, but we just don’t know

what that type is.”

When does the compiler actually care about the difference between raw types

and types involving unbounded wildcards? The following example uses the

previously defined Holder<T> class. It contains methods that take Holder

as an argument, but in various forms: as a raw type, with a specific type

parameter, and with an unbounded wildcard parameter:

//: generics/Wildcards.java

// Exploring the meaning of wildcards.

public class Wildcards {

 // Raw argument:

 static void rawArgs(Holder holder, Object arg) {

 // holder.set(arg); // Warning:

 // Unchecked call to set(T) as a

 // member of the raw type Holder

 // holder.set(new Wildcards()); // Same warning

 // Can't do this; don't have any 'T':

 // T t = holder.get();

 // OK, but type information has been lost:

 Object obj = holder.get();

 }

 // Similar to rawArgs(), but errors instead of warnings:

 static void unboundedArg(Holder<?> holder, Object arg) {

 // holder.set(arg); // Error:

 // set(capture of ?) in Holder<capture of ?>

 // cannot be applied to (Object)

 // holder.set(new Wildcards()); // Same error

 // Can't do this; don't have any 'T':

Generics 685

 // T t = holder.get();

 // OK, but type information has been lost:

 Object obj = holder.get();

 }

 static <T> T exact1(Holder<T> holder) {

 T t = holder.get();

 return t;

 }

 static <T> T exact2(Holder<T> holder, T arg) {

 holder.set(arg);

 T t = holder.get();

 return t;

 }

 static <T>

 T wildSubtype(Holder<? extends T> holder, T arg) {

 // holder.set(arg); // Error:

 // set(capture of ? extends T) in

 // Holder<capture of ? extends T>

 // cannot be applied to (T)

 T t = holder.get();

 return t;

 }

 static <T>

 void wildSupertype(Holder<? super T> holder, T arg) {

 holder.set(arg);

 // T t = holder.get(); // Error:

 // Incompatible types: found Object, required T

 // OK, but type information has been lost:

 Object obj = holder.get();

 }

 public static void main(String[] args) {

 Holder raw = new Holder<Long>();

 // Or:

 raw = new Holder();

 Holder<Long> qualified = new Holder<Long>();

 Holder<?> unbounded = new Holder<Long>();

 Holder<? extends Long> bounded = new Holder<Long>();

 Long lng = 1L;

 rawArgs(raw, lng);

 rawArgs(qualified, lng);

 rawArgs(unbounded, lng);

686 Thinking in Java Bruce Eckel

 rawArgs(bounded, lng);

 unboundedArg(raw, lng);

 unboundedArg(qualified, lng);

 unboundedArg(unbounded, lng);

 unboundedArg(bounded, lng);

 // Object r1 = exact1(raw); // Warnings:

 // Unchecked conversion from Holder to Holder<T>

 // Unchecked method invocation: exact1(Holder<T>)

 // is applied to (Holder)

 Long r2 = exact1(qualified);

 Object r3 = exact1(unbounded); // Must return Object

 Long r4 = exact1(bounded);

 // Long r5 = exact2(raw, lng); // Warnings:

 // Unchecked conversion from Holder to Holder<Long>

 // Unchecked method invocation: exact2(Holder<T>,T)

 // is applied to (Holder,Long)

 Long r6 = exact2(qualified, lng);

 // Long r7 = exact2(unbounded, lng); // Error:

 // exact2(Holder<T>,T) cannot be applied to

 // (Holder<capture of ?>,Long)

 // Long r8 = exact2(bounded, lng); // Error:

 // exact2(Holder<T>,T) cannot be applied

 // to (Holder<capture of ? extends Long>,Long)

 // Long r9 = wildSubtype(raw, lng); // Warnings:

 // Unchecked conversion from Holder

 // to Holder<? extends Long>

 // Unchecked method invocation:

 // wildSubtype(Holder<? extends T>,T) is

 // applied to (Holder,Long)

 Long r10 = wildSubtype(qualified, lng);

 // OK, but can only return Object:

 Object r11 = wildSubtype(unbounded, lng);

 Long r12 = wildSubtype(bounded, lng);

 // wildSupertype(raw, lng); // Warnings:

 // Unchecked conversion from Holder

 // to Holder<? super Long>

 // Unchecked method invocation:

 // wildSupertype(Holder<? super T>,T)

 // is applied to (Holder,Long)

Generics 687

 wildSupertype(qualified, lng);

 // wildSupertype(unbounded, lng); // Error:

 // wildSupertype(Holder<? super T>,T) cannot be

 // applied to (Holder<capture of ?>,Long)

 // wildSupertype(bounded, lng); // Error:

 // wildSupertype(Holder<? super T>,T) cannot be

 // applied to (Holder<capture of ? extends Long>,Long)

 }

} ///:~

In rawArgs(), the compiler knows that Holder is a generic type, so even

though it is expressed as a raw type here, the compiler knows that passing an

Object to set() is unsafe. Since it’s a raw type, you can pass an object of any

type into set(), and that object is upcast to Object. So anytime you have a

raw type, you give up compile-time checking. The call to get() shows the

same issue: There’s no T, so the result can only be an Object.

It’s easy to start thinking that a raw Holder and a Holder<?> are roughly

the same thing. But unboundedArg() emphasizes that they are different—

it discovers the same kind of problems, but reports them as errors rather than

warnings, because the raw Holder will hold a combination of any types,

whereas a Holder<?> holds a homogeneous collection of some specific type,

and thus you can’t just pass in an Object.

In exact1() and exact2(), you see the exact generic parameters used—no

wildcards. You’ll see that exact2() has different limitations than exact1(),

because of the extra argument.

In wildSubtype(), the constraints on the type of Holder are relaxed to

include a Holder of anything that extends T. Again, this means that T

could be Fruit, while holder could legitimately be a Holder<Apple>. To

prevent putting an Orange in a Holder<Apple>, the call to set() (or any

method that takes an argument of the type parameter) is disallowed.

However, you still know that anything that comes out of a Holder<?

extends Fruit> will at least be Fruit, so get() (or any method that

produces a return value of the type parameter) is allowed.

Supertype wildcards are shown in wildSupertype(), which shows the

opposite behavior of wildSubtype(): holder can be a container that holds

any type that’s a base class of T. Thus, set() can accept a T, since anything

that works with a base type will polymorphically work with a derived type

688 Thinking in Java Bruce Eckel

(thus a T). However, trying to call get() is not helpful, because the type held

by holder can be any supertype at all, so the only safe one is Object.

This example also shows the limitations on what you can and can’t do with an

unbounded parameter in unbounded(): You can’t get() or set() a T

because you don’t have a T.

In main() you can see which of these methods can accept which types of

arguments without errors and warnings. For migration compatibility,

rawArgs() will take all the different variations of Holder without

producing warnings. The unboundedArg() method is equally accepting of

all types, although, as previously noted, it handles them differently inside the

body of the method.

If you pass a raw Holder reference into a method that takes an “exact”

generic type (no wildcards), you get a warning because the exact argument is

expecting information that doesn’t exist in the raw type. And if you pass an

unbounded reference to exact1(), there’s no type information to establish

the return type.

You can see that exact2() has the most constraints, since it wants exactly a

Holder<T> and an argument of type T, and because of this it generates

errors or warnings unless you give it the exact arguments. Sometimes this is

OK, but if it’s overconstraining, then you can use wildcards, depending on

whether you want to get typed return values from your generic argument (as

seen in wildSubtype()) or you want to pass typed arguments to your

generic argument (as seen in wildSupertype()).

Thus, the benefit of using exact types instead of wildcard types is that you can

do more with the generic parameters. But using wildcards allows you to

accept a broader range of parameterized types as arguments. You must decide

which trade-off is more appropriate for your needs on a case-by-case basis.

Capture conversion
One situation in particular requires the use of <?> rather than a raw type. If

you pass a raw type to a method that uses <?>, it’s possible for the compiler

to infer the actual type parameter, so that the method can turn around and

call another method that uses the exact type. The following example

demonstrates the technique, which is called capture conversion because the

unspecified wildcard type is captured and converted to an exact type. Here,

Generics 689

the comments about warnings only take effect when the

@SuppressWarnings annotation is removed:

//: generics/CaptureConversion.java

public class CaptureConversion {

 static <T> void f1(Holder<T> holder) {

 T t = holder.get();

 System.out.println(t.getClass().getSimpleName());

 }

 static void f2(Holder<?> holder) {

 f1(holder); // Call with captured type

 }

 @SuppressWarnings("unchecked")

 public static void main(String[] args) {

 Holder raw = new Holder<Integer>(1);

 // f1(raw); // Produces warnings

 f2(raw); // No warnings

 Holder rawBasic = new Holder();

 rawBasic.set(new Object()); // Warning

 f2(rawBasic); // No warnings

 // Upcast to Holder<?>, still figures it out:

 Holder<?> wildcarded = new Holder<Double>(1.0);

 f2(wildcarded);

 }

} /* Output:

Integer

Object

Double

*///:~

The type parameters in f1() are all exact, without wildcards or bounds. In

f2(), the Holder parameter is an unbounded wildcard, so it would seem to

be effectively unknown. However, within f2(), f1() is called and f1()

requires a known parameter. What’s happening is that the parameter type is

captured in the process of calling f2(), so it can be used in the call to f1().

You might wonder if this technique could be used for writing, but that would

require you to pass a specific type along with the Holder<?>. Capture

conversion only works in situations where, within the method, you need to

work with the exact type. Notice that you can’t return T from f2(), because T

is unknown for f2(). Capture conversion is interesting, but quite limited.

690 Thinking in Java Bruce Eckel

Exercise 29: (5) Create a generic method that takes as an argument a
Holder<List<?>>. Determine what methods you can and can’t call for the
Holder and for the List. Repeat for an argument of List<Holder<?>>.

Issues
This section addresses an assorted set of issues that appear when you are

using Java generics.

No primitives as type parameters
As mentioned earlier in this chapter, one of the limitations you will discover

in Java generics is that you cannot use primitives as type parameters. So you

cannot, for example, create an ArrayList<int>.

The solution is to use the primitive wrapper classes in conjunction with Java

SE5 autoboxing. If you create an ArrayList<Integer> and use primitive

ints with this container, you’ll discover that autoboxing does the conversion

to and from Integer automatically—so it’s almost as if you have an

ArrayList<int>:

//: generics/ListOfInt.java

// Autoboxing compensates for the inability to use

// primitives in generics.

import java.util.*;

public class ListOfInt {

 public static void main(String[] args) {

 List<Integer> li = new ArrayList<Integer>();

 for(int i = 0; i < 5; i++)

 li.add(i);

 for(int i : li)

 System.out.print(i + " ");

 }

} /* Output:

0 1 2 3 4

*///:~

Note that autoboxing even allows the foreach syntax to produce ints.

In general this solution works fine—you’re able to successfully store and

retrieve ints. There happen to be some conversions going on but these are

hidden from you. However, if performance is a problem, you can use a

Generics 691

specialized version of the containers adapted for primitive types; one open-

source version of this is org.apache.commons.collections.primitives.

Here’s another approach, which creates a Set of Bytes:

//: generics/ByteSet.java

import java.util.*;

public class ByteSet {

 Byte[] possibles = { 1,2,3,4,5,6,7,8,9 };

 Set<Byte> mySet =

 new HashSet<Byte>(Arrays.asList(possibles));

 // But you can't do this:

 // Set<Byte> mySet2 = new HashSet<Byte>(

 // Arrays.<Byte>asList(1,2,3,4,5,6,7,8,9));

} ///:~

Notice that autoboxing solves some problems, but not all. The following

example shows a generic Generator interface that specifies a next() that

returns an object of the parameter type. The FArray class contains a generic

method that uses a generator to fill an array with objects (making the class

generic wouldn’t work in this case because the method is static). The

Generator implementations come from the Arrays chapter, and in main()

you can see FArray.fill() used to fill arrays with objects:

//: generics/PrimitiveGenericTest.java

import net.mindview.util.*;

// Fill an array using a generator:

class FArray {

 public static <T> T[] fill(T[] a, Generator<T> gen) {

 for(int i = 0; i < a.length; i++)

 a[i] = gen.next();

 return a;

 }

}

public class PrimitiveGenericTest {

 public static void main(String[] args) {

 String[] strings = FArray.fill(

 new String[7], new RandomGenerator.String(10));

 for(String s : strings)

 System.out.println(s);

 Integer[] integers = FArray.fill(

692 Thinking in Java Bruce Eckel

 new Integer[7], new RandomGenerator.Integer());

 for(int i: integers)

 System.out.println(i);

 // Autoboxing won't save you here. This won't compile:

 // int[] b =

 // FArray.fill(new int[7], new RandIntGenerator());

 }

} /* Output:

YNzbrnyGcF

OWZnTcQrGs

eGZMmJMRoE

suEcUOneOE

dLsmwHLGEa

hKcxrEqUCB

bkInaMesbt

7052

6665

2654

3909

5202

2209

5458

*///:~

Since RandomGenerator.Integer implements Generator<Integer>,

my hope was that autoboxing would automatically convert the value of

next() from Integer to int. However, autoboxing doesn’t apply to arrays, so

this won’t work.

Exercise 30: (2) Create a Holder for each of the primitive wrapper
types, and show that autoboxing and autounboxing works for the set() and
get() methods of each instance.

Implementing parameterized interfaces
A class cannot implement two variants of the same generic interface. Because

of erasure, these are both the same interface. Here’s a situation where this

clash occurs:

//: generics/MultipleInterfaceVariants.java

// {CompileTimeError} (Won't compile)

interface Payable<T> {}

class Employee implements Payable<Employee> {}

Generics 693

class Hourly extends Employee

 implements Payable<Hourly> {} ///:~

Hourly won’t compile because erasure reduces Payable<Employee> and

Payable<Hourly> to the same class, Payable, and the above code would

mean that you’d be implementing the same interface twice. Interestingly

enough, if you remove the generic parameters from both uses of Payable—as

the compiler does during erasure—the code compiles.

This issue can become annoying when you are working with some of the more

fundamental Java interfaces, such as Comparable<T>, as you’ll see a little

later in this section.

Exercise 31: (1) Remove all the generics from
MultipleInterfaceVariants.java and modify the code so that the example
compiles.

Casting and warnings
Using a cast or instanceof with a generic type parameter doesn’t have any

effect. The following container stores values internally as Objects and casts

them back to T when you fetch them:

//: generics/GenericCast.java

class FixedSizeStack<T> {

 private int index = 0;

 private Object[] storage;

 public FixedSizeStack(int size) {

 storage = new Object[size];

 }

 public void push(T item) { storage[index++] = item; }

 @SuppressWarnings("unchecked")

 public T pop() { return (T)storage[--index]; }

}

public class GenericCast {

 public static final int SIZE = 10;

 public static void main(String[] args) {

 FixedSizeStack<String> strings =

 new FixedSizeStack<String>(SIZE);

 for(String s : "A B C D E F G H I J".split(" "))

 strings.push(s);

 for(int i = 0; i < SIZE; i++) {

694 Thinking in Java Bruce Eckel

 String s = strings.pop();

 System.out.print(s + " ");

 }

 }

} /* Output:

J I H G F E D C B A

*///:~

Without the @SuppressWarnings annotation, the compiler will produce

an “unchecked cast” warning for pop(). Because of erasure, it can’t know

whether the cast is safe, and the pop() method doesn’t actually do any

casting. T is erased to its first bound, which is Object by default, so pop() is

actually just casting an Object to an Object.

There are times when generics do not eliminate the need to cast, and this

generates a warning by the compiler which is inappropriate. For example:

//: generics/NeedCasting.java

import java.io.*;

import java.util.*;

public class NeedCasting {

 @SuppressWarnings("unchecked")

 public void f(String[] args) throws Exception {

 ObjectInputStream in = new ObjectInputStream(

 new FileInputStream(args[0]));

 List<Widget> shapes = (List<Widget>)in.readObject();

 }

} ///:~

As you’ll learn in the next chapter, readObject() cannot know what it is

reading, so it returns an object that must be cast. But when you comment out

the @SuppressWarnings annotation and compile the program, you get a

warning:

Note: NeedCasting.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

And if you follow the instructions and recompile with -Xlint:unchecked:

NeedCasting.java:12: warning: [unchecked] unchecked cast

found : java.lang.Object

required: java.util.List<Widget>

 List<Shape> shapes = (List<Widget>)in.readObject();

Generics 695

You’re forced to cast, and yet you’re told you shouldn’t. To solve the problem,

you must use a new form of cast introduced in Java SE5, the cast via a generic

class:

//: generics/ClassCasting.java

import java.io.*;

import java.util.*;

public class ClassCasting {

 @SuppressWarnings("unchecked")

 public void f(String[] args) throws Exception {

 ObjectInputStream in = new ObjectInputStream(

 new FileInputStream(args[0]));

 // Won't Compile:

// List<Widget> lw1 =

// List<Widget>.class.cast(in.readObject());

 List<Widget> lw2 = List.class.cast(in.readObject());

 }

} ///:~

However, you can’t cast to the actual type (List<Widget>). That is, you can’t

say

List<Widget>.class.cast(in.readObject())

and even if you add another cast like this:

(List<Widget>)List.class.cast(in.readObject())

you’ll still get a warning.

Exercise 32: (1) Verify that FixedSizeStack in GenericCast.java
generates exceptions if you try to go out of its bounds. Does this mean that
bounds-checking code is not required?

Exercise 33: (3) Repair GenericCast.java using an ArrayList.

Overloading
This won’t compile, even though it’s a reasonable thing to try:

//: generics/UseList.java

// {CompileTimeError} (Won’t compile)

import java.util.*;

public class UseList<W,T> {

696 Thinking in Java Bruce Eckel

 void f(List<T> v) {}

 void f(List<W> v) {}

} ///:~

Overloading the method produces the identical type signature because of

erasure.

Instead, you must provide distinct method names when the erased arguments

do not produce a unique argument list:

//: generics/UseList2.java

import java.util.*;

public class UseList2<W,T> {

 void f1(List<T> v) {}

 void f2(List<W> v) {}

} ///:~

Fortunately, this kind of problem is detected by the compiler.

Base class hijacks an interface
Suppose you have a Pet class that is Comparable to other Pet objects:

//: generics/ComparablePet.java

public class ComparablePet

implements Comparable<ComparablePet> {

 public int compareTo(ComparablePet arg) { return 0; }

} ///:~

It makes sense to try to narrow the type that a subclass of ComparablePet

can be compared to. For example, a Cat should only be Comparable with

other Cats:

//: generics/HijackedInterface.java

// {CompileTimeError} (Won't compile)

class Cat extends ComparablePet implements Comparable<Cat>{

 // Error: Comparable cannot be inherited with

 // different arguments: <Cat> and <Pet>

 public int compareTo(Cat arg) { return 0; }

} ///:~

Generics 697

Unfortunately, this won’t work. Once the ComparablePet argument is

established for Comparable, no other implementing class can ever be

compared to anything but a ComparablePet:

//: generics/RestrictedComparablePets.java

class Hamster extends ComparablePet

implements Comparable<ComparablePet> {

 public int compareTo(ComparablePet arg) { return 0; }

}

// Or just:

class Gecko extends ComparablePet {

 public int compareTo(ComparablePet arg) { return 0; }

} ///:~

Hamster shows that it is possible to reimplement the same interface that is

in ComparablePet, as long as it is exactly the same, including the

parameter types. However, this is the same as just overriding the methods in

the base class, as seen in Gecko.

Self-bounded types
There’s one rather mind-bending idiom that appears periodically in Java

generics. Here’s what it looks like:

class SelfBounded<T extends SelfBounded<T>> { // ...

This has the dizzying effect of two mirrors pointed at each other, a kind of

infinite reflection. The class SelfBounded takes a generic argument T, T is

constrained by a bound, and that bound is SelfBounded, with T as an

argument.

This is difficult to parse when you first see it, and it emphasizes that the

extends keyword, when used with bounds, is definitely different than when

it is used to create subclasses.

Curiously recurring generics
To understand what a self-bounded type means, let’s start with a simpler

version of the idiom, without the self-bound.

698 Thinking in Java Bruce Eckel

You can’t inherit directly from a generic parameter. However, you can inherit

from a class that uses that generic parameter in its own definition. That is,

you can say:

//: generics/CuriouslyRecurringGeneric.java

class GenericType<T> {}

public class CuriouslyRecurringGeneric

 extends GenericType<CuriouslyRecurringGeneric> {} ///:~

This could be called curiously recurring generics (CRG) after Jim Coplien’s

Curiously Recurring Template Pattern in C++. The “curiously recurring”

part refers to the fact that your class appears, rather curiously, in its own base

class.

To understand what this means, try saying it aloud: “I’m creating a new class

that inherits from a generic type that takes my class name as its parameter.”

What can the generic base type accomplish when given the derived class

name? Well, generics in Java are about arguments and return types, so it can

produce a base class that uses the derived type for its arguments and return

types. It can also use the derived type for field types, even though those will

be erased to Object. Here’s a generic class that expresses this:

//: generics/BasicHolder.java

public class BasicHolder<T> {

 T element;

 void set(T arg) { element = arg; }

 T get() { return element; }

 void f() {

 System.out.println(element.getClass().getSimpleName());

 }

} ///:~

It’s an ordinary generic type with methods that both accept and produce

objects of the parameter type, along with a method that operates on the

stored field (although it only performs Object operations on that field).

We can use BasicHolder in a curiously recurring generic:

//: generics/CRGWithBasicHolder.java

class Subtype extends BasicHolder<Subtype> {}

Generics 699

public class CRGWithBasicHolder {

 public static void main(String[] args) {

 Subtype st1 = new Subtype(), st2 = new Subtype();

 st1.set(st2);

 Subtype st3 = st1.get();

 st1.f();

 }

} /* Output:

Subtype

*///:~

Notice something important here: The new class Subtype takes arguments

and returns values of Subtype, not just the base class BasicHolder. This is

the essence of CRG: The base class substitutes the derived class for its

parameters. This means that the generic base class becomes a kind of

template for common functionality for all its derived classes, but this

functionality will use the derived type for all of its arguments and return

values. That is, the exact type instead of the base type will be used in the

resulting class. So in Subtype, both the argument to set() and the return

type of get() are exactly Subtypes.

Self-bounding
The BasicHolder can use any type as its generic parameter, as seen here:

//: generics/Unconstrained.java

class Other {}

class BasicOther extends BasicHolder<Other> {}

public class Unconstrained {

 public static void main(String[] args) {

 BasicOther b = new BasicOther(), b2 = new BasicOther();

 b.set(new Other());

 Other other = b.get();

 b.f();

 }

} /* Output:

Other

*///:~

Self-bounding takes the extra step of forcing the generic to be used as its own

bound argument. Look at how the resulting class can and can’t be used:

700 Thinking in Java Bruce Eckel

//: generics/SelfBounding.java

class SelfBounded<T extends SelfBounded<T>> {

 T element;

 SelfBounded<T> set(T arg) {

 element = arg;

 return this;

 }

 T get() { return element; }

}

class A extends SelfBounded<A> {}

class B extends SelfBounded<A> {} // Also OK

class C extends SelfBounded<C> {

 C setAndGet(C arg) { set(arg); return get(); }

}

class D {}

// Can't do this:

// class E extends SelfBounded<D> {}

// Compile error: Type parameter D is not within its bound

// Alas, you can do this, so you can’t force the idiom:

class F extends SelfBounded {}

public class SelfBounding {

 public static void main(String[] args) {

 A a = new A();

 a.set(new A());

 a = a.set(new A()).get();

 a = a.get();

 C c = new C();

 c = c.setAndGet(new C());

 }

} ///:~

What self-bounding does is require the use of the class in an inheritance

relationship like this:

class A extends SelfBounded<A> {}

This forces you to pass the class that you are defining as a parameter to the

base class.

Generics 701

What’s the added value in self-bounding the parameter? The type parameter

must be the same as the class being defined. As you can see in the definition

of class B, you can also derive from a SelfBounded that uses a parameter of

another SelfBounded, although the predominant use seems to be the one

that you see for class A. The attempt to define E shows that you cannot use a

type parameter that is not a SelfBounded.

Unfortunately, F compiles without warnings, so the self-bounding idiom is

not enforceable. If it’s really important, it may require an external tool to

ensure that raw types are not being used in place of parameterized types.

Notice that you can remove the constraint and all the classes will still

compile, but E will also compile:

//: generics/NotSelfBounded.java

public class NotSelfBounded<T> {

 T element;

 NotSelfBounded<T> set(T arg) {

 element = arg;

 return this;

 }

 T get() { return element; }

}

class A2 extends NotSelfBounded<A2> {}

class B2 extends NotSelfBounded<A2> {}

class C2 extends NotSelfBounded<C2> {

 C2 setAndGet(C2 arg) { set(arg); return get(); }

}

class D2 {}

// Now this is OK:

class E2 extends NotSelfBounded<D2> {} ///:~

So clearly, the self-bounding constraint serves only to force the inheritance

relationship. If you use self-bounding, you know that the type parameter used

by the class will be the same basic type as the class that’s using that

parameter. It forces anyone using that class to follow that form.

It’s also possible to use self-bounding for generic methods:

//: generics/SelfBoundingMethods.java

702 Thinking in Java Bruce Eckel

public class SelfBoundingMethods {

 static <T extends SelfBounded<T>> T f(T arg) {

 return arg.set(arg).get();

 }

 public static void main(String[] args) {

 A a = f(new A());

 }

} ///:~

This prevents the method from being applied to anything but a self-bounded

argument of the form shown.

Argument covariance
The value of self-bounding types is that they produce covariant argument

types—method argument types vary to follow the subclasses.

Although self-bounding types also produce return types that are the same as

the subclass type, this is not so important because covariant return types

were introduced in Java SE5:

//: generics/CovariantReturnTypes.java

class Base {}

class Derived extends Base {}

interface OrdinaryGetter {

 Base get();

}

interface DerivedGetter extends OrdinaryGetter {

 // Return type of overridden method is allowed to vary:

 Derived get();

}

public class CovariantReturnTypes {

 void test(DerivedGetter d) {

 Derived d2 = d.get();

 }

} ///:~

The get() method in DerivedGetter overrides get() in OrdinaryGetter

and returns a type that is derived from the type returned by

OrdinaryGetter.get(). Although this is a perfectly logical thing to do—a

Generics 703

derived type method should be able to return a more specific type than the

base type method that it’s overriding—it was illegal in earlier versions of Java.

A self-bounded generic does in fact produce the exact derived type as a return

value, as seen here with get():

//: generics/GenericsAndReturnTypes.java

interface GenericGetter<T extends GenericGetter<T>> {

 T get();

}

interface Getter extends GenericGetter<Getter> {}

public class GenericsAndReturnTypes {

 void test(Getter g) {

 Getter result = g.get();

 GenericGetter gg = g.get(); // Also the base type

 }

} ///:~

Notice that this code would not have compiled unless covariant return types

were included in Java SE5.

In non-generic code, however, the argument types cannot be made to vary

with the subtypes:

//: generics/OrdinaryArguments.java

class OrdinarySetter {

 void set(Base base) {

 System.out.println("OrdinarySetter.set(Base)");

 }

}

class DerivedSetter extends OrdinarySetter {

 void set(Derived derived) {

 System.out.println("DerivedSetter.set(Derived)");

 }

}

public class OrdinaryArguments {

 public static void main(String[] args) {

 Base base = new Base();

 Derived derived = new Derived();

704 Thinking in Java Bruce Eckel

 DerivedSetter ds = new DerivedSetter();

 ds.set(derived);

 ds.set(base); // Compiles: overloaded, not overridden!

 }

} /* Output:

DerivedSetter.set(Derived)

OrdinarySetter.set(Base)

*///:~

Both set(derived) and set(base) are legal, so DerivedSetter.set() is not

overriding OrdinarySetter.set(), but instead it is overloading that

method. From the output, you can see that there are two methods in

DerivedSetter, so the base-class version is still available, thus verifying that

it has been overloaded.

However, with self-bounding types, there is only one method in the derived

class, and that method takes the derived type as its argument, not the base

type:

//: generics/SelfBoundingAndCovariantArguments.java

interface SelfBoundSetter<T extends SelfBoundSetter<T>> {

 void set(T arg);

}

interface Setter extends SelfBoundSetter<Setter> {}

public class SelfBoundingAndCovariantArguments {

 void testA(Setter s1, Setter s2, SelfBoundSetter sbs) {

 s1.set(s2);

 // s1.set(sbs); // Error:

 // set(Setter) in SelfBoundSetter<Setter>

 // cannot be applied to (SelfBoundSetter)

 }

} ///:~

The compiler doesn’t recognize the attempt to pass in the base type as an

argument to set(), because there is no method with that signature. The

argument has, in effect, been overridden.

Without self-bounding, the ordinary inheritance mechanism steps in, and you

get overloading, just as with the non-generic case:

//: generics/PlainGenericInheritance.java

Generics 705

class GenericSetter<T> { // Not self-bounded

 void set(T arg){

 System.out.println("GenericSetter.set(Base)");

 }

}

class DerivedGS extends GenericSetter<Base> {

 void set(Derived derived){

 System.out.println("DerivedGS.set(Derived)");

 }

}

public class PlainGenericInheritance {

 public static void main(String[] args) {

 Base base = new Base();

 Derived derived = new Derived();

 DerivedGS dgs = new DerivedGS();

 dgs.set(derived);

 dgs.set(base); // Compiles: overloaded, not overridden!

 }

} /* Output:

DerivedGS.set(Derived)

GenericSetter.set(Base)

*///:~

This code mimics OrdinaryArguments.java; in that example,

DerivedSetter inherits from OrdinarySetter which contains a set(Base).

Here, DerivedGS inherits from GenericSetter<Base> which also

contains a set(Base), created by the generic. And just like

OrdinaryArguments.java, you can see from the output that DerivedGS

contains two overloaded versions of set(). Without self-bounding, you

overload on argument types. If you use self-bounding, you only end up with

one version of a method, which takes the exact argument type.

Exercise 34: (4) Create a self-bounded generic type that contains an
abstract method that takes an argument of the generic type parameter and
produces a return value of the generic type parameter. In a non-abstract
method of the class, call the abstract method and return its result. Inherit
from the self-bounded type and test the resulting class.

706 Thinking in Java Bruce Eckel

Dynamic type safety
Because you can pass generic containers to pre-Java SE5 code, there’s still the

possibility that old-style code can corrupt your containers. Java SE5 has a set

of utilities in java.util.Collections to solve the type-checking problem in

this situation: the static methods checkedCollection(), checkedList(),

checkedMap(), checkedSet(), checkedSortedMap() and

checkedSortedSet(). Each of these takes the container you want to

dynamically check as the first argument and the type that you want to enforce

as the second argument.

A checked container will throw a ClassCastException at the point you try

to insert an improper object, as opposed to a pre-generic (raw) container

which would inform you that there was a problem when you pulled the object

out. In the latter case, you know there’s a problem but you don’t know who

the culprit is, but with checked containers you find out who tried to insert the

bad object.

Let’s look at the problem of “putting a cat in a list of dogs” using a checked

container. Here, oldStyleMethod() represents legacy code because it takes

a raw List, and the @SuppressWarnings("unchecked") annotation is

necessary to suppress the resulting warning:

//: generics/CheckedList.java

// Using Collection.checkedList().

import typeinfo.pets.*;

import java.util.*;

public class CheckedList {

 @SuppressWarnings("unchecked")

 static void oldStyleMethod(List probablyDogs) {

 probablyDogs.add(new Cat());

 }

 public static void main(String[] args) {

 List<Dog> dogs1 = new ArrayList<Dog>();

 oldStyleMethod(dogs1); // Quietly accepts a Cat

 List<Dog> dogs2 = Collections.checkedList(

 new ArrayList<Dog>(), Dog.class);

 try {

 oldStyleMethod(dogs2); // Throws an exception

 } catch(Exception e) {

 System.out.println("Expected: " + e);

 }

Generics 707

 // Derived types work fine:

 List<Pet> pets = Collections.checkedList(

 new ArrayList<Pet>(), Pet.class);

 pets.add(new Dog());

 pets.add(new Cat());

 }

} /* Output:

Expected: java.lang.ClassCastException: Attempt to insert

class typeinfo.pets.Cat element into collection with element

type class typeinfo.pets.Dog

*///:~

When you run the program you’ll see that the insertion of a Cat goes

unchallenged by dogs1, but dogs2 immediately throws an exception upon

the insertion of an incorrect type. You can also see that it’s fine to put

derived-type objects into a checked container that is checking for the base

type.

Exercise 35: (1) Modify CheckedList.java so that it uses the Coffee
classes defined in this chapter.

Exceptions
Because of erasure, the use of generics with exceptions is extremely limited. A

catch clause cannot catch an exception of a generic type, because the exact

type of the exception must be known at both compile time and run time. Also,

a generic class can’t directly or indirectly inherit from Throwable (this

further prevents you from trying to define generic exceptions that can’t be

caught).

However, type parameters may be used in the throws clause of a method

declaration. This allows you to write generic code that varies with the type of

a checked exception:

//: generics/ThrowGenericException.java

import java.util.*;

interface Processor<T,E extends Exception> {

 void process(List<T> resultCollector) throws E;

}

class ProcessRunner<T,E extends Exception>

extends ArrayList<Processor<T,E>> {

 List<T> processAll() throws E {

708 Thinking in Java Bruce Eckel

 List<T> resultCollector = new ArrayList<T>();

 for(Processor<T,E> processor : this)

 processor.process(resultCollector);

 return resultCollector;

 }

}

class Failure1 extends Exception {}

class Processor1 implements Processor<String,Failure1> {

 static int count = 3;

 public void

 process(List<String> resultCollector) throws Failure1 {

 if(count-- > 1)

 resultCollector.add("Hep!");

 else

 resultCollector.add("Ho!");

 if(count < 0)

 throw new Failure1();

 }

}

class Failure2 extends Exception {}

class Processor2 implements Processor<Integer,Failure2> {

 static int count = 2;

 public void

 process(List<Integer> resultCollector) throws Failure2 {

 if(count-- == 0)

 resultCollector.add(47);

 else {

 resultCollector.add(11);

 }

 if(count < 0)

 throw new Failure2();

 }

}

public class ThrowGenericException {

 public static void main(String[] args) {

 ProcessRunner<String,Failure1> runner =

 new ProcessRunner<String,Failure1>();

 for(int i = 0; i < 3; i++)

 runner.add(new Processor1());

Generics 709

 try {

 System.out.println(runner.processAll());

 } catch(Failure1 e) {

 System.out.println(e);

 }

 ProcessRunner<Integer,Failure2> runner2 =

 new ProcessRunner<Integer,Failure2>();

 for(int i = 0; i < 3; i++)

 runner2.add(new Processor2());

 try {

 System.out.println(runner2.processAll());

 } catch(Failure2 e) {

 System.out.println(e);

 }

 }

} ///:~

A Processor performs a process() and may throw an exception of type E.

The result of the process() is stored in the List<T> resultCollector (this

is called a collecting parameter). A ProcessRunner has a processAll()

method that executes every Process object that it holds, and returns the

resultCollector.

If you could not parameterize the exceptions that are thrown, you would be

unable to write this code generically because of the checked exceptions.

Exercise 36: (2) Add a second parameterized exception to the
Processor class and demonstrate that the exceptions can vary
independently.

Mixins
The term mixin seems to have acquired numerous meanings over time, but

the fundamental concept is that of mixing in capabilities from multiple

classes in order to produce a resulting class that represents all the types of the

mixins. This is often something you do at the last minute, which makes it

convenient to easily assemble classes.

One value of mixins is that they consistently apply characteristics and

behaviors across multiple classes. As a bonus, if you want to change

something in a mixin class, those changes are then applied across all the

classes where the mixin is applied. Because of this, mixins have part of the

710 Thinking in Java Bruce Eckel

flavor of aspect-oriented programming (AOP), and aspects are often

suggested to solve the mixin problem.

Mixins in C++
One of the strongest arguments made for multiple inheritance in C++ is for

the use of mixins. However, a more interesting and elegant approach to

mixins is using parameterized types, whereby a mixin is a class that inherits

from its type parameter. In C++, you can easily create mixins because C++

remembers the type of its template parameters.

Here’s a C++ example with two mixin types: one that allows you to mix in the

property of having a time stamp, and another that mixes in a serial number

for each object instance:

//: generics/Mixins.cpp

#include <string>

#include <ctime>

#include <iostream>

using namespace std;

template<class T> class TimeStamped : public T {

 long timeStamp;

public:

 TimeStamped() { timeStamp = time(0); }

 long getStamp() { return timeStamp; }

};

template<class T> class SerialNumbered : public T {

 long serialNumber;

 static long counter;

public:

 SerialNumbered() { serialNumber = counter++; }

 long getSerialNumber() { return serialNumber; }

};

// Define and initialize the static storage:

template<class T> long SerialNumbered<T>::counter = 1;

class Basic {

 string value;

public:

 void set(string val) { value = val; }

 string get() { return value; }

Generics 711

};

int main() {

 TimeStamped<SerialNumbered<Basic> > mixin1, mixin2;

 mixin1.set("test string 1");

 mixin2.set("test string 2");

 cout << mixin1.get() << " " << mixin1.getStamp() <<

 " " << mixin1.getSerialNumber() << endl;

 cout << mixin2.get() << " " << mixin2.getStamp() <<

 " " << mixin2.getSerialNumber() << endl;

} /* Output: (Sample)

test string 1 1129840250 1

test string 2 1129840250 2

*///:~

In main(), the resulting type of mixin1 and mixin2 has all the methods of

the mixed-in types. You can think of a mixin as a function that maps existing

classes to new subclasses. Notice how trivial it is to create a mixin using this

technique; basically, you just say, “Here’s what I want,” and it happens:

 TimeStamped<SerialNumbered<Basic> > mixin1, mixin2;

Unfortunately, Java generics don’t permit this. Erasure forgets the base-class

type, so a generic class cannot inherit directly from a generic parameter.

Mixing with interfaces
A commonly suggested solution is to use interfaces to produce the effect of

mixins, like this:

//: generics/Mixins.java

import java.util.*;

interface TimeStamped { long getStamp(); }

class TimeStampedImp implements TimeStamped {

 private final long timeStamp;

 public TimeStampedImp() {

 timeStamp = new Date().getTime();

 }

 public long getStamp() { return timeStamp; }

}

interface SerialNumbered { long getSerialNumber(); }

712 Thinking in Java Bruce Eckel

class SerialNumberedImp implements SerialNumbered {

 private static long counter = 1;

 private final long serialNumber = counter++;

 public long getSerialNumber() { return serialNumber; }

}

interface Basic {

 public void set(String val);

 public String get();

}

class BasicImp implements Basic {

 private String value;

 public void set(String val) { value = val; }

 public String get() { return value; }

}

class Mixin extends BasicImp

implements TimeStamped, SerialNumbered {

 private TimeStamped timeStamp = new TimeStampedImp();

 private SerialNumbered serialNumber =

 new SerialNumberedImp();

 public long getStamp() { return timeStamp.getStamp(); }

 public long getSerialNumber() {

 return serialNumber.getSerialNumber();

 }

}

public class Mixins {

 public static void main(String[] args) {

 Mixin mixin1 = new Mixin(), mixin2 = new Mixin();

 mixin1.set("test string 1");

 mixin2.set("test string 2");

 System.out.println(mixin1.get() + " " +

 mixin1.getStamp() + " " + mixin1.getSerialNumber());

 System.out.println(mixin2.get() + " " +

 mixin2.getStamp() + " " + mixin2.getSerialNumber());

 }

} /* Output: (Sample)

test string 1 1132437151359 1

test string 2 1132437151359 2

*///:~

The Mixin class is basically using delegation, so each mixed-in type requires

a field in Mixin, and you must write all the necessary methods in Mixin to

Generics 713

forward calls to the appropriate object. This example uses trivial classes, but

with a more complex mixin the code grows rapidly.4

Exercise 37: (2) Add a new mixin class Colored to Mixins.java, mix it
into Mixin, and show that it works.

Using the Decorator pattern
When you look at the way that it is used, the concept of a mixin seems closely

related to the Decorator design pattern.5 Decorators are often used when, in

order to satisfy every possible combination, simple subclassing produces so

many classes that it becomes impractical.

The Decorator pattern uses layered objects to dynamically and transparently

add responsibilities to individual objects. Decorator specifies that all objects

that wrap around your initial object have the same basic interface. Something

is decoratable, and you layer on functionality by wrapping other classes

around the decoratable. This makes the use of the decorators transparent—

there are a set of common messages you can send to an object whether it has

been decorated or not. A decorating class can also add methods, but as you

shall see, this is limited.

Decorators are implemented using composition and formal structures (the

decoratable/decorator hierarchy), whereas mixins are inheritance-based. So

you could think of parameterized-type-based mixins as a generic decorator

mechanism that does not require the inheritance structure of the Decorator

design pattern.

The previous example can be recast using Decorator:

//: generics/decorator/Decoration.java

package generics.decorator;

import java.util.*;

class Basic {

 private String value;

4 Note that some programming environments, such as Eclipse and IntelliJ Idea, will
automatically generate delegation code.

5 Patterns are covered in On Java 8 at www.MindViewLLC.com. See also Design
Patterns, by Erich Gamma et al. (Addison-Wesley, 1995).

714 Thinking in Java Bruce Eckel

 public void set(String val) { value = val; }

 public String get() { return value; }

}

class Decorator extends Basic {

 protected Basic basic;

 public Decorator(Basic basic) { this.basic = basic; }

 public void set(String val) { basic.set(val); }

 public String get() { return basic.get(); }

}

class TimeStamped extends Decorator {

 private final long timeStamp;

 public TimeStamped(Basic basic) {

 super(basic);

 timeStamp = new Date().getTime();

 }

 public long getStamp() { return timeStamp; }

}

class SerialNumbered extends Decorator {

 private static long counter = 1;

 private final long serialNumber = counter++;

 public SerialNumbered(Basic basic) { super(basic); }

 public long getSerialNumber() { return serialNumber; }

}

public class Decoration {

 public static void main(String[] args) {

 TimeStamped t = new TimeStamped(new Basic());

 TimeStamped t2 = new TimeStamped(

 new SerialNumbered(new Basic()));

 //! t2.getSerialNumber(); // Not available

 SerialNumbered s = new SerialNumbered(new Basic());

 SerialNumbered s2 = new SerialNumbered(

 new TimeStamped(new Basic()));

 //! s2.getStamp(); // Not available

 }

} ///:~

The class resulting from a mixin contains all the methods of interest, but the

type of the object that results from using decorators is the last type that it was

decorated with. That is, although it’s possible to add more than one layer, the

final layer is the actual type, so only the final layer’s methods are visible,

Generics 715

whereas the type of the mixin is all the types that have been mixed together.

So a significant drawback to Decorator is that it only effectively works with

one layer of decoration (the final one), and the mixin approach is arguably

more natural. Thus, Decorator is only a limited solution to the problem

addressed by mixins.

Exercise 38: (4) Create a simple Decorator system by starting with basic
coffee, then providing decorators of steamed milk, foam, chocolate, caramel
and whipped cream.

Mixins with dynamic proxies
It’s possible to use a dynamic proxy to create a mechanism that more closely

models mixins than does the Decorator (see the Type Information chapter

for an explanation of how Java’s dynamic proxies work). With a dynamic

proxy, the dynamic type of the resulting class is the combined types that have

been mixed in.

Because of the constraints of dynamic proxies, each class that is mixed in

must be the implementation of an interface:

//: generics/DynamicProxyMixin.java

import java.lang.reflect.*;

import java.util.*;

import net.mindview.util.*;

import static net.mindview.util.Tuple.*;

class MixinProxy implements InvocationHandler {

 Map<String,Object> delegatesByMethod;

 public MixinProxy(TwoTuple<Object,Class<?>>... pairs) {

 delegatesByMethod = new HashMap<String,Object>();

 for(TwoTuple<Object,Class<?>> pair : pairs) {

 for(Method method : pair.second.getMethods()) {

 String methodName = method.getName();

 // The first interface in the map

 // implements the method.

 if (!delegatesByMethod.containsKey(methodName))

 delegatesByMethod.put(methodName, pair.first);

 }

 }

 }

 public Object invoke(Object proxy, Method method,

 Object[] args) throws Throwable {

 String methodName = method.getName();

716 Thinking in Java Bruce Eckel

 Object delegate = delegatesByMethod.get(methodName);

 return method.invoke(delegate, args);

 }

 @SuppressWarnings("unchecked")

 public static Object newInstance(TwoTuple... pairs) {

 Class[] interfaces = new Class[pairs.length];

 for(int i = 0; i < pairs.length; i++) {

 interfaces[i] = (Class)pairs[i].second;

 }

 ClassLoader cl =

 pairs[0].first.getClass().getClassLoader();

 return Proxy.newProxyInstance(

 cl, interfaces, new MixinProxy(pairs));

 }

}

public class DynamicProxyMixin {

 public static void main(String[] args) {

 Object mixin = MixinProxy.newInstance(

 tuple(new BasicImp(), Basic.class),

 tuple(new TimeStampedImp(), TimeStamped.class),

 tuple(new SerialNumberedImp(),SerialNumbered.class));

 Basic b = (Basic)mixin;

 TimeStamped t = (TimeStamped)mixin;

 SerialNumbered s = (SerialNumbered)mixin;

 b.set("Hello");

 System.out.println(b.get());

 System.out.println(t.getStamp());

 System.out.println(s.getSerialNumber());

 }

} /* Output: (Sample)

Hello

1132519137015

1

*///:~

Because only the dynamic type, and not the static type, includes all the

mixed-in types, this is still not quite as nice as the C++ approach, because

you’re forced to downcast to the appropriate type before you can call methods

for it. However, it is significantly closer to a true mixin.

There has been a fair amount of work done towards the support of mixins for

Java, including the creation of at least one language add-on, the Jam

language, specifically for supporting mixins.

Generics 717

Exercise 39: (1) Add a new mixin class Colored to
DynamicProxyMixin.java, mix it into mixin, and show that it works.

Latent typing
The beginning of this chapter introduced the idea of writing code that can be

applied as generally as possible. To do this, we need ways to loosen the

constraints on the types that our code works with, without losing the benefits

of static type checking. We are then able to write code that can be used in

more situations without change—that is, more “generic” code.

Java generics appear to take a further step in this direction. When you are

writing or using generics that simply hold objects, the code works with any

type (except for primitives, although as you’ve seen, autoboxing smoothes

this over). Or, put another way, “holder” generics are able to say, “I don’t care

what type you are.” Code that doesn’t care what type it works with can indeed

be applied everywhere, and is thus quite “generic.”

As you’ve also seen, a problem arises when you want to perform

manipulations on generic types (other than calling Object methods), because

erasure requires that you specify the bounds of the generic types that may be

used, in order to safely call specific methods for the generic objects in your

code. This is a significant limitation to the concept of “generic” because you

must constrain your generic types so that they inherit from particular classes

or implement particular interfaces. In some cases you might end up using an

ordinary class or interface instead, because a bounded generic might be no

different from specifying a class or interface.

One solution that some programming languages provide is called latent

typing or structural typing. A more whimsical term is duck typing, as in, “If

it walks like a duck and talks like a duck, you might as well treat it like a

duck.” Duck typing has become a fairly popular term, possibly because it

doesn’t carry the historical baggage that other terms do.

Generic code typically only calls a few methods on a generic type, and a

language with latent typing loosens the constraint (and produces more

generic code) by only requiring that a subset of methods be implemented, not

a particular class or interface. Because of this, latent typing allows you to cut

across class hierarchies, calling methods that are not part of a common

interface. So a piece of code might say, in effect, “I don’t care what type you

718 Thinking in Java Bruce Eckel

are as long as you can speak() and sit().” By not requiring a specific type,

your code can be more generic.

Latent typing is a code organization and reuse mechanism. With it you can

write a piece of code that can be reused more easily than without it. Code

organization and reuse are the foundational levers of all computer

programming: Write it once, use it more than once, and keep the code in one

place. Because I am not required to name an exact interface that my code

operates upon, with latent typing I can write less code and apply it more

easily in more places.

Two examples of languages that support latent typing are Python (freely

downloadable from www.Python.org) and C++.6 Python is a dynamically

typed language (virtually all the type checking happens at run time) and C++

is a statically typed language (the type checking happens at compile time), so

latent typing does not require either static or dynamic type checking.

If we take the above description and express it in Python, it looks like this:

#: generics/DogsAndRobots.py

class Dog:

 def speak(self):

 print "Arf!"

 def sit(self):

 print "Sitting"

 def reproduce(self):

 pass

class Robot:

 def speak(self):

 print "Click!"

 def sit(self):

 print "Clank!"

 def oilChange(self):

 pass

def perform(anything):

 anything.speak()

 anything.sit()

6 The Ruby and Smalltalk languages also support latent typing.

Generics 719

a = Dog()

b = Robot()

perform(a)

perform(b)

#:~

Python uses indentation to determine scope (so no curly braces are needed),

and a colon to begin a new scope. A ‘#’ indicates a comment to the end of the

line, like ‘//’ in Java. The methods of a class explicitly specify the equivalent

of the this reference as the first argument, called self by convention.

Constructor calls do not require any sort of “new” keyword. And Python

allows regular (non-member) functions, as evidenced by perform().

In perform(anything), notice that there is no type for anything, and

anything is just an identifier. It must be able to perform the operations that

perform() asks of it, so an interface is implied. But you never have to

explicitly write out that interface—it’s latent. perform() doesn’t care about

the type of its argument, so I can pass any object to it as long as it supports

the speak() and sit() methods. If you pass an object to perform() that

does not support these operations, you’ll get a runtime exception.

We can produce the same effect in C++:

//: generics/DogsAndRobots.cpp

class Dog {

public:

 void speak() {}

 void sit() {}

 void reproduce() {}

};

class Robot {

public:

 void speak() {}

 void sit() {}

 void oilChange() {

};

template<class T> void perform(T anything) {

 anything.speak();

 anything.sit();

}

720 Thinking in Java Bruce Eckel

int main() {

 Dog d;

 Robot r;

 perform(d);

 perform(r);

} ///:~

In both Python and C++, Dog and Robot have nothing in common, other

than that they happen to have two methods with identical signatures. From a

type standpoint, they are completely distinct types. However, perform()

doesn’t care about the specific type of its argument, and latent typing allows it

to accept both types of object.

C++ ensures that it can actually send those messages. The compiler gives you

an error message if you try to pass the wrong type (these error messages have

historically been terrible and verbose, and are the primary reason that C++

templates have a poor reputation). Although they do it at different times—

C++ at compile time, and Python at run time—both languages ensure that

types cannot be misused and are thus considered to be strongly typed.7

Latent typing does not compromise strong typing.

Because generics were added to Java late in the game, there was no chance

that any kind of latent typing could be implemented, so Java has no support

for this feature. As a result, it initially seems that Java’s generic mechanism is

“less generic” than a language that supports latent typing.8 For instance, if we

try to implement the above example in Java, we are forced to use a class or an

interface and specify it in a bounds expression:

//: generics/Performs.java

public interface Performs {

 void speak();

 void sit();

} ///:~

7 Because you can use casts, which effectively disable the type system, some people argue
that C++ is weakly typed, but that’s extreme. It’s probably safer to say that C++ is
“strongly typed with a trap door.”

8 The implementation of Java’s generics using erasure is sometimes referred to as second-
class generic types.

Generics 721

//: generics/DogsAndRobots.java

// No latent typing in Java

import typeinfo.pets.*;

import static net.mindview.util.Print.*;

class PerformingDog extends Dog implements Performs {

 public void speak() { print("Woof!"); }

 public void sit() { print("Sitting"); }

 public void reproduce() {}

}

class Robot implements Performs {

 public void speak() { print("Click!"); }

 public void sit() { print("Clank!"); }

 public void oilChange() {}

}

class Communicate {

 public static <T extends Performs>

 void perform(T performer) {

 performer.speak();

 performer.sit();

 }

}

public class DogsAndRobots {

 public static void main(String[] args) {

 PerformingDog d = new PerformingDog();

 Robot r = new Robot();

 Communicate.perform(d);

 Communicate.perform(r);

 }

} /* Output:

Woof!

Sitting

Click!

Clank!

*///:~

However, note that perform() does not need to use generics in order to

work. It can simply be specified to accept a Performs object:

//: generics/SimpleDogsAndRobots.java

// Removing the generic; code still works.

722 Thinking in Java Bruce Eckel

class CommunicateSimply {

 static void perform(Performs performer) {

 performer.speak();

 performer.sit();

 }

}

public class SimpleDogsAndRobots {

 public static void main(String[] args) {

 CommunicateSimply.perform(new PerformingDog());

 CommunicateSimply.perform(new Robot());

 }

} /* Output:

Woof!

Sitting

Click!

Clank!

*///:~

In this case, generics were simply not necessary, since the classes were

already forced to implement the Performs interface.

Compensating for the lack of
latent typing

Although Java does not support latent typing, it turns out that this does not

mean that your bounded generic code cannot be applied across different type

hierarchies. That is, it is still possible to create truly generic code, but it takes

some extra effort.

Reflection
One approach you can use is reflection. Here’s a perform() method that

uses latent typing:

//: generics/LatentReflection.java

// Using Reflection to produce latent typing.

import java.lang.reflect.*;

import static net.mindview.util.Print.*;

// Does not implement Performs:

class Mime {

 public void walkAgainstTheWind() {}

Generics 723

 public void sit() { print("Pretending to sit"); }

 public void pushInvisibleWalls() {}

 public String toString() { return "Mime"; }

}

// Does not implement Performs:

class SmartDog {

 public void speak() { print("Woof!"); }

 public void sit() { print("Sitting"); }

 public void reproduce() {}

}

class CommunicateReflectively {

 public static void perform(Object speaker) {

 Class<?> spkr = speaker.getClass();

 try {

 try {

 Method speak = spkr.getMethod("speak");

 speak.invoke(speaker);

 } catch(NoSuchMethodException e) {

 print(speaker + " cannot speak");

 }

 try {

 Method sit = spkr.getMethod("sit");

 sit.invoke(speaker);

 } catch(NoSuchMethodException e) {

 print(speaker + " cannot sit");

 }

 } catch(Exception e) {

 throw new RuntimeException(speaker.toString(), e);

 }

 }

}

public class LatentReflection {

 public static void main(String[] args) {

 CommunicateReflectively.perform(new SmartDog());

 CommunicateReflectively.perform(new Robot());

 CommunicateReflectively.perform(new Mime());

 }

} /* Output:

Woof!

Sitting

Click!

724 Thinking in Java Bruce Eckel

Clank!

Mime cannot speak

Pretending to sit

*///:~

Here, the classes are completely disjoint and have no base classes (other than

Object) or interfaces in common. Through reflection,

CommunicateReflectively.perform() is able to dynamically establish

whether the desired methods are available and call them. It is even able to

deal with the fact that Mime only has one of the necessary methods, and

partially fulfills its goal.

Applying a method to a sequence
Reflection provides some interesting possibilities, but it relegates all the type

checking to run time, and is thus undesirable in many situations. If you can

achieve compile-time type checking, that’s usually more desirable. But is it

possible to have compile-time type checking and latent typing?

Let’s look at an example that explores the problem. Suppose you want to

create an apply() method that will apply any method to every object in a

sequence. This is a situation where interfaces don’t seem to fit. You want to

apply any method to a collection of objects, and interfaces constrain you too

much to describe “any method.” How do you do this in Java?

Initially, we can solve the problem with reflection, which turns out to be fairly

elegant because of Java SE5 varargs:

//: generics/Apply.java

// {main: ApplyTest}

import java.lang.reflect.*;

import java.util.*;

import static net.mindview.util.Print.*;

public class Apply {

 public static <T, S extends Iterable<? extends T>>

 void apply(S seq, Method f, Object... args) {

 try {

 for(T t: seq)

 f.invoke(t, args);

 } catch(Exception e) {

 // Failures are programmer errors

 throw new RuntimeException(e);

 }

Generics 725

 }

}

class Shape {

 public void rotate() { print(this + " rotate"); }

 public void resize(int newSize) {

 print(this + " resize " + newSize);

 }

}

class Square extends Shape {}

class FilledList<T> extends ArrayList<T> {

 public FilledList(Class<? extends T> type, int size) {

 try {

 for(int i = 0; i < size; i++)

 // Assumes default constructor:

 add(type.newInstance());

 } catch(Exception e) {

 throw new RuntimeException(e);

 }

 }

}

class ApplyTest {

 public static void main(String[] args) throws Exception {

 List<Shape> shapes = new ArrayList<Shape>();

 for(int i = 0; i < 10; i++)

 shapes.add(new Shape());

 Apply.apply(shapes, Shape.class.getMethod("rotate"));

 Apply.apply(shapes,

 Shape.class.getMethod("resize", int.class), 5);

 List<Square> squares = new ArrayList<Square>();

 for(int i = 0; i < 10; i++)

 squares.add(new Square());

 Apply.apply(squares, Shape.class.getMethod("rotate"));

 Apply.apply(squares,

 Shape.class.getMethod("resize", int.class), 5);

 Apply.apply(new FilledList<Shape>(Shape.class, 10),

 Shape.class.getMethod("rotate"));

 Apply.apply(new FilledList<Shape>(Square.class, 10),

 Shape.class.getMethod("rotate"));

726 Thinking in Java Bruce Eckel

 SimpleQueue<Shape> shapeQ = new SimpleQueue<Shape>();

 for(int i = 0; i < 5; i++) {

 shapeQ.add(new Shape());

 shapeQ.add(new Square());

 }

 Apply.apply(shapeQ, Shape.class.getMethod("rotate"));

 }

} /* (Execute to see output) *///:~

In Apply, we get lucky because there happens to be an Iterable interface

built into Java which is used by the Java containers library. Because of this,

the apply() method can accept anything that implements the Iterable

interface, which includes all the Collection classes such as List. But it can

also accept anything else, as long as you make it Iterable—for example, the

SimpleQueue class defined here and used above in main():

//: generics/SimpleQueue.java

// A different kind of container that is Iterable

import java.util.*;

public class SimpleQueue<T> implements Iterable<T> {

 private LinkedList<T> storage = new LinkedList<T>();

 public void add(T t) { storage.offer(t); }

 public T get() { return storage.poll(); }

 public Iterator<T> iterator() {

 return storage.iterator();

 }

} ///:~

In Apply.java, exceptions are converted to RuntimeExceptions because

there’s not much of a way to recover from exceptions—they really do

represent programmer errors in this case.

Note that I had to put in bounds and wildcards in order for Apply and

FilledList to be used in all desired situations. You can experiment by taking

these out, and you’ll discover that some applications of Apply and

FilledList will not work.

FilledList presents a bit of a quandary. In order for a type to be used, it must

have a default (no-arg) constructor. Java has no way to assert such a thing at

compile time, so it becomes a runtime issue. A common suggestion to ensure

compile-time checking is to define a factory interface that has a method that

generates objects; then FilledList would accept that interface rather than

the “raw factory” of the type token. The problem with this is that all the

Generics 727

classes you use in FilledList must then implement your factory interface.

Alas, most classes are created without knowledge of your interface, and

therefore do not implement it. Later, I’ll show one solution using adapters.

But the approach shown, of using a type token, is perhaps a reasonable trade-

off (at least as a first-cut solution). With this approach, using something like

FilledList is just easy enough that it may be used rather than ignored. Of

course, because errors are reported at run time, you need confidence that

these errors will appear early in the development process.

Note that the type token technique is recommended in the Java literature,

such as Gilad Bracha’s paper Generics in the Java Programming Language,9

where he notes, “It’s an idiom that’s used extensively in the new APIs for

manipulating annotations, for example.” However, I’ve discovered some

inconsistency in people’s comfort level with this technique; some people

strongly prefer the factory approach, which was presented earlier in this

chapter.

Also, as elegant as the Java solution turns out to be, we must observe that the

use of reflection (although it has been improved significantly in recent

versions of Java) may be slower than a non-reflection implementation, since

so much is happening at run time. This should not stop you from using the

solution, at least as a first cut (lest you fall sway to premature optimization),

but it’s certainly a distinction between the two approaches.

Exercise 40: (3) Add a speak() method to all the pets in
typeinfo.pets. Modify Apply.java to call the speak() method for a
heterogeneous collection of Pet.

When you don’t happen to have the

right interface
The above example benefited because the Iterable interface was already

built in, and was exactly what we needed. But what about the general case,

when there isn’t an interface already in place that just happens to fit your

needs?

9 See citation at the end of this chapter.

728 Thinking in Java Bruce Eckel

For example, let’s generalize the idea in FilledList and create a

parameterized fill() method that will take a sequence and fill it using a

Generator. When we try to write this in Java, we run into a problem,

because there is no convenient “Addable” interface as there was an Iterable

interface in the previous example. So instead of saying, “anything that you

can call add() for,” you must say, “subtype of Collection.” The resulting

code is not particularly generic, since it must be constrained to work with

Collection implementations. If I try to use a class that doesn’t implement

Collection, my generic code won’t work. Here’s what it looks like:

//: generics/Fill.java

// Generalizing the FilledList idea

// {main: FillTest}

import java.util.*;

// Doesn't work with "anything that has an add()." There is

// no "Addable" interface so we are narrowed to using a

// Collection. We cannot generalize using generics in

// this case.

public class Fill {

 public static <T> void fill(Collection<T> collection,

 Class<? extends T> classToken, int size) {

 for(int i = 0; i < size; i++)

 // Assumes default constructor:

 try {

 collection.add(classToken.newInstance());

 } catch(Exception e) {

 throw new RuntimeException(e);

 }

 }

}

class Contract {

 private static long counter = 0;

 private final long id = counter++;

 public String toString() {

 return getClass().getName() + " " + id;

 }

}

class TitleTransfer extends Contract {}

class FillTest {

 public static void main(String[] args) {

Generics 729

 List<Contract> contracts = new ArrayList<Contract>();

 Fill.fill(contracts, Contract.class, 3);

 Fill.fill(contracts, TitleTransfer.class, 2);

 for(Contract c: contracts)

 System.out.println(c);

 SimpleQueue<Contract> contractQueue =

 new SimpleQueue<Contract>();

 // Won't work. fill() is not generic enough:

 // Fill.fill(contractQueue, Contract.class, 3);

 }

} /* Output:

Contract 0

Contract 1

Contract 2

TitleTransfer 3

TitleTransfer 4

*///:~

This is where a parameterized type mechanism with latent typing is valuable,

because you are not at the mercy of the past design decisions of any particular

library creator, so you do not have to rewrite your code every time you

encounter a new library that didn’t take your situation into account (thus the

code is truly “generic”). In the above case, because the Java designers

(understandably) did not see the need for an “Addable” interface, we are

constrained within the Collection hierarchy, and SimpleQueue, even

though it has an add() method, will not work. Because it is thus constrained

to working with Collection, the code is not particularly “generic.” With

latent typing, this would not be the case.

Simulating latent typing with adapters
So Java generics don’t have latent typing, and we need something like latent

typing in order to write code that can be applied across class boundaries (that

is, “generic” code). Is there some way to get around this limitation?

What would latent typing accomplish here? It means that you could write

code saying, “I don’t care what type I’m using here as long as it has these

methods.” In effect, latent typing creates an implicit interface containing the

desired methods. So it follows that if we write the necessary interface by hand

(since Java doesn’t do it for us), that should solve the problem.

Writing code to produce an interface that we want from an interface that we

have is an example of the Adapter design pattern. We can use adapters to

730 Thinking in Java Bruce Eckel

adapt existing classes to produce the desired interface, with a relatively small

amount of code. The solution, which uses the previously defined Coffee

hierarchy, demonstrates different ways of writing adapters:

//: generics/Fill2.java

// Using adapters to simulate latent typing.

// {main: Fill2Test}

import generics.coffee.*;

import java.util.*;

import net.mindview.util.*;

import static net.mindview.util.Print.*;

interface Addable<T> { void add(T t); }

public class Fill2 {

 // Classtoken version:

 public static <T> void fill(Addable<T> addable,

 Class<? extends T> classToken, int size) {

 for(int i = 0; i < size; i++)

 try {

 addable.add(classToken.newInstance());

 } catch(Exception e) {

 throw new RuntimeException(e);

 }

 }

 // Generator version:

 public static <T> void fill(Addable<T> addable,

 Generator<T> generator, int size) {

 for(int i = 0; i < size; i++)

 addable.add(generator.next());

 }

}

// To adapt a base type, you must use composition.

// Make any Collection Addable using composition:

class AddableCollectionAdapter<T> implements Addable<T> {

 private Collection<T> c;

 public AddableCollectionAdapter(Collection<T> c) {

 this.c = c;

 }

 public void add(T item) { c.add(item); }

}

// A Helper to capture the type automatically:

Generics 731

class Adapter {

 public static <T>

 Addable<T> collectionAdapter(Collection<T> c) {

 return new AddableCollectionAdapter<T>(c);

 }

}

// To adapt a specific type, you can use inheritance.

// Make a SimpleQueue Addable using inheritance:

class AddableSimpleQueue<T>

extends SimpleQueue<T> implements Addable<T> {

 public void add(T item) { super.add(item); }

}

class Fill2Test {

 public static void main(String[] args) {

 // Adapt a Collection:

 List<Coffee> carrier = new ArrayList<Coffee>();

 Fill2.fill(

 new AddableCollectionAdapter<Coffee>(carrier),

 Coffee.class, 3);

 // Helper method captures the type:

 Fill2.fill(Adapter.collectionAdapter(carrier),

 Latte.class, 2);

 for(Coffee c: carrier)

 print(c);

 print("----------------------");

 // Use an adapted class:

 AddableSimpleQueue<Coffee> coffeeQueue =

 new AddableSimpleQueue<Coffee>();

 Fill2.fill(coffeeQueue, Mocha.class, 4);

 Fill2.fill(coffeeQueue, Latte.class, 1);

 for(Coffee c: coffeeQueue)

 print(c);

 }

} /* Output:

Coffee 0

Coffee 1

Coffee 2

Latte 3

Latte 4

Mocha 5

Mocha 6

732 Thinking in Java Bruce Eckel

Mocha 7

Mocha 8

Latte 9

*///:~

Fill2 doesn’t require a Collection as Fill did. Instead, it only needs

something that implements Addable, and Addable has been written just for

Fill—it is a manifestation of the latent type that I wanted the compiler to

make for me.

In this version, I’ve also added an overloaded fill() that takes a Generator

rather than a type token. The Generator is type-safe at compile time: The

compiler ensures that you pass it a proper Generator, so no exceptions can

be thrown.

The first adapter, AddableCollectionAdapter, works with the base type

Collection, which means that any implementation of Collection can be

used. This version simply stores the Collection reference and uses it to

implement add().

If you have a specific type rather than the base class of a hierarchy, you can

write somewhat less code when creating your adapter by using inheritance, as

you can see in AddableSimpleQueue.

In Fill2Test.main(), you can see the various types of adapters at work.

First, a Collection type is adapted with AddableCollectionAdapter. A

second version of this uses a generic helper method, and you can see how the

generic method captures the type so it doesn’t have to be explicitly written—

this is a convenient trick that produces more elegant code.

Next, the pre-adapted AddableSimpleQueue is used. Note that in both

cases the adapters allow the classes that previously didn’t implement

Addable to be used with Fill2.fill().

Using adapters like this would seem to compensate for the lack of latent

typing, and thus allow you to write genuinely generic code. However, it’s an

extra step and something that must be understood both by the library creator

and the library consumer, and the concept may not be grasped as readily by

less experienced programmers. By removing the extra step, latent typing

makes generic code easier to apply, and this is its value.

Exercise 41: (1) Modify Fill2.java to use the classes in typeinfo.pets
instead of the Coffee classes.

Generics 733

Using function objects as
strategies

This final example will create truly generic code using the adapter approach

described in the previous section. The example began as an attempt to create

a sum over a sequence of elements (of any type that can be summed), but

evolved into performing general operations using a functional style of

programming.

If you just look at the process of trying to add objects, you can see that this is

a case where we have common operations across classes, but the operations

are not represented in any base class that we can specify—sometimes you can

even use a ‘+’ operator, and other times there may be some kind of “add”

method. This is generally the situation that you encounter when trying to

write generic code, because you want the code to apply across multiple

classes—especially, as in this case, multiple classes that already exist and that

we have no ability to “fix.” Even if you were to narrow this case to subclasses

of Number, that superclass doesn’t include anything about “addability.”

The solution is to use the Strategy design pattern, which produces more

elegant code because it completely isolates “the thing that changes” inside of

a function object.10 A function object is an object that in some way behaves

like a function—typically, there’s one method of interest (in languages that

support operator overloading, you can make the call to this method look like

an ordinary method call). The value of function objects is that, unlike an

ordinary method, they can be passed around, and they can also have state

that persists across calls. Of course, you can accomplish something like this

with any method in a class, but (as with any design pattern) the function

object is primarily distinguished by its intent. Here the intent is to create

something that behaves like a single method that you can pass around; thus it

is closely coupled with—and sometimes indistinguishable from—the Strategy

design pattern.

10 You will sometimes see these called functors. I will use the term function object rather
than functor, as the term “functor” has a specific and different meaning in mathematics.

734 Thinking in Java Bruce Eckel

As I’ve found with a number of design patterns, the lines get kind of blurry

here: We are creating function objects which perform adaptation, and they

are being passed into methods to be used as strategies.

Taking this approach, I added the various kinds of generic methods that I had

originally set out to create, and more. Here is the result:

//: generics/Functional.java

import java.math.*;

import java.util.concurrent.atomic.*;

import java.util.*;

import static net.mindview.util.Print.*;

// Different types of function objects:

interface Combiner<T> { T combine(T x, T y); }

interface UnaryFunction<R,T> { R function(T x); }

interface Collector<T> extends UnaryFunction<T,T> {

 T result(); // Extract result of collecting parameter

}

interface UnaryPredicate<T> { boolean test(T x); }

public class Functional {

 // Calls the Combiner object on each element to combine

 // it with a running result, which is finally returned:

 public static <T> T

 reduce(Iterable<T> seq, Combiner<T> combiner) {

 Iterator<T> it = seq.iterator();

 if(it.hasNext()) {

 T result = it.next();

 while(it.hasNext())

 result = combiner.combine(result, it.next());

 return result;

 }

 // If seq is the empty list:

 return null; // Or throw exception

 }

 // Take a function object and call it on each object in

 // the list, ignoring the return value. The function

 // object may act as a collecting parameter, so it is

 // returned at the end.

 public static <T> Collector<T>

 forEach(Iterable<T> seq, Collector<T> func) {

 for(T t : seq)

 func.function(t);

Generics 735

 return func;

 }

 // Creates a list of results by calling a

 // function object for each object in the list:

 public static <R,T> List<R>

 transform(Iterable<T> seq, UnaryFunction<R,T> func) {

 List<R> result = new ArrayList<R>();

 for(T t : seq)

 result.add(func.function(t));

 return result;

 }

 // Applies a unary predicate to each item in a sequence,

 // and returns a list of items that produced "true":

 public static <T> List<T>

 filter(Iterable<T> seq, UnaryPredicate<T> pred) {

 List<T> result = new ArrayList<T>();

 for(T t : seq)

 if(pred.test(t))

 result.add(t);

 return result;

 }

 // To use the above generic methods, we need to create

 // function objects to adapt to our particular needs:

 static class IntegerAdder implements Combiner<Integer> {

 public Integer combine(Integer x, Integer y) {

 return x + y;

 }

 }

 static class

 IntegerSubtracter implements Combiner<Integer> {

 public Integer combine(Integer x, Integer y) {

 return x - y;

 }

 }

 static class

 BigDecimalAdder implements Combiner<BigDecimal> {

 public BigDecimal combine(BigDecimal x, BigDecimal y) {

 return x.add(y);

 }

 }

 static class

 BigIntegerAdder implements Combiner<BigInteger> {

 public BigInteger combine(BigInteger x, BigInteger y) {

 return x.add(y);

736 Thinking in Java Bruce Eckel

 }

 }

 static class

 AtomicLongAdder implements Combiner<AtomicLong> {

 public AtomicLong combine(AtomicLong x, AtomicLong y) {

 // Not clear whether this is meaningful:

 return new AtomicLong(x.addAndGet(y.get()));

 }

 }

 // We can even make a UnaryFunction with an "ulp"

 // (Units in the last place):

 static class BigDecimalUlp

 implements UnaryFunction<BigDecimal,BigDecimal> {

 public BigDecimal function(BigDecimal x) {

 return x.ulp();

 }

 }

 static class GreaterThan<T extends Comparable<T>>

 implements UnaryPredicate<T> {

 private T bound;

 public GreaterThan(T bound) { this.bound = bound; }

 public boolean test(T x) {

 return x.compareTo(bound) > 0;

 }

 }

 static class MultiplyingIntegerCollector

 implements Collector<Integer> {

 private Integer val = 1;

 public Integer function(Integer x) {

 val *= x;

 return val;

 }

 public Integer result() { return val; }

 }

 public static void main(String[] args) {

 // Generics, varargs & boxing working together:

 List<Integer> li = Arrays.asList(1, 2, 3, 4, 5, 6, 7);

 Integer result = reduce(li, new IntegerAdder());

 print(result);

 result = reduce(li, new IntegerSubtracter());

 print(result);

 print(filter(li, new GreaterThan<Integer>(4)));

Generics 737

 print(forEach(li,

 new MultiplyingIntegerCollector()).result());

 print(forEach(filter(li, new GreaterThan<Integer>(4)),

 new MultiplyingIntegerCollector()).result());

 MathContext mc = new MathContext(7);

 List<BigDecimal> lbd = Arrays.asList(

 new BigDecimal(1.1, mc), new BigDecimal(2.2, mc),

 new BigDecimal(3.3, mc), new BigDecimal(4.4, mc));

 BigDecimal rbd = reduce(lbd, new BigDecimalAdder());

 print(rbd);

 print(filter(lbd,

 new GreaterThan<BigDecimal>(new BigDecimal(3))));

 // Use the prime-generation facility of BigInteger:

 List<BigInteger> lbi = new ArrayList<BigInteger>();

 BigInteger bi = BigInteger.valueOf(11);

 for(int i = 0; i < 11; i++) {

 lbi.add(bi);

 bi = bi.nextProbablePrime();

 }

 print(lbi);

 BigInteger rbi = reduce(lbi, new BigIntegerAdder());

 print(rbi);

 // The sum of this list of primes is also prime:

 print(rbi.isProbablePrime(5));

 List<AtomicLong> lal = Arrays.asList(

 new AtomicLong(11), new AtomicLong(47),

 new AtomicLong(74), new AtomicLong(133));

 AtomicLong ral = reduce(lal, new AtomicLongAdder());

 print(ral);

 print(transform(lbd,new BigDecimalUlp()));

 }

} /* Output:

28

-26

[5, 6, 7]

5040

738 Thinking in Java Bruce Eckel

210

11.000000

[3.300000, 4.400000]

[11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

311

true

265

[0.000001, 0.000001, 0.000001, 0.000001]

*///:~

I begin by defining interfaces for different types of function objects. These

were created on demand, as I developed the different methods and

discovered the need for each. The Combiner class was suggested by an

anonymous contributor to one of the articles posted on my Web site. The

Combiner abstracts away the specific detail of trying to add two objects, and

just says that they are being combined somehow. As a result, you can see that

IntegerAdder and IntegerSubtracter can be types of Combiner.

A UnaryFunction takes a single argument and produces a result; the

argument and result need not be of the same type. A Collector is used as a

“collecting parameter,” and you can extract the result when you’re finished. A

UnaryPredicate produces a boolean result. There are other types of

function objects that can be defined, but these are enough to make the point.

The Functional class contains a number of generic methods that apply

function objects to sequences. reduce() applies the function in a

Combiner to each element of a sequence in order to produce a single result.

forEach() takes a Collector and applies its function to each element,

ignoring the result of each function call. This can be called just for the side

effect (which wouldn’t be a “functional” style of programming but can still be

useful), or the Collector can maintain internal state to become a collecting

parameter, as is the case in this example.

transform() produces a list by calling a UnaryFunction on each object in

the sequence and capturing the result.

Finally, filter() applies a UnaryPredicate to each object in a sequence and

stores the ones that produce true in a List, which it returns.

You can define additional generic functions. The C++ STL, for example, has

lots of them. The problem has also been solved in some open-source libraries,

such as the JGA (Generic Algorithms for Java).

Generics 739

In C++, latent typing takes care of matching up operations when you call

functions, but in Java we need to write the function objects to adapt the

generic methods to our particular needs. So the next part of the class shows

various different implementations of the function objects. Note, for example,

that IntegerAdder and BigDecimalAdder solve the same problem—

adding two objects—by calling the appropriate operations for their particular

type. So that’s the Adapter pattern and Strategy pattern combined.

In main(), you can see that in each method call, a sequence is passed along

with the appropriate function object. Also, a number of the expressions can

get fairly complex, such as:

forEach(filter(li, new GreaterThan(4)),

 new MultiplyingIntegerCollector()).result()

This produces a list by selecting all elements in li that are greater than 4, and

then applies the MultiplyingIntegerCollector() to the resulting list and

extracts the result(). I won’t explain the details of the rest of the code other

than to say that you can probably figure it out by walking through it.

Exercise 42: (5) Create two separate classes, with nothing in common.
Each class should hold a value, and at least have methods that produce that
value and perform a modification upon that value. Modify Functional.java
so that it performs functional operations on collections of your classes (these
operations do not have to be arithmetic as they are in Functional.java).

Summary: Is casting really so
bad?

Having worked to explain C++ templates since their inception, I have

probably been putting forward the following argument longer than most

people. Only recently have I stopped to wonder how often this argument is

valid—how many times does the problem I’m about to describe really slip

through the cracks?

The argument goes like this. One of the most compelling places to use a

generic type mechanism is with container classes such as the Lists, Sets,

Maps, etc. that you saw in Holding Your Objects and that you shall see more

of in the Containers in Depth chapter. Before Java SE5, when you put an

object into a container, it would be upcast to Object, so you’d lose the type

information. When you wanted to pull it back out to do something with it,

740 Thinking in Java Bruce Eckel

you had to cast it back down to the proper type. My example was a List of

Cat (a variation of this using apples and oranges is shown at the beginning of

the Holding Your Objects chapter). Without the Java SE5 generic version of

the container, you put Objects in and you get Objects out, so it’s easily

possible to put a Dog in a List of Cat.

However, pre-generic Java wouldn’t let you misuse the objects that you put

into a container. If you threw a Dog into a container of Cats and then tried to

treat everything in the container as a Cat, you’d get a RuntimeException

when you pulled the Dog reference out of the Cat container and tried to cast

it to a Cat. You’d still discover the problem, but you discovered it at run time

rather than compile time.

In previous editions of this book, I go on to say:

This is more than just an annoyance. It’s something that can create

difficult-to-find bugs. If one part (or several parts) of a program inserts

objects into a container, and you discover only in a separate part of the

program through an exception that a bad object was placed in the

container, then you must find out where the bad insert occurred.

However, upon further examination of the argument, I began to wonder

about it. First, how often does it happen? I don’t remember this kind of thing

ever happening to me, and when I asked people at conferences, I didn’t hear

anyone say that it had happened to them. Another book used an example of a

list called files that contained String objects—in this example it seemed

perfectly natural to add a File object to files, so a better name for the object

might have been fileNames. No matter how much type checking Java

provides, it’s still possible to write obscure programs, and a badly written

program that compiles is still a badly written program. Perhaps most people

use well-named containers such as “cats” that provide a visual warning to the

programmer who would try to add a non-Cat. And even if it did happen, how

long would such a thing really stay buried? It would seem that as soon as you

started running tests with real data, you’d see an exception pretty quickly.

One author even asserted that such a bug could “remain buried for years.”

But I do not recall any deluge of reports of people having great difficulty

finding “dog in cat list” bugs, or even producing them very often. Whereas

you will see in the Concurrency chapter that with threads, it is very easy and

common to have bugs that may appear extremely rarely, and only give you a

vague idea of what’s wrong. So is the “dog in cat list” argument really the

Generics 741

reason that this very significant and fairly complex feature has been added to

Java?

I believe the intent of the general-purpose language feature called “generics”

(not necessarily Java’s particular implementation of it) is expressiveness, not

just creating type-safe containers. Type-safe containers come as a side effect

of the ability to create more general-purpose code.

So even though the “dog in cat list” argument is often used to justify generics,

it is questionable. And as I asserted at the beginning of the chapter, I do not

believe that this is what the concept of generics is really about. Instead,

generics are as their name implies—a way to write more “generic” code that is

less constrained by the types it can work with, so a single piece of code can be

applied to more types. As you have seen in this chapter, it is fairly easy to

write truly generic “holder” classes (which the Java containers are), but to

write generic code that manipulates its generic types requires extra effort, on

the part of both the class creator and the class consumer, who must

understand the concept and implementation of the Adapter design pattern.

That extra effort reduces the ease of use of the feature, and may thus make it

less applicable in places where it might otherwise have added value.

Also note that because generics were back-engineered into Java instead of

being designed into the language from the start, some of the containers

cannot be made as robust as they should be. For example, look at Map, in

particular the methods containsKey(Object key) and get(Object key). If

these classes had been designed with pre-existing generics, these methods

would have used parameterized types instead of Object, thus affording the

compile-time checking that generics are supposed to provide. In C++ maps,

for example, the key type is always checked at compile time.

One thing is very clear: Introducing any kind of generic mechanism in a later

version of a language, after that language has come into general use, is a very,

very messy proposition, and one that cannot be accomplished without pain.

In C++, templates were introduced in the initial ISO version of the language

(although even that caused some pain because there was an earlier non-

template version in use before the first Standard C++ appeared), so in effect

templates were always a part of the language. In Java, generics were not

introduced until almost 10 years after the language was first released, so the

issues of migrating to generics are quite considerable, and have made a

significant impact on the design of generics. The result is that you, the

programmer, will suffer because of the lack of vision exhibited by the Java

742 Thinking in Java Bruce Eckel

designers when they created version 1.0. When Java was first being created,

the designers, of course, knew about C++ templates, and they even

considered including them in the language, but for one reason or another

decided to leave them out (indications are that they were in a hurry). As a

result, both the language and the programmers that use it will suffer. Only

time will show the ultimate impact that Java’s approach to generics will have

on the language.

Some languages, notably Nice (see http://nice.sourceforge.net; this language

generates Java bytecodes and works with existing Java libraries) and

NextGen (see http://japan.cs.rice.edu/nextgen) have incorporated cleaner

and less impactful approaches to parameterized types. It’s not impossible to

imagine such a language becoming a successor to Java, because it takes

exactly the approach that C++ did with C: Use what’s there and improve upon

it.

Further reading
The introductory document for generics is Generics in the Java

Programming Language, by Gilad Bracha (search the internet for that title

and author).

Angelika Langer’s Java Generics FAQs is a very helpful resource, located at

www.angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.html.

You can find out more about wildcards in Adding Wildcards to the Java

Programming Language, by Torgerson, Ernst, Hansen, von der Ahe, Bracha

and Gafter, located at www.jot.fm/issues/issue_2004_12/article5.

Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for sale from www.MindViewLLC.com.

 743

Arrays
At the end of the Initialization & Cleanup chapter, you
learned how to define and initialize an array.

The simple view of arrays is that you create and populate them, you select

elements from them using int indexes, and they don’t change their size. Most

of the time that’s all you need to know, but sometimes you need to perform

more sophisticated operations on arrays, and you may also need to evaluate

the use of an array vs. a more flexible container. This chapter will show you

how to think about arrays in more depth.

Why arrays are special
There are a number of other ways to hold objects, so what makes an array

special?

There are three issues that distinguish arrays from other types of containers:

efficiency, type, and the ability to hold primitives. The array is Java’s most

efficient way to store and randomly access a sequence of object references.

The array is a simple linear sequence, which makes element access fast. The

cost of this speed is that the size of an array object is fixed and cannot be

changed for the lifetime of that array. You might suggest an ArrayList (from

Holding Your Objects), which will automatically allocate more space, creating

a new one and moving all the references from the old one to the new one.

Although you should generally prefer an ArrayList to an array, this

flexibility has overhead, so an ArrayList is measurably less efficient than an

array.

Both arrays and containers guarantee that you can’t abuse them. Whether

you’re using an array or a container, you’ll get a RuntimeException if you

exceed the bounds, indicating a programmer error.

Before generics, the other container classes dealt with objects as if they had

no specific type. That is, they treated them as type Object, the root class of

all classes in Java. Arrays are superior to pre-generic containers because you

create an array to hold a specific type. This means that you get compile-time

type checking to prevent you from inserting the wrong type or mistaking the

744 Thinking in Java Bruce Eckel

type that you’re extracting. Of course, Java will prevent you from sending an

inappropriate message to an object at either compile time or run time. So it’s

not riskier one way or the other; it’s just nicer if the compiler points it out to

you, and there’s less likelihood that the end user will get surprised by an

exception.

An array can hold primitives, whereas a pre-generic container could not.

With generics, however, containers can specify and check the type of objects

they hold, and with autoboxing containers can act as if they are able to hold

primitives, since the conversion is automatic. Here’s an example that

compares arrays with generic containers:

//: arrays/ContainerComparison.java

import java.util.*;

import static net.mindview.util.Print.*;

class BerylliumSphere {

 private static long counter;

 private final long id = counter++;

 public String toString() { return "Sphere " + id; }

}

public class ContainerComparison {

 public static void main(String[] args) {

 BerylliumSphere[] spheres = new BerylliumSphere[10];

 for(int i = 0; i < 5; i++)

 spheres[i] = new BerylliumSphere();

 print(Arrays.toString(spheres));

 print(spheres[4]);

 List<BerylliumSphere> sphereList =

 new ArrayList<BerylliumSphere>();

 for(int i = 0; i < 5; i++)

 sphereList.add(new BerylliumSphere());

 print(sphereList);

 print(sphereList.get(4));

 int[] integers = { 0, 1, 2, 3, 4, 5 };

 print(Arrays.toString(integers));

 print(integers[4]);

 List<Integer> intList = new ArrayList<Integer>(

 Arrays.asList(0, 1, 2, 3, 4, 5));

 intList.add(97);

Arrays 745

 print(intList);

 print(intList.get(4));

 }

} /* Output:

[Sphere 0, Sphere 1, Sphere 2, Sphere 3, Sphere 4, null,

null, null, null, null]

Sphere 4

[Sphere 5, Sphere 6, Sphere 7, Sphere 8, Sphere 9]

Sphere 9

[0, 1, 2, 3, 4, 5]

4

[0, 1, 2, 3, 4, 5, 97]

4

*///:~

Both ways of holding objects are type-checked, and the only apparent

difference is that arrays use [] for accessing elements, and a List uses

methods such as add() and get(). The similarity between arrays and the

ArrayList is intentional, so that it’s conceptually easy to switch between the

two. But as you saw in the Holding Your Objects chapter, containers have

significantly more functionality than arrays.

With the advent of autoboxing, containers are nearly as easy to use for

primitives as arrays. The only remaining advantage to arrays is efficiency.

However, when you’re solving a more general problem, arrays can be too

restrictive, and in those cases you use a container class.

Arrays are first-class objects
Regardless of what type of array you’re working with, the array identifier is

actually a reference to a true object that’s created on the heap. This is the

object that holds the references to the other objects, and it can be created

either implicitly, as part of the array initialization syntax, or explicitly with a

new expression. Part of the array object (in fact, the only field or method you

can access) is the read-only length member that tells you how many

elements can be stored in that array object. The ‘[]’ syntax is the only other

access that you have to the array object.

The following example summarizes the various ways that an array can be

initialized, and how the array references can be assigned to different array

objects. It also shows that arrays of objects and arrays of primitives are

746 Thinking in Java Bruce Eckel

almost identical in their use. The only difference is that arrays of objects hold

references, but arrays of primitives hold the primitive values directly.

//: arrays/ArrayOptions.java

// Initialization & re-assignment of arrays.

import java.util.*;

import static net.mindview.util.Print.*;

public class ArrayOptions {

 public static void main(String[] args) {

 // Arrays of objects:

 BerylliumSphere[] a; // Local uninitialized variable

 BerylliumSphere[] b = new BerylliumSphere[5];

 // The references inside the array are

 // automatically initialized to null:

 print("b: " + Arrays.toString(b));

 BerylliumSphere[] c = new BerylliumSphere[4];

 for(int i = 0; i < c.length; i++)

 if(c[i] == null) // Can test for null reference

 c[i] = new BerylliumSphere();

 // Aggregate initialization:

 BerylliumSphere[] d = { new BerylliumSphere(),

 new BerylliumSphere(), new BerylliumSphere()

 };

 // Dynamic aggregate initialization:

 a = new BerylliumSphere[]{

 new BerylliumSphere(), new BerylliumSphere(),

 };

 // (Trailing comma is optional in both cases)

 print("a.length = " + a.length);

 print("b.length = " + b.length);

 print("c.length = " + c.length);

 print("d.length = " + d.length);

 a = d;

 print("a.length = " + a.length);

 // Arrays of primitives:

 int[] e; // Null reference

 int[] f = new int[5];

 // The primitives inside the array are

 // automatically initialized to zero:

 print("f: " + Arrays.toString(f));

 int[] g = new int[4];

 for(int i = 0; i < g.length; i++)

Arrays 747

 g[i] = i*i;

 int[] h = { 11, 47, 93 };

 // Compile error: variable e not initialized:

 //!print("e.length = " + e.length);

 print("f.length = " + f.length);

 print("g.length = " + g.length);

 print("h.length = " + h.length);

 e = h;

 print("e.length = " + e.length);

 e = new int[]{ 1, 2 };

 print("e.length = " + e.length);

 }

} /* Output:

b: [null, null, null, null, null]

a.length = 2

b.length = 5

c.length = 4

d.length = 3

a.length = 3

f: [0, 0, 0, 0, 0]

f.length = 5

g.length = 4

h.length = 3

e.length = 3

e.length = 2

*///:~

The array a is an uninitialized local variable, and the compiler prevents you

from doing anything with this reference until you’ve properly initialized it.

The array b is initialized to point to an array of BerylliumSphere

references, but no actual BerylliumSphere objects are ever placed in that

array. However, you can still ask what the size of the array is, since b is

pointing to a legitimate object. This brings up a slight drawback: You can’t

find out how many elements are actually in the array, since length tells you

only how many elements can be placed in the array; that is, the size of the

array object, not the number of elements it actually holds. However, when an

array object is created, its references are automatically initialized to null, so

you can see whether a particular array slot has an object in it by checking to

see whether it’s null. Similarly, an array of primitives is automatically

initialized to zero for numeric types, (char)0 for char, and false for

boolean.

748 Thinking in Java Bruce Eckel

Array c shows the creation of the array object followed by the assignment of

BerylliumSphere objects to all the slots in the array. Array d shows the

“aggregate initialization” syntax that causes the array object to be created

(implicitly with new on the heap, just like for array c) and initialized with

BerylliumSphere objects, all in one statement.

The next array initialization can be thought of as a “dynamic aggregate

initialization.” The aggregate initialization used by d must be used at the

point of d’s definition, but with the second syntax you can create and

initialize an array object anywhere. For example, suppose hide() is a

method that takes an array of BerylliumSphere objects. You could call it by

saying:

hide(d);

but you can also dynamically create the array you want to pass as the

argument:

hide(new BerylliumSphere[]{ new BerylliumSphere(),

 new BerylliumSphere() });

In many situations this syntax provides a more convenient way to write code.

The expression:

a = d;

shows how you can take a reference that’s attached to one array object and

assign it to another array object, just as you can do with any other type of

object reference. Now both a and d are pointing to the same array object on

the heap.

The second part of ArrayOptions.java shows that primitive arrays work

just like object arrays except that primitive arrays hold the primitive values

directly.

Exercise 1: (2) Create a method that takes an array of BerylliumSphere
as an argument. Call the method, creating the argument dynamically.
Demonstrate that ordinary aggregate array initialization doesn’t work in this
case. Discover the only situations where ordinary aggregate array
initialization works, and where dynamic aggregate initialization is redundant.

Arrays 749

Returning an array
Suppose you’re writing a method and you don’t want to return just one thing,

but a whole bunch of things. Languages like C and C++ make this difficult

because you can’t just return an array, only a pointer to an array. This

introduces problems because it becomes messy to control the lifetime of the

array, which leads to memory leaks.

In Java, you just return the array. You never worry about responsibility for

that array—it will be around as long as you need it, and the garbage collector

will clean it up when you’re done.

As an example, consider returning an array of String:

//: arrays/IceCream.java

// Returning arrays from methods.

import java.util.*;

public class IceCream {

 private static Random rand = new Random(47);

 static final String[] FLAVORS = {

 "Chocolate", "Strawberry", "Vanilla Fudge Swirl",

 "Mint Chip", "Mocha Almond Fudge", "Rum Raisin",

 "Praline Cream", "Mud Pie"

 };

 public static String[] flavorSet(int n) {

 if(n > FLAVORS.length)

 throw new IllegalArgumentException("Set too big");

 String[] results = new String[n];

 boolean[] picked = new boolean[FLAVORS.length];

 for(int i = 0; i < n; i++) {

 int t;

 do

 t = rand.nextInt(FLAVORS.length);

 while(picked[t]);

 results[i] = FLAVORS[t];

 picked[t] = true;

 }

 return results;

 }

 public static void main(String[] args) {

 for(int i = 0; i < 7; i++)

 System.out.println(Arrays.toString(flavorSet(3)));

 }

750 Thinking in Java Bruce Eckel

} /* Output:

[Rum Raisin, Mint Chip, Mocha Almond Fudge]

[Chocolate, Strawberry, Mocha Almond Fudge]

[Strawberry, Mint Chip, Mocha Almond Fudge]

[Rum Raisin, Vanilla Fudge Swirl, Mud Pie]

[Vanilla Fudge Swirl, Chocolate, Mocha Almond Fudge]

[Praline Cream, Strawberry, Mocha Almond Fudge]

[Mocha Almond Fudge, Strawberry, Mint Chip]

*///:~

The method flavorSet() creates an array of String called results. The size

of this array is n, determined by the argument that you pass into the method.

Then it proceeds to choose flavors randomly from the array FLAVORS and

place them into results, which it returns. Returning an array is just like

returning any other object—it’s a reference. It’s not important that the array

was created within flavorSet(), or that the array was created anyplace else,

for that matter. The garbage collector takes care of cleaning up the array

when you’re done with it, and the array will persist for as long as you need it.

As an aside, notice that when flavorSet() chooses flavors randomly, it

ensures that a particular choice hasn’t already been selected. This is

performed in a do loop that keeps making random choices until it finds one

not already in the picked array. (Of course, a String comparison also could

have been performed to see if the random choice was already in the results

array.) If it’s successful, it adds the entry and finds the next one (i gets

incremented).

You can see from the output that flavorSet() chooses the flavors in a

random order each time.

Exercise 2: (1) Write a method that takes an int argument and returns an
array of that size, filled with BerylliumSphere objects.

Multidimensional arrays
You can easily create multidimensional arrays. For a multidimensional array

of primitives, you delimit each vector in the array by using curly braces:

//: arrays/MultidimensionalPrimitiveArray.java

// Creating multidimensional arrays.

import java.util.*;

public class MultidimensionalPrimitiveArray {

Arrays 751

 public static void main(String[] args) {

 int[][] a = {

 { 1, 2, 3, },

 { 4, 5, 6, },

 };

 System.out.println(Arrays.deepToString(a));

 }

} /* Output:

[[1, 2, 3], [4, 5, 6]]

*///:~

Each nested set of curly braces moves you into the next level of the array.

This example uses the Java SE5 Arrays.deepToString() method, which

turns multidimensional arrays into Strings, as you can see from the output.

You can also allocate an array using new. Here’s a three-dimensional array

allocated in a new expression:

//: arrays/ThreeDWithNew.java

import java.util.*;

public class ThreeDWithNew {

 public static void main(String[] args) {

 // 3-D array with fixed length:

 int[][][] a = new int[2][2][4];

 System.out.println(Arrays.deepToString(a));

 }

} /* Output:

[[[0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0]]]

*///:~

You can see that primitive array values are automatically initialized if you

don’t give them an explicit initialization value. Arrays of objects are initialized

to null.

Each vector in the arrays that make up the matrix can be of any length (this is

called a ragged array):

//: arrays/RaggedArray.java

import java.util.*;

public class RaggedArray {

 public static void main(String[] args) {

 Random rand = new Random(47);

752 Thinking in Java Bruce Eckel

 // 3-D array with varied-length vectors:

 int[][][] a = new int[rand.nextInt(7)][][];

 for(int i = 0; i < a.length; i++) {

 a[i] = new int[rand.nextInt(5)][];

 for(int j = 0; j < a[i].length; j++)

 a[i][j] = new int[rand.nextInt(5)];

 }

 System.out.println(Arrays.deepToString(a));

 }

} /* Output:

[[], [[0], [0], [0, 0, 0, 0]], [[], [0, 0], [0, 0]], [[0, 0,

0], [0], [0, 0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0], []],

[[0], [], [0]]]

*///:~

The first new creates an array with a random-length first element and the

rest undetermined. The second new inside the for loop fills out the elements

but leaves the third index undetermined until you hit the third new.

You can deal with arrays of non-primitive objects in a similar fashion. Here,

you can see how to collect many new expressions with curly braces:

//: arrays/MultidimensionalObjectArrays.java

import java.util.*;

public class MultidimensionalObjectArrays {

 public static void main(String[] args) {

 BerylliumSphere[][] spheres = {

 { new BerylliumSphere(), new BerylliumSphere() },

 { new BerylliumSphere(), new BerylliumSphere(),

 new BerylliumSphere(), new BerylliumSphere() },

 { new BerylliumSphere(), new BerylliumSphere(),

 new BerylliumSphere(), new BerylliumSphere(),

 new BerylliumSphere(), new BerylliumSphere(),

 new BerylliumSphere(), new BerylliumSphere() },

 };

 System.out.println(Arrays.deepToString(spheres));

 }

} /* Output:

[[Sphere 0, Sphere 1], [Sphere 2, Sphere 3, Sphere 4, Sphere

5], [Sphere 6, Sphere 7, Sphere 8, Sphere 9, Sphere 10,

Sphere 11, Sphere 12, Sphere 13]]

*///:~

Arrays 753

You can see that spheres is another ragged array, where the length of each

list of objects is different.

Autoboxing also works with array initializers:

//: arrays/AutoboxingArrays.java

import java.util.*;

public class AutoboxingArrays {

 public static void main(String[] args) {

 Integer[][] a = { // Autoboxing:

 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 },

 { 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 },

 { 51, 52, 53, 54, 55, 56, 57, 58, 59, 60 },

 { 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 },

 };

 System.out.println(Arrays.deepToString(a));

 }

} /* Output:

[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [21, 22, 23, 24, 25, 26,

27, 28, 29, 30], [51, 52, 53, 54, 55, 56, 57, 58, 59, 60],

[71, 72, 73, 74, 75, 76, 77, 78, 79, 80]]

*///:~

Here’s how an array of non-primitive objects can be built up piece-by-piece:

//: arrays/AssemblingMultidimensionalArrays.java

// Creating multidimensional arrays.

import java.util.*;

public class AssemblingMultidimensionalArrays {

 public static void main(String[] args) {

 Integer[][] a;

 a = new Integer[3][];

 for(int i = 0; i < a.length; i++) {

 a[i] = new Integer[3];

 for(int j = 0; j < a[i].length; j++)

 a[i][j] = i * j; // Autoboxing

 }

 System.out.println(Arrays.deepToString(a));

 }

} /* Output:

[[0, 0, 0], [0, 1, 2], [0, 2, 4]]

*///:~

754 Thinking in Java Bruce Eckel

The i*j is only there to put an interesting value into the Integer.

The Arrays.deepToString() method works with both primitive arrays and

object arrays:

//: arrays/MultiDimWrapperArray.java

// Multidimensional arrays of "wrapper" objects.

import java.util.*;

public class MultiDimWrapperArray {

 public static void main(String[] args) {

 Integer[][] a1 = { // Autoboxing

 { 1, 2, 3, },

 { 4, 5, 6, },

 };

 Double[][][] a2 = { // Autoboxing

 { { 1.1, 2.2 }, { 3.3, 4.4 } },

 { { 5.5, 6.6 }, { 7.7, 8.8 } },

 { { 9.9, 1.2 }, { 2.3, 3.4 } },

 };

 String[][] a3 = {

 { "The", "Quick", "Sly", "Fox" },

 { "Jumped", "Over" },

 { "The", "Lazy", "Brown", "Dog", "and", "friend" },

 };

 System.out.println("a1: " + Arrays.deepToString(a1));

 System.out.println("a2: " + Arrays.deepToString(a2));

 System.out.println("a3: " + Arrays.deepToString(a3));

 }

} /* Output:

a1: [[1, 2, 3], [4, 5, 6]]

a2: [[[1.1, 2.2], [3.3, 4.4]], [[5.5, 6.6], [7.7, 8.8]],

[[9.9, 1.2], [2.3, 3.4]]]

a3: [[The, Quick, Sly, Fox], [Jumped, Over], [The, Lazy,

Brown, Dog, and, friend]]

*///:~

Again, in the Integer and Double arrays, Java SE5 autoboxing creates the

wrapper objects for you.

Exercise 3: (4) Write a method that creates and initializes a two-
dimensional array of double. The size of the array is determined by the
arguments of the method, and the initialization values are a range
determined by beginning and ending values that are also arguments of the
method. Create a second method that will print the array generated by the

Arrays 755

first method. In main() test the methods by creating and printing several
different sizes of arrays.

Exercise 4: (2) Repeat the previous exercise for a three-dimensional
array.

Exercise 5: (1) Demonstrate that multidimensional arrays of non-
primitive types are automatically initialized to null.

Exercise 6: (1) Write a method that takes two int arguments, indicating
the two sizes of a 2-D array. The method should create and fill a 2-D array of
BerylliumSphere according to the size arguments.

Exercise 7: (1) Repeat the previous exercise for a 3-D array.

Arrays and generics
In general, arrays and generics do not mix well. You cannot instantiate arrays

of parameterized types:

Peel<Banana>[] peels = new Peel<Banana>[10]; // Illegal

Erasure removes the parameter type information, and arrays must know the

exact type that they hold, in order to enforce type safety.

However, you can parameterize the type of the array itself:

//: arrays/ParameterizedArrayType.java

class ClassParameter<T> {

 public T[] f(T[] arg) { return arg; }

}

class MethodParameter {

 public static <T> T[] f(T[] arg) { return arg; }

}

public class ParameterizedArrayType {

 public static void main(String[] args) {

 Integer[] ints = { 1, 2, 3, 4, 5 };

 Double[] doubles = { 1.1, 2.2, 3.3, 4.4, 5.5 };

 Integer[] ints2 =

 new ClassParameter<Integer>().f(ints);

 Double[] doubles2 =

 new ClassParameter<Double>().f(doubles);

756 Thinking in Java Bruce Eckel

 ints2 = MethodParameter.f(ints);

 doubles2 = MethodParameter.f(doubles);

 }

} ///:~

Note the convenience of using a parameterized method instead of a

parameterized class: You don’t have to instantiate a class with a parameter

for each different type you need to apply it to, and you can make it static. Of

course, you can’t always choose to use a parameterized method instead of a

parameterized class, but it can be preferable.

As it turns out, it’s not precisely correct to say that you cannot create arrays of

generic types. True, the compiler won’t let you instantiate an array of a

generic type. However, it will let you create a reference to such an array. For

example:

 List<String>[] ls;

This passes through the compiler without complaint. And although you

cannot create an actual array object that holds generics, you can create an

array of the non-generified type and cast it:

//: arrays/ArrayOfGenerics.java

// It is possible to create arrays of generics.

import java.util.*;

public class ArrayOfGenerics {

 @SuppressWarnings("unchecked")

 public static void main(String[] args) {

 List<String>[] ls;

 List[] la = new List[10];

 ls = (List<String>[])la; // "Unchecked" warning

 ls[0] = new ArrayList<String>();

 // Compile-time checking produces an error:

 //! ls[1] = new ArrayList<Integer>();

 // The problem: List<String> is a subtype of Object

 Object[] objects = ls; // So assignment is OK

 // Compiles and runs without complaint:

 objects[1] = new ArrayList<Integer>();

 // However, if your needs are straightforward it is

 // possible to create an array of generics, albeit

 // with an "unchecked" warning:

Arrays 757

 List<BerylliumSphere>[] spheres =

 (List<BerylliumSphere>[])new List[10];

 for(int i = 0; i < spheres.length; i++)

 spheres[i] = new ArrayList<BerylliumSphere>();

 }

} ///:~

Once you have a reference to a List<String>[], you can see that you get

some compile-time checking. The problem is that arrays are covariant, so a

List<String>[] is also an Object[], and you can use this to assign an

ArrayList<Integer> into your array, with no error at either compile time

or run time.

If you know you’re not going to upcast and your needs are relatively simple,

however, it is possible to create an array of generics, which will provide basic

compile-time type checking. However, a generic container will virtually

always be a better choice than an array of generics.

In general you’ll find that generics are effective at the boundaries of a class or

method. In the interiors, erasure usually makes generics unusable. So you

cannot, for example, create an array of a generic type:

//: arrays/ArrayOfGenericType.java

// Arrays of generic types won't compile.

public class ArrayOfGenericType<T> {

 T[] array; // OK

 @SuppressWarnings("unchecked")

 public ArrayOfGenericType(int size) {

 //! array = new T[size]; // Illegal

 array = (T[])new Object[size]; // "unchecked" Warning

 }

 // Illegal:

 //! public <U> U[] makeArray() { return new U[10]; }

} ///:~

Erasure gets in the way again—this example attempts to create arrays of types

that have been erased, and are thus unknown types. Notice that you can

create an array of Object, and cast it, but without the

@SuppressWarnings annotation you get an “unchecked” warning at

compile time because the array doesn’t really hold or dynamically check for

type T. That is, if I create a String[], Java will enforce at both compile time

758 Thinking in Java Bruce Eckel

and run time that I can only place String objects in that array. However, if I

create an Object[], I can put anything into that array except primitive types.

Exercise 8: (1) Demonstrate the assertions in the previous paragraph.

Exercise 9: (3) Create the classes necessary for the Peel<Banana>
example and show that the compiler doesn’t accept it. Fix the problem using
an ArrayList.

Exercise 10: (2) Modify ArrayOfGenerics.java to use containers
instead of arrays. Show that you can eliminate the compile-time warnings.

Creating test data
When experimenting with arrays, and with programs in general, it’s helpful

to be able to easily generate arrays filled with test data. The tools in this

section will fill an array with values or objects.

Arrays.fill()
The Java standard library Arrays class has a rather trivial fill() method: It

only duplicates a single value into each location, or in the case of objects,

copies the same reference into each location. Here’s an example:

//: arrays/FillingArrays.java

// Using Arrays.fill()

import java.util.*;

import static net.mindview.util.Print.*;

public class FillingArrays {

 public static void main(String[] args) {

 int size = 6;

 boolean[] a1 = new boolean[size];

 byte[] a2 = new byte[size];

 char[] a3 = new char[size];

 short[] a4 = new short[size];

 int[] a5 = new int[size];

 long[] a6 = new long[size];

 float[] a7 = new float[size];

 double[] a8 = new double[size];

 String[] a9 = new String[size];

 Arrays.fill(a1, true);

 print("a1 = " + Arrays.toString(a1));

 Arrays.fill(a2, (byte)11);

Arrays 759

 print("a2 = " + Arrays.toString(a2));

 Arrays.fill(a3, 'x');

 print("a3 = " + Arrays.toString(a3));

 Arrays.fill(a4, (short)17);

 print("a4 = " + Arrays.toString(a4));

 Arrays.fill(a5, 19);

 print("a5 = " + Arrays.toString(a5));

 Arrays.fill(a6, 23);

 print("a6 = " + Arrays.toString(a6));

 Arrays.fill(a7, 29);

 print("a7 = " + Arrays.toString(a7));

 Arrays.fill(a8, 47);

 print("a8 = " + Arrays.toString(a8));

 Arrays.fill(a9, "Hello");

 print("a9 = " + Arrays.toString(a9));

 // Manipulating ranges:

 Arrays.fill(a9, 3, 5, "World");

 print("a9 = " + Arrays.toString(a9));

 }

} /* Output:

a1 = [true, true, true, true, true, true]

a2 = [11, 11, 11, 11, 11, 11]

a3 = [x, x, x, x, x, x]

a4 = [17, 17, 17, 17, 17, 17]

a5 = [19, 19, 19, 19, 19, 19]

a6 = [23, 23, 23, 23, 23, 23]

a7 = [29.0, 29.0, 29.0, 29.0, 29.0, 29.0]

a8 = [47.0, 47.0, 47.0, 47.0, 47.0, 47.0]

a9 = [Hello, Hello, Hello, Hello, Hello, Hello]

a9 = [Hello, Hello, Hello, World, World, Hello]

*///:~

You can either fill the entire array or, as the last two statements show, fill a

range of elements. But since you can only call Arrays.fill() with a single

data value, the results are not especially useful.

Data Generators
To create more interesting arrays of data, but in a flexible fashion, we’ll use

the Generator concept that was introduced in the Generics chapter. If a tool

uses a Generator, you can produce any kind of data via your choice of

760 Thinking in Java Bruce Eckel

Generator (this is an example of the Strategy design pattern—each

different Generator represents a different strategy1).

This section will supply some Generators, and as you’ve seen before, you

can easily define your own.

First, here’s a basic set of counting generators for all primitive wrapper types,

and for Strings. The generator classes are nested within the

CountingGenerator class so that they may use the same name as the object

types they are generating; for example, a generator that creates Integer

objects would be created with the expression

new CountingGenerator.Integer():

//: net/mindview/util/CountingGenerator.java

// Simple generator implementations.

package net.mindview.util;

public class CountingGenerator {

 public static class

 Boolean implements Generator<java.lang.Boolean> {

 private boolean value = false;

 public java.lang.Boolean next() {

 value = !value; // Just flips back and forth

 return value;

 }

 }

 public static class

 Byte implements Generator<java.lang.Byte> {

 private byte value = 0;

 public java.lang.Byte next() { return value++; }

 }

 static char[] chars = ("abcdefghijklmnopqrstuvwxyz" +

 "ABCDEFGHIJKLMNOPQRSTUVWXYZ").toCharArray();

 public static class

 Character implements Generator<java.lang.Character> {

 int index = -1;

 public java.lang.Character next() {

 index = (index + 1) % chars.length;

1 Although this is a place where things are a bit fuzzy. You could also make an argument
that a Generator represents the Command pattern. However, I think that the task is to
fill an array, and the Generator fulfills part of that task, so it’s more strategy-like than
command-like.

Arrays 761

 return chars[index];

 }

 }

 public static class

 String implements Generator<java.lang.String> {

 private int length = 7;

 Generator<java.lang.Character> cg = new Character();

 public String() {}

 public String(int length) { this.length = length; }

 public java.lang.String next() {

 char[] buf = new char[length];

 for(int i = 0; i < length; i++)

 buf[i] = cg.next();

 return new java.lang.String(buf);

 }

 }

 public static class

 Short implements Generator<java.lang.Short> {

 private short value = 0;

 public java.lang.Short next() { return value++; }

 }

 public static class

 Integer implements Generator<java.lang.Integer> {

 private int value = 0;

 public java.lang.Integer next() { return value++; }

 }

 public static class

 Long implements Generator<java.lang.Long> {

 private long value = 0;

 public java.lang.Long next() { return value++; }

 }

 public static class

 Float implements Generator<java.lang.Float> {

 private float value = 0;

 public java.lang.Float next() {

 float result = value;

 value += 1.0;

 return result;

 }

 }

 public static class

 Double implements Generator<java.lang.Double> {

 private double value = 0.0;

 public java.lang.Double next() {

762 Thinking in Java Bruce Eckel

 double result = value;

 value += 1.0;

 return result;

 }

 }

} ///:~

Each class implements some meaning of “counting.” In the case of

CountingGenerator.Character, this is just the upper and lowercase

letters repeated over and over. The CountingGenerator.String class uses

CountingGenerator.Character to fill an array of characters, which is then

turned into a String. The size of the array is determined by the constructor

argument. Notice that CountingGenerator.String uses a basic

Generator<java.lang.Character> instead of a specific reference to

CountingGenerator.Character. Later, this generator can be replaced to

produce RandomGenerator.String in RandomGenerator.java.

Here’s a test tool that uses reflection with the nested Generator idiom, so

that it can be used to test any set of Generators that follow this form:

//: arrays/GeneratorsTest.java

import net.mindview.util.*;

public class GeneratorsTest {

 public static int size = 10;

 public static void test(Class<?> surroundingClass) {

 for(Class<?> type : surroundingClass.getClasses()) {

 System.out.print(type.getSimpleName() + ": ");

 try {

 Generator<?> g = (Generator<?>)type.newInstance();

 for(int i = 0; i < size; i++)

 System.out.printf(g.next() + " ");

 System.out.println();

 } catch(Exception e) {

 throw new RuntimeException(e);

 }

 }

 }

 public static void main(String[] args) {

 test(CountingGenerator.class);

 }

} /* Output:

Double: 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Float: 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Arrays 763

Long: 0 1 2 3 4 5 6 7 8 9

Integer: 0 1 2 3 4 5 6 7 8 9

Short: 0 1 2 3 4 5 6 7 8 9

String: abcdefg hijklmn opqrstu vwxyzAB CDEFGHI JKLMNOP

QRSTUVW XYZabcd efghijk lmnopqr

Character: a b c d e f g h i j

Byte: 0 1 2 3 4 5 6 7 8 9

Boolean: true false true false true false true false true

false

*///:~

This assumes that the class under test contains a set of nested Generator

objects, each of which has a default constructor (one without arguments). The

reflection method getClasses() produces all the nested classes. The test()

method then creates an instance of each of these generators, and prints the

result produced by calling next() ten times.

Here is a set of Generators that use the random number generator. Because

the Random constructor is initialized with a constant value, the output is

repeatable each time you run a program using one of these Generators:

//: net/mindview/util/RandomGenerator.java

// Generators that produce random values.

package net.mindview.util;

import java.util.*;

public class RandomGenerator {

 private static Random r = new Random(47);

 public static class

 Boolean implements Generator<java.lang.Boolean> {

 public java.lang.Boolean next() {

 return r.nextBoolean();

 }

 }

 public static class

 Byte implements Generator<java.lang.Byte> {

 public java.lang.Byte next() {

 return (byte)r.nextInt();

 }

 }

 public static class

 Character implements Generator<java.lang.Character> {

 public java.lang.Character next() {

 return CountingGenerator.chars[

764 Thinking in Java Bruce Eckel

 r.nextInt(CountingGenerator.chars.length)];

 }

 }

 public static class

 String extends CountingGenerator.String {

 // Plug in the random Character generator:

 { cg = new Character(); } // Instance initializer

 public String() {}

 public String(int length) { super(length); }

 }

 public static class

 Short implements Generator<java.lang.Short> {

 public java.lang.Short next() {

 return (short)r.nextInt();

 }

 }

 public static class

 Integer implements Generator<java.lang.Integer> {

 private int mod = 10000;

 public Integer() {}

 public Integer(int modulo) { mod = modulo; }

 public java.lang.Integer next() {

 return r.nextInt(mod);

 }

 }

 public static class

 Long implements Generator<java.lang.Long> {

 private int mod = 10000;

 public Long() {}

 public Long(int modulo) { mod = modulo; }

 public java.lang.Long next() {

 return new java.lang.Long(r.nextInt(mod));

 }

 }

 public static class

 Float implements Generator<java.lang.Float> {

 public java.lang.Float next() {

 // Trim all but the first two decimal places:

 int trimmed = Math.round(r.nextFloat() * 100);

 return ((float)trimmed) / 100;

 }

 }

 public static class

 Double implements Generator<java.lang.Double> {

Arrays 765

 public java.lang.Double next() {

 long trimmed = Math.round(r.nextDouble() * 100);

 return ((double)trimmed) / 100;

 }

 }

} ///:~

You can see that RandomGenerator.String inherits from

CountingGenerator.String and simply plugs in the new Character

generator.

To generate numbers that aren’t too large, RandomGenerator.Integer

defaults to a modulus of 10,000, but the overloaded constructor allows you to

choose a smaller value. The same approach is used for

RandomGenerator.Long. For the Float and Double Generators, the

values after the decimal point are trimmed.

We can reuse GeneratorsTest to test RandomGenerator:

//: arrays/RandomGeneratorsTest.java

import net.mindview.util.*;

public class RandomGeneratorsTest {

 public static void main(String[] args) {

 GeneratorsTest.test(RandomGenerator.class);

 }

} /* Output:

Double: 0.73 0.53 0.16 0.19 0.52 0.27 0.26 0.05 0.8 0.76

Float: 0.53 0.16 0.53 0.4 0.49 0.25 0.8 0.11 0.02 0.8

Long: 7674 8804 8950 7826 4322 896 8033 2984 2344 5810

Integer: 8303 3141 7138 6012 9966 8689 7185 6992 5746 3976

Short: 3358 20592 284 26791 12834 -8092 13656 29324 -1423

5327

String: bkInaMe sbtWHkj UrUkZPg wsqPzDy CyRFJQA HxxHvHq

XumcXZJ oogoYWM NvqeuTp nXsgqia

Character: x x E A J J m z M s

Byte: -60 -17 55 -14 -5 115 39 -37 79 115

Boolean: false true false false true true true true true

true

*///:~

You can change the number of values produced by changing the

GeneratorsTest.size value, which is public.

766 Thinking in Java Bruce Eckel

Creating arrays from Generators
In order to take a Generator and produce an array, we need two conversion

tools. The first one uses any Generator to produce an array of Object

subtypes. To cope with the problem of primitives, the second tool takes any

array of primitive wrapper types and produces the associated array of

primitives.

The first tool has two options, represented by an overloaded static method,

array(). The first version of the method takes an existing array and fills it

using a Generator, and the second version takes a Class object, a

Generator, and the desired number of elements, and creates a new array,

again filling it using the Generator. Notice that this tool only produces

arrays of Object subtypes and cannot create primitive arrays:

//: net/mindview/util/Generated.java

package net.mindview.util;

public class Generated {

 // Fill an existing array:

 public static <T> T[] array(T[] a, Generator<T> gen) {

 return new CollectionData<T>(gen, a.length).toArray(a);

 }

 // Create a new array:

 @SuppressWarnings("unchecked")

 public static <T> T[] array(Class<T> type,

 Generator<T> gen, int size) {

 T[] a =

 (T[])java.lang.reflect.Array.newInstance(type, size);

 return new CollectionData<T>(gen, size).toArray(a);

 }

} ///:~

The CollectionData class will be defined in the Containers in Depth

chapter. It creates a Collection object filled with elements produced by the

Generator gen. The number of elements is determined by the second

constructor argument. All Collection subtypes have a toArray() method

that will fill the argument array with the elements from the Collection.

The second method uses reflection to dynamically create a new array of the

appropriate type and size. This is then filled using the same technique as the

first method.

Arrays 767

We can test Generated using one of the CountingGenerator classes

defined in the previous section:

//: arrays/TestGenerated.java

import java.util.*;

import net.mindview.util.*;

public class TestGenerated {

 public static void main(String[] args) {

 Integer[] a = { 9, 8, 7, 6 };

 System.out.println(Arrays.toString(a));

 a = Generated.array(a,new CountingGenerator.Integer());

 System.out.println(Arrays.toString(a));

 Integer[] b = Generated.array(Integer.class,

 new CountingGenerator.Integer(), 15);

 System.out.println(Arrays.toString(b));

 }

} /* Output:

[9, 8, 7, 6]

[0, 1, 2, 3]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

*///:~

Even though the array a is initialized, those values are overwritten by passing

it through Generated.array(), which replaces the values (but leaves the

original array in place). The initialization of b shows how you can create a

filled array from scratch.

Generics don’t work with primitives, and we want to use the generators to fill

primitive arrays. To solve the problem, we create a converter that takes any

array of wrapper objects and converts it to an array of the associated

primitive types. Without this tool, we would have to create special case

generators for all the primitives.

//: net/mindview/util/ConvertTo.java

package net.mindview.util;

public class ConvertTo {

 public static boolean[] primitive(Boolean[] in) {

 boolean[] result = new boolean[in.length];

 for(int i = 0; i < in.length; i++)

 result[i] = in[i]; // Autounboxing

 return result;

 }

768 Thinking in Java Bruce Eckel

 public static char[] primitive(Character[] in) {

 char[] result = new char[in.length];

 for(int i = 0; i < in.length; i++)

 result[i] = in[i];

 return result;

 }

 public static byte[] primitive(Byte[] in) {

 byte[] result = new byte[in.length];

 for(int i = 0; i < in.length; i++)

 result[i] = in[i];

 return result;

 }

 public static short[] primitive(Short[] in) {

 short[] result = new short[in.length];

 for(int i = 0; i < in.length; i++)

 result[i] = in[i];

 return result;

 }

 public static int[] primitive(Integer[] in) {

 int[] result = new int[in.length];

 for(int i = 0; i < in.length; i++)

 result[i] = in[i];

 return result;

 }

 public static long[] primitive(Long[] in) {

 long[] result = new long[in.length];

 for(int i = 0; i < in.length; i++)

 result[i] = in[i];

 return result;

 }

 public static float[] primitive(Float[] in) {

 float[] result = new float[in.length];

 for(int i = 0; i < in.length; i++)

 result[i] = in[i];

 return result;

 }

 public static double[] primitive(Double[] in) {

 double[] result = new double[in.length];

 for(int i = 0; i < in.length; i++)

 result[i] = in[i];

 return result;

 }

} ///:~

Arrays 769

Each version of primitive() creates an appropriate primitive array of the

correct length, then copies the elements from the in array of wrapper types.

Notice that autounboxing takes place in the expression:

result[i] = in[i];

Here’s an example that shows how you can use ConvertTo with both

versions of Generated.array():

//: arrays/PrimitiveConversionDemonstration.java

import java.util.*;

import net.mindview.util.*;

public class PrimitiveConversionDemonstration {

 public static void main(String[] args) {

 Integer[] a = Generated.array(Integer.class,

 new CountingGenerator.Integer(), 15);

 int[] b = ConvertTo.primitive(a);

 System.out.println(Arrays.toString(b));

 boolean[] c = ConvertTo.primitive(

 Generated.array(Boolean.class,

 new CountingGenerator.Boolean(), 7));

 System.out.println(Arrays.toString(c));

 }

} /* Output:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

[true, false, true, false, true, false, true]

*///:~

Finally, here’s a program that tests the array generation tools using

RandomGenerator classes:

//: arrays/TestArrayGeneration.java

// Test the tools that use generators to fill arrays.

import java.util.*;

import net.mindview.util.*;

import static net.mindview.util.Print.*;

public class TestArrayGeneration {

 public static void main(String[] args) {

 int size = 6;

 boolean[] a1 = ConvertTo.primitive(Generated.array(

 Boolean.class, new RandomGenerator.Boolean(), size));

 print("a1 = " + Arrays.toString(a1));

 byte[] a2 = ConvertTo.primitive(Generated.array(

770 Thinking in Java Bruce Eckel

 Byte.class, new RandomGenerator.Byte(), size));

 print("a2 = " + Arrays.toString(a2));

 char[] a3 = ConvertTo.primitive(Generated.array(

 Character.class,

 new RandomGenerator.Character(), size));

 print("a3 = " + Arrays.toString(a3));

 short[] a4 = ConvertTo.primitive(Generated.array(

 Short.class, new RandomGenerator.Short(), size));

 print("a4 = " + Arrays.toString(a4));

 int[] a5 = ConvertTo.primitive(Generated.array(

 Integer.class, new RandomGenerator.Integer(), size));

 print("a5 = " + Arrays.toString(a5));

 long[] a6 = ConvertTo.primitive(Generated.array(

 Long.class, new RandomGenerator.Long(), size));

 print("a6 = " + Arrays.toString(a6));

 float[] a7 = ConvertTo.primitive(Generated.array(

 Float.class, new RandomGenerator.Float(), size));

 print("a7 = " + Arrays.toString(a7));

 double[] a8 = ConvertTo.primitive(Generated.array(

 Double.class, new RandomGenerator.Double(), size));

 print("a8 = " + Arrays.toString(a8));

 }

} /* Output:

a1 = [true, false, true, false, false, true]

a2 = [104, -79, -76, 126, 33, -64]

a3 = [Z, n, T, c, Q, r]

a4 = [-13408, 22612, 15401, 15161, -28466, -12603]

a5 = [7704, 7383, 7706, 575, 8410, 6342]

a6 = [7674, 8804, 8950, 7826, 4322, 896]

a7 = [0.01, 0.2, 0.4, 0.79, 0.27, 0.45]

a8 = [0.16, 0.87, 0.7, 0.66, 0.87, 0.59]

*///:~

This also ensures that each version of ConvertTo.primitive() works

correctly.

Exercise 11: (2) Show that autoboxing doesn’t work with arrays.

Exercise 12: (1) Create an initialized array of double using
CountingGenerator. Print the results.

Exercise 13: (2) Fill a String using CountingGenerator.Character.

Exercise 14: (6) Create an array of each primitive type, then fill each
array by using CountingGenerator. Print each array.

Arrays 771

Exercise 15: (2) Modify ContainerComparison.java by creating a
Generator for BerylliumSphere, and change main() to use that Generator
with Generated.array().

Exercise 16: (3) Starting with CountingGenerator.java, create a
SkipGenerator class that produces new values by incrementing according
to a constructor argument. Modify TestArrayGeneration.java to show
that your new class works correctly.

Exercise 17: (5) Create and test a Generator for BigDecimal, and
ensure that it works with the Generated methods.

Arrays utilities
In java.util, you’ll find the Arrays class, which holds a set of static utility

methods for arrays. There are six basic methods: equals(), to compare two

arrays for equality (and a deepEquals() for multidimensional arrays);

fill(), which you’ve seen earlier in this chapter; sort(), to sort an array;

binarySearch(), to find an element in a sorted array; toString(), to

produce a String representation for an array; and hashCode(), to produce

the hash value of an array (you’ll learn what this means in the Containers in

Depth chapter). All of these methods are overloaded for all the primitive

types and Objects. In addition, Arrays.asList() takes any sequence or

array and turns it into a List container—this method was covered in the

Holding Your Objects chapter.

Before discussing the Arrays methods, there’s one other useful method that

isn’t part of Arrays.

Copying an array
The Java standard library provides a static method, System.arraycopy(),

which can copy arrays far more quickly than if you use a for loop to perform

the copy by hand. System.arraycopy() is overloaded to handle all types.

Here’s an example that manipulates arrays of int:

//: arrays/CopyingArrays.java

// Using System.arraycopy()

import java.util.*;

import static net.mindview.util.Print.*;

public class CopyingArrays {

 public static void main(String[] args) {

772 Thinking in Java Bruce Eckel

 int[] i = new int[7];

 int[] j = new int[10];

 Arrays.fill(i, 47);

 Arrays.fill(j, 99);

 print("i = " + Arrays.toString(i));

 print("j = " + Arrays.toString(j));

 System.arraycopy(i, 0, j, 0, i.length);

 print("j = " + Arrays.toString(j));

 int[] k = new int[5];

 Arrays.fill(k, 103);

 System.arraycopy(i, 0, k, 0, k.length);

 print("k = " + Arrays.toString(k));

 Arrays.fill(k, 103);

 System.arraycopy(k, 0, i, 0, k.length);

 print("i = " + Arrays.toString(i));

 // Objects:

 Integer[] u = new Integer[10];

 Integer[] v = new Integer[5];

 Arrays.fill(u, new Integer(47));

 Arrays.fill(v, new Integer(99));

 print("u = " + Arrays.toString(u));

 print("v = " + Arrays.toString(v));

 System.arraycopy(v, 0, u, u.length/2, v.length);

 print("u = " + Arrays.toString(u));

 }

} /* Output:

i = [47, 47, 47, 47, 47, 47, 47]

j = [99, 99, 99, 99, 99, 99, 99, 99, 99, 99]

j = [47, 47, 47, 47, 47, 47, 47, 99, 99, 99]

k = [47, 47, 47, 47, 47]

i = [103, 103, 103, 103, 103, 47, 47]

u = [47, 47, 47, 47, 47, 47, 47, 47, 47, 47]

v = [99, 99, 99, 99, 99]

u = [47, 47, 47, 47, 47, 99, 99, 99, 99, 99]

*///:~

The arguments to arraycopy() are the source array, the offset into the

source array from whence to start copying, the destination array, the offset

into the destination array where the copying begins, and the number of

elements to copy. Naturally, any violation of the array boundaries will cause

an exception.

The example shows that both primitive arrays and object arrays can be

copied. However, if you copy arrays of objects, then only the references get

Arrays 773

copied—there’s no duplication of the objects themselves. This is called a

shallow copy (see the online supplements for this book for more details).

System.arraycopy() will not perform autoboxing or autounboxing—the

two arrays must be of exactly the same type.

Exercise 18: (3) Create and fill an array of BerylliumSphere. Copy this
array to a new array and show that it’s a shallow copy.

Comparing arrays
Arrays provides the equals() method to compare entire arrays for equality,

which is overloaded for all the primitives and for Object. To be equal, the

arrays must have the same number of elements, and each element must be

equivalent to each corresponding element in the other array, using the

equals() for each element. (For primitives, that primitive’s wrapper class

equals() is used; for example, Integer.equals() for int.) For example:

//: arrays/ComparingArrays.java

// Using Arrays.equals()

import java.util.*;

import static net.mindview.util.Print.*;

public class ComparingArrays {

 public static void main(String[] args) {

 int[] a1 = new int[10];

 int[] a2 = new int[10];

 Arrays.fill(a1, 47);

 Arrays.fill(a2, 47);

 print(Arrays.equals(a1, a2));

 a2[3] = 11;

 print(Arrays.equals(a1, a2));

 String[] s1 = new String[4];

 Arrays.fill(s1, "Hi");

 String[] s2 = { new String("Hi"), new String("Hi"),

 new String("Hi"), new String("Hi") };

 print(Arrays.equals(s1, s2));

 }

} /* Output:

true

false

true

*///:~

774 Thinking in Java Bruce Eckel

Originally, a1 and a2 are exactly equal, so the output is “true,” but then one

of the elements is changed, which makes the result “false.” In the last case, all

the elements of s1 point to the same object, but s2 has four unique objects.

However, array equality is based on contents (via Object.equals()), so the

result is “true.”

Exercise 19: (2) Create a class with an int field that’s initialized from a
constructor argument. Create two arrays of these objects, using identical
initialization values for each array, and show that Arrays.equals() says
that they are unequal. Add an equals() method to your class to fix the
problem.

Exercise 20: (4) Demonstrate deepEquals() for multidimensional
arrays.

Array element comparisons
Sorting must perform comparisons based on the actual type of the object. Of

course, one approach is to write a different sorting method for every different

type, but such code is not reusable for new types.

A primary goal of programming design is to “separate things that change

from things that stay the same,” and here, the code that stays the same is the

general sort algorithm, but the thing that changes from one use to the next is

the way objects are compared. So instead of placing the comparison code into

many different sort routines, the Strategy design pattern is used.2 With a

Strategy, the part of the code that varies is encapsulated inside a separate

class (the Strategy object). You hand a Strategy object to the code that’s

always the same, which uses the Strategy to fulfill its algorithm. That way,

you can make different objects to express different ways of comparison and

feed them to the same sorting code.

Java has two ways to provide comparison functionality. The first is with the

“natural” comparison method that is imparted to a class by implementing the

java.lang.Comparable interface. This is a very simple interface with a

single method, compareTo(). This method takes another object of the same

type as an argument and produces a negative value if the current object is less

2 Design Patterns, Erich Gamma et al. (Addison-Wesley, 1995). See On Java 8 at
www.MindViewLLC.com.

Arrays 775

than the argument, zero if the argument is equal, and a positive value if the

current object is greater than the argument.

Here’s a class that implements Comparable and demonstrates the

comparability by using the Java standard library method Arrays.sort():

//: arrays/CompType.java

// Implementing Comparable in a class.

import java.util.*;

import net.mindview.util.*;

import static net.mindview.util.Print.*;

public class CompType implements Comparable<CompType> {

 int i;

 int j;

 private static int count = 1;

 public CompType(int n1, int n2) {

 i = n1;

 j = n2;

 }

 public String toString() {

 String result = "[i = " + i + ", j = " + j + "]";

 if(count++ % 3 == 0)

 result += "\n";

 return result;

 }

 public int compareTo(CompType rv) {

 return (i < rv.i ? -1 : (i == rv.i ? 0 : 1));

 }

 private static Random r = new Random(47);

 public static Generator<CompType> generator() {

 return new Generator<CompType>() {

 public CompType next() {

 return new CompType(r.nextInt(100),r.nextInt(100));

 }

 };

 }

 public static void main(String[] args) {

 CompType[] a =

 Generated.array(new CompType[12], generator());

 print("before sorting:");

 print(Arrays.toString(a));

 Arrays.sort(a);

 print("after sorting:");

776 Thinking in Java Bruce Eckel

 print(Arrays.toString(a));

 }

} /* Output:

before sorting:

[[i = 58, j = 55], [i = 93, j = 61], [i = 61, j = 29]

, [i = 68, j = 0], [i = 22, j = 7], [i = 88, j = 28]

, [i = 51, j = 89], [i = 9, j = 78], [i = 98, j = 61]

, [i = 20, j = 58], [i = 16, j = 40], [i = 11, j = 22]

]

after sorting:

[[i = 9, j = 78], [i = 11, j = 22], [i = 16, j = 40]

, [i = 20, j = 58], [i = 22, j = 7], [i = 51, j = 89]

, [i = 58, j = 55], [i = 61, j = 29], [i = 68, j = 0]

, [i = 88, j = 28], [i = 93, j = 61], [i = 98, j = 61]

]

*///:~

When you define the comparison method, you are responsible for deciding

what it means to compare one of your objects to another. Here, only the i

values are used in the comparison, and the j values are ignored.

The generator() method produces an object that implements the

Generator interface by creating an anonymous inner class. This builds

CompType objects by initializing them with random values. In main(), the

generator is used to fill an array of CompType, which is then sorted. If

Comparable hadn’t been implemented, then you’d get a

ClassCastException at run time when you tried to call sort(). This is

because sort() casts its argument to Comparable.

Now suppose someone hands you a class that doesn’t implement

Comparable, or hands you this class that does implement Comparable,

but you decide you don’t like the way it works and would rather have a

different comparison method for the type. To solve the problem, you create a

separate class that implements an interface called Comparator (briefly

introduced in the Holding Your Objects chapter). This is an example of the

Strategy design pattern. It has two methods, compare() and equals().

However, you don’t have to implement equals() except for special

performance needs, because anytime you create a class, it is implicitly

inherited from Object, which has an equals(). So you can just use the

default Object equals() and satisfy the contract imposed by the interface.

Arrays 777

The Collections class (which we’ll look at more in the next chapter) contains

a method reverseOrder() that produces a Comparator to reverse the

natural sorting order. This can be applied to CompType:

//: arrays/Reverse.java

// The Collections.reverseOrder() Comparator

import java.util.*;

import net.mindview.util.*;

import static net.mindview.util.Print.*;

public class Reverse {

 public static void main(String[] args) {

 CompType[] a = Generated.array(

 new CompType[12], CompType.generator());

 print("before sorting:");

 print(Arrays.toString(a));

 Arrays.sort(a, Collections.reverseOrder());

 print("after sorting:");

 print(Arrays.toString(a));

 }

} /* Output:

before sorting:

[[i = 58, j = 55], [i = 93, j = 61], [i = 61, j = 29]

, [i = 68, j = 0], [i = 22, j = 7], [i = 88, j = 28]

, [i = 51, j = 89], [i = 9, j = 78], [i = 98, j = 61]

, [i = 20, j = 58], [i = 16, j = 40], [i = 11, j = 22]

]

after sorting:

[[i = 98, j = 61], [i = 93, j = 61], [i = 88, j = 28]

, [i = 68, j = 0], [i = 61, j = 29], [i = 58, j = 55]

, [i = 51, j = 89], [i = 22, j = 7], [i = 20, j = 58]

, [i = 16, j = 40], [i = 11, j = 22], [i = 9, j = 78]

]

*///:~

You can also write your own Comparator. This one compares CompType

objects based on their j values rather than their i values:

//: arrays/ComparatorTest.java

// Implementing a Comparator for a class.

import java.util.*;

import net.mindview.util.*;

import static net.mindview.util.Print.*;

class CompTypeComparator implements Comparator<CompType> {

778 Thinking in Java Bruce Eckel

 public int compare(CompType o1, CompType o2) {

 return (o1.j < o2.j ? -1 : (o1.j == o2.j ? 0 : 1));

 }

}

public class ComparatorTest {

 public static void main(String[] args) {

 CompType[] a = Generated.array(

 new CompType[12], CompType.generator());

 print("before sorting:");

 print(Arrays.toString(a));

 Arrays.sort(a, new CompTypeComparator());

 print("after sorting:");

 print(Arrays.toString(a));

 }

} /* Output:

before sorting:

[[i = 58, j = 55], [i = 93, j = 61], [i = 61, j = 29]

, [i = 68, j = 0], [i = 22, j = 7], [i = 88, j = 28]

, [i = 51, j = 89], [i = 9, j = 78], [i = 98, j = 61]

, [i = 20, j = 58], [i = 16, j = 40], [i = 11, j = 22]

]

after sorting:

[[i = 68, j = 0], [i = 22, j = 7], [i = 11, j = 22]

, [i = 88, j = 28], [i = 61, j = 29], [i = 16, j = 40]

, [i = 58, j = 55], [i = 20, j = 58], [i = 93, j = 61]

, [i = 98, j = 61], [i = 9, j = 78], [i = 51, j = 89]

]

*///:~

Exercise 21: (3) Try to sort an array of the objects in Exercise 18.
Implement Comparable to fix the problem. Now create a Comparator to
sort the objects into reverse order.

Sorting an array
With the built-in sorting methods, you can sort any array of primitives, or any

array of objects that either implements Comparable or has an associated

Comparator.3 Here’s an example that generates random String objects

and sorts them:

3 Surprisingly, there was no support in Java 1.0 or 1.1 for sorting Strings.

Arrays 779

//: arrays/StringSorting.java

// Sorting an array of Strings.

import java.util.*;

import net.mindview.util.*;

import static net.mindview.util.Print.*;

public class StringSorting {

 public static void main(String[] args) {

 String[] sa = Generated.array(new String[20],

 new RandomGenerator.String(5));

 print("Before sort: " + Arrays.toString(sa));

 Arrays.sort(sa);

 print("After sort: " + Arrays.toString(sa));

 Arrays.sort(sa, Collections.reverseOrder());

 print("Reverse sort: " + Arrays.toString(sa));

 Arrays.sort(sa, String.CASE_INSENSITIVE_ORDER);

 print("Case-insensitive sort: " + Arrays.toString(sa));

 }

} /* Output:

Before sort: [YNzbr, nyGcF, OWZnT, cQrGs, eGZMm, JMRoE,

suEcU, OneOE, dLsmw, HLGEa, hKcxr, EqUCB, bkIna, Mesbt,

WHkjU, rUkZP, gwsqP, zDyCy, RFJQA, HxxHv]

After sort: [EqUCB, HLGEa, HxxHv, JMRoE, Mesbt, OWZnT,

OneOE, RFJQA, WHkjU, YNzbr, bkIna, cQrGs, dLsmw, eGZMm,

gwsqP, hKcxr, nyGcF, rUkZP, suEcU, zDyCy]

Reverse sort: [zDyCy, suEcU, rUkZP, nyGcF, hKcxr, gwsqP,

eGZMm, dLsmw, cQrGs, bkIna, YNzbr, WHkjU, RFJQA, OneOE,

OWZnT, Mesbt, JMRoE, HxxHv, HLGEa, EqUCB]

Case-insensitive sort: [bkIna, cQrGs, dLsmw, eGZMm, EqUCB,

gwsqP, hKcxr, HLGEa, HxxHv, JMRoE, Mesbt, nyGcF, OneOE,

OWZnT, RFJQA, rUkZP, suEcU, WHkjU, YNzbr, zDyCy]

*///:~

One thing you’ll notice about the output in the String sorting algorithm is

that it’s lexicographic, so it puts all the words starting with uppercase letters

first, followed by all the words starting with lowercase letters. (Telephone

books are typically sorted this way.) If you want to group the words together

regardless of case, use String.CASE_INSENSITIVE_ORDER as shown

in the last call to sort() in the above example.

The sorting algorithm that’s used in the Java standard library is designed to

be optimal for the particular type you’re sorting—a Quicksort for primitives,

and a stable merge sort for objects. You don’t need to worry about

780 Thinking in Java Bruce Eckel

performance unless your profiler points you to the sorting process as a

bottleneck.

Searching a sorted array
Once an array is sorted, you can perform a fast search for a particular item by

using Arrays.binarySearch(). However, if you try to use

binarySearch() on an unsorted array the results will be unpredictable. The

following example uses a RandomGenerator.Integer to fill an array, and

then uses the same generator to produce search values:

//: arrays/ArraySearching.java

// Using Arrays.binarySearch().

import java.util.*;

import net.mindview.util.*;

import static net.mindview.util.Print.*;

public class ArraySearching {

 public static void main(String[] args) {

 Generator<Integer> gen =

 new RandomGenerator.Integer(1000);

 int[] a = ConvertTo.primitive(

 Generated.array(new Integer[25], gen));

 Arrays.sort(a);

 print("Sorted array: " + Arrays.toString(a));

 while(true) {

 int r = gen.next();

 int location = Arrays.binarySearch(a, r);

 if(location >= 0) {

 print("Location of " + r + " is " + location +

 ", a[" + location + "] = " + a[location]);

 break; // Out of while loop

 }

 }

 }

} /* Output:

Sorted array: [128, 140, 200, 207, 258, 258, 278, 288, 322,

429, 511, 520, 522, 551, 555, 589, 693, 704, 809, 861, 861,

868, 916, 961, 998]

Location of 322 is 8, a[8] = 322

*///:~

In the while loop, random values are generated as search items until one of

them is found.

Arrays 781

Arrays.binarySearch() produces a value greater than or equal to zero if

the search item is found. Otherwise, it produces a negative value representing

the place that the element should be inserted if you are maintaining the

sorted array by hand. The value produced is

-(insertion point) - 1

The insertion point is the index of the first element greater than the key, or

a.size(), if all elements in the array are less than the specified key.

If an array contains duplicate elements, there is no guarantee which of those

duplicates will be found. The search algorithm is not designed to support

duplicate elements, but rather to tolerate them. If you need a sorted list of

non-duplicated elements, use a TreeSet (to maintain sorted order) or

LinkedHashSet (to maintain insertion order). These classes take care of all

the details for you automatically. Only in cases of performance bottlenecks

should you replace one of these classes with a hand-maintained array.

If you sort an object array using a Comparator (primitive arrays do not

allow sorting with a Comparator), you must include that same

Comparator when you perform a binarySearch() (using the overloaded

version of binarySearch()). For example, the StringSorting.java

program can be modified to perform a search:

//: arrays/AlphabeticSearch.java

// Searching with a Comparator.

import java.util.*;

import net.mindview.util.*;

public class AlphabeticSearch {

 public static void main(String[] args) {

 String[] sa = Generated.array(new String[30],

 new RandomGenerator.String(5));

 Arrays.sort(sa, String.CASE_INSENSITIVE_ORDER);

 System.out.println(Arrays.toString(sa));

 int index = Arrays.binarySearch(sa, sa[10],

 String.CASE_INSENSITIVE_ORDER);

 System.out.println("Index: "+ index + "\n"+ sa[index]);

 }

} /* Output:

[bkIna, cQrGs, cXZJo, dLsmw, eGZMm, EqUCB, gwsqP, hKcxr,

HLGEa, HqXum, HxxHv, JMRoE, JmzMs, Mesbt, MNvqe, nyGcF,

ogoYW, OneOE, OWZnT, RFJQA, rUkZP, sgqia, slJrL, suEcU,

uTpnX, vpfFv, WHkjU, xxEAJ, YNzbr, zDyCy]

782 Thinking in Java Bruce Eckel

Index: 10

HxxHv

*///:~

The Comparator must be passed to the overloaded binarySearch() as the

third argument. In this example, success is guaranteed because the search

item is selected from the array itself.

Exercise 22: (2) Show that the results of performing a binarySearch()
on an unsorted array are unpredictable.

Exercise 23: (2) Create an array of Integer, fill it with random int
values (using autoboxing), and sort it into reverse order using a
Comparator.

Exercise 24: (3) Show that the class from Exercise 19 can be searched.

Summary
In this chapter, you’ve seen that Java provides reasonable support for fixed-

sized, low-level arrays. This sort of array emphasizes performance over

flexibility, just like the C and C++ array model. In the initial version of Java,

fixed-sized, low-level arrays were absolutely necessary, not only because the

Java designers chose to include primitive types (also for performance), but

because the support for containers in that version was very minimal. Thus, in

early versions of Java, it was always reasonable to choose arrays.

In subsequent versions of Java, container support improved significantly, and

now containers tend to outshine arrays in all ways except for performance,

and even then, the performance of containers has been significantly

improved. As stated in other places in this book, performance problems are

usually never where you imagine them to be, anyway.

With the addition of autoboxing and generics, holding primitives in

containers has become effortless, which further encourages you to replace

low-level arrays with containers. Because generics produce type-safe

containers, arrays no long have an advantage on that front, either.

As noted in this chapter and as you’ll see when you try to use them, generics

are fairly hostile towards arrays. Often, even when you can get generics and

arrays to work together in some form (as you’ll see in the next chapter), you’ll

still end up with “unchecked” warnings during compilation.

Arrays 783

On several occasions I have been told directly by Java language designers that

I should be using containers instead of arrays, when we were discussing

particular examples (I was using arrays to demonstrate specific techniques

and so I did not have that option).

All of these issues indicate that you should “prefer containers to arrays” when

programming in recent versions of Java. Only when it’s proven that

performance is an issue (and that switching to an array will make a

difference) should you refactor to arrays.

This is a rather bold statement, but some languages have no fixed-sized, low-

level arrays at all. They only have resizable containers with significantly more

functionality than C/C++/Java-style arrays. Python,4 for example, has a list

type that uses basic array syntax, but has much greater functionality—you can

even inherit from it:

#: arrays/PythonLists.py

aList = [1, 2, 3, 4, 5]

print type(aList) # <type 'list'>

print aList # [1, 2, 3, 4, 5]

print aList[4] # 5 Basic list indexing

aList.append(6) # lists can be resized

aList += [7, 8] # Add a list to a list

print aList # [1, 2, 3, 4, 5, 6, 7, 8]

aSlice = aList[2:4]

print aSlice # [3, 4]

class MyList(list): # Inherit from list

 # Define a method, 'this' pointer is explicit:

 def getReversed(self):

 reversed = self[:] # Copy list using slices

 reversed.reverse() # Built-in list method

 return reversed

list2 = MyList(aList) # No 'new' needed for object creation

print type(list2) # <class '__main__.MyList'>

print list2.getReversed() # [8, 7, 6, 5, 4, 3, 2, 1]

#:~

4 See www.Python.org.

784 Thinking in Java Bruce Eckel

Basic Python syntax was introduced in the previous chapter. Here, a list is

created by simply surrounding a comma-separated sequence of objects with

square brackets. The result is an object with a runtime type of list (the output

of the print statements is shown as comments on the same line). The result

of printing a list is the same as that of using Arrays.toString() in Java.

Creating a sub-sequence of a list is accomplished with “slicing,” by placing

the ‘:’ operator inside the index operation. The list type has many more built-

in operations.

MyList is a class definition; the base classes are placed within the

parentheses. Inside the class, def statements produce methods, and the first

argument to the method is automatically the equivalent of this in Java,

except that in Python it’s explicit and the identifier self is used by convention

(it’s not a keyword). Notice how the constructor is automatically inherited.

Although everything in Python really is an object (including integral and

floating point types), you still have an escape hatch in that you can optimize

performance-critical portions of your code by writing extensions in C, C++ or

a special tool called Pyrex, which is designed to easily speed up your code.

This way you can have object purity without being prevented from

performance improvements.

The PHP language5 goes even further by having only a single array type,

which acts as both an int-indexed array and an associative array (a Map).

It’s interesting to speculate, after this many years of Java evolution, whether

the designers would put primitives and low-level arrays in the language if

they were to start over again. If these were left out, it would be possible to

make a truly pure object-oriented language (despite claims, Java is not a pure

OO language, precisely because of the low-level detritus). The initial

argument for efficiency always seems compelling, but over time we have seen

an evolution away from this idea and towards the use of higher-level

components like containers. Add to this the fact that if containers can be built

into the core language as they are in some languages, then the compiler has a

much better opportunity to optimize.

5 See www.php.net.

Arrays 785

Green-fields speculation aside, we are certainly stuck with arrays, and you

will see them when reading code. Containers, however, are almost always a

better choice.

Exercise 25: (3) Rewrite PythonLists.py in Java.

Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for sale from www.MindViewLLC.com.

 787

Containers in Depth
The Holding Your Objects chapter introduced the ideas
and basic functionality of the Java containers library, and
is enough to get you started using containers. This chapter
explores this important library more deeply.

In order to get full use of the containers library, you need to know more than

what was introduced in Holding Your Objects, but this chapter relies on

advanced material (like generics) so it was delayed until later in the book.

After a more complete overview of containers, you’ll learn how hashing

works, and how to write hashCode() and equals() to work with hashed

containers. You’ll learn why there are different versions of some containers

and how to choose between them. The chapter finishes with an exploration of

general-purpose utilities and special classes.

Full container taxonomy
The “Summary” section of the Holding Your Objects chapter showed a

simplified diagram of the Java containers library. Here is a more complete

diagram of the collections library, including abstract classes and legacy

components (with the exception of Queue implementations):

788 Thinking in Java Bruce Eckel

Iterator Collection Map
Produces

ListIterator

SortedMap

Produces

List Set
Produces

AbstractMap

AbstractCollection

AbstractSetAbstractList

SortedSet

HashMap
TreeMap

Hashtable
(Legacy)

HashSet TreeSet
WeakHashMap

ArrayList AbstractSequentialList
Vector

(Legacy)

Stack
(Legacy) LinkedList

Collections

Arrays

Utilities

Comparable Comparator

LinkedHashMap

IdentityHashMap

LinkedHashSet

Queue

Full Container Taxonomy

Java SE5 adds:

• The Queue interface (which LinkedList has been modified to

implement, as you saw in Holding Your Objects) and its

implementations PriorityQueue and various flavors of

BlockingQueue that will be shown in the Concurrency chapter.

• A ConcurrentMap interface and its implementation

ConcurrentHashMap, also for use in threading and shown in the

Concurrency chapter.

• CopyOnWriteArrayList and CopyOnWriteArraySet, also for

concurrency.

Containers in Depth 789

• EnumSet and EnumMap, special implementations of Set and

Map for use with enums, and shown in the Enumerated Types

chapter.

• Several utilities in the Collections class.

The long-dashed boxes represent abstract classes, and you can see a number

of classes whose names begin with “Abstract.” These can seem a bit

confusing at first, but they are simply tools that partially implement a

particular interface. If you were making your own Set, for example, you

wouldn’t start with the Set interface and implement all the methods; instead,

you’d inherit from AbstractSet and do the minimal necessary work to make

your new class. However, the containers library contains enough functionality

to satisfy your needs virtually all the time, so you can usually ignore any class

that begins with “Abstract.”

Filling containers
Although the problem of printing containers is solved, filling containers

suffers from the same deficiency as java.util.Arrays. Just as with Arrays,

there is a companion class called Collections containing static utility

methods, including one called fill(). Like the Arrays version, this fill() just

duplicates a single object reference throughout the container. In addition, it

only works for List objects, but the resulting list can be passed to a

constructor or to an addAll() method:

//: containers/FillingLists.java

// The Collections.fill() & Collections.nCopies() methods.

import java.util.*;

class StringAddress {

 private String s;

 public StringAddress(String s) { this.s = s; }

 public String toString() {

 return super.toString() + " " + s;

 }

}

public class FillingLists {

 public static void main(String[] args) {

 List<StringAddress> list= new ArrayList<StringAddress>(

 Collections.nCopies(4, new StringAddress("Hello")));

 System.out.println(list);

790 Thinking in Java Bruce Eckel

 Collections.fill(list, new StringAddress("World!"));

 System.out.println(list);

 }

} /* Output: (Sample)

[StringAddress@82ba41 Hello, StringAddress@82ba41 Hello,

StringAddress@82ba41 Hello, StringAddress@82ba41 Hello]

[StringAddress@923e30 World!, StringAddress@923e30 World!,

StringAddress@923e30 World!, StringAddress@923e30 World!]

*///:~

This example shows two ways to fill a Collection with references to a single

object. The first, Collections.nCopies(), creates a List which is passed to

the constructor; this fills the ArrayList.

The toString() method in StringAddress calls Object.toString(),

which produces the class name followed by the unsigned hexadecimal

representation of the hash code of the object (generated by the hashCode()

method). You can see from the output that all the references are set to the

same object, and this is also true after the second method,

Collections.fill(), is called. The fill() method is made even less useful by

the fact that it can only replace elements that are already in the List and will

not add new elements.

A Generator solution
Virtually all Collection subtypes have a constructor that takes another

Collection object, from which it can fill the new container. In order to easily

create test data, then, all we need to do is build a class that takes constructor

arguments of a Generator (defined in the Generics chapter and further

explored in the Arrays chapter) and a quantity value:

//: net/mindview/util/CollectionData.java

// A Collection filled with data using a generator object.

package net.mindview.util;

import java.util.*;

public class CollectionData<T> extends ArrayList<T> {

 public CollectionData(Generator<T> gen, int quantity) {

 for(int i = 0; i < quantity; i++)

 add(gen.next());

 }

 // A generic convenience method:

 public static <T> CollectionData<T>

Containers in Depth 791

 list(Generator<T> gen, int quantity) {

 return new CollectionData<T>(gen, quantity);

 }

} ///:~

This uses the Generator to put as many objects into the container as you

need. The resulting container can then be passed to the constructor for any

Collection, and that constructor will copy the data into itself. The addAll()

method that’s part of every Collection subtype can also be used to populate

an existing Collection.

The generic convenience method reduces the amount of typing necessary

when using the class.

CollectionData is an example of the Adapter design pattern;1 it adapts a

Generator to the constructor for a Collection.

Here’s an example that initializes a LinkedHashSet:

//: containers/CollectionDataTest.java

import java.util.*;

import net.mindview.util.*;

class Government implements Generator<String> {

 String[] foundation = ("strange women lying in ponds " +

 "distributing swords is no basis for a system of " +

 "government").split(" ");

 private int index;

 public String next() { return foundation[index++]; }

}

public class CollectionDataTest {

 public static void main(String[] args) {

 Set<String> set = new LinkedHashSet<String>(

 new CollectionData<String>(new Government(), 15));

 // Using the convenience method:

 set.addAll(CollectionData.list(new Government(), 15));

 System.out.println(set);

 }

} /* Output:

1 This may not be a strict definition of adapter as defined in the Design Patterns book, but
I think it meets the spirit of the idea.

792 Thinking in Java Bruce Eckel

[strange, women, lying, in, ponds, distributing, swords, is,

no, basis, for, a, system, of, government]

*///:~

The elements are in the same order in which they are inserted because a

LinkedHashSet maintains a linked list holding the insertion order.

All the generators defined in the Arrays chapter are now available via the

CollectionData adapter. Here’s an example that uses two of them:

//: containers/CollectionDataGeneration.java

// Using the Generators defined in the Arrays chapter.

import java.util.*;

import net.mindview.util.*;

public class CollectionDataGeneration {

 public static void main(String[] args) {

 System.out.println(new ArrayList<String>(

 CollectionData.list(// Convenience method

 new RandomGenerator.String(9), 10)));

 System.out.println(new HashSet<Integer>(

 new CollectionData<Integer>(

 new RandomGenerator.Integer(), 10)));

 }

} /* Output:

[YNzbrnyGc, FOWZnTcQr, GseGZMmJM, RoEsuEcUO, neOEdLsmw,

HLGEahKcx, rEqUCBbkI, naMesbtWH, kjUrUkZPg, wsqPzDyCy]

[2017, 3455, 4779, 871, 6090, 573, 7882, 299, 8037, 4367]

*///:~

The String length produced by RandomGenerator.String is controlled

by the constructor argument.

Map generators
We can take the same approach for a Map, but that requires a Pair class

since a pair of objects (one key and one value) must be produced by each call

to a Generator’s next() in order to populate a Map:

//: net/mindview/util/Pair.java

package net.mindview.util;

public class Pair<K,V> {

 public final K key;

 public final V value;

Containers in Depth 793

 public Pair(K k, V v) {

 key = k;

 value = v;

 }

} ///:~

The key and value fields are made public and final so that Pair becomes a

read-only Data Transfer Object (or Messenger.

The Map adapter can now use various combinations of Generators,

Iterables, and constant values to fill Map initialization objects:

//: net/mindview/util/MapData.java

// A Map filled with data using a generator object.

package net.mindview.util;

import java.util.*;

public class MapData<K,V> extends LinkedHashMap<K,V> {

 // A single Pair Generator:

 public MapData(Generator<Pair<K,V>> gen, int quantity) {

 for(int i = 0; i < quantity; i++) {

 Pair<K,V> p = gen.next();

 put(p.key, p.value);

 }

 }

 // Two separate Generators:

 public MapData(Generator<K> genK, Generator<V> genV,

 int quantity) {

 for(int i = 0; i < quantity; i++) {

 put(genK.next(), genV.next());

 }

 }

 // A key Generator and a single value:

 public MapData(Generator<K> genK, V value, int quantity){

 for(int i = 0; i < quantity; i++) {

 put(genK.next(), value);

 }

 }

 // An Iterable and a value Generator:

 public MapData(Iterable<K> genK, Generator<V> genV) {

 for(K key : genK) {

 put(key, genV.next());

 }

 }

 // An Iterable and a single value:

794 Thinking in Java Bruce Eckel

 public MapData(Iterable<K> genK, V value) {

 for(K key : genK) {

 put(key, value);

 }

 }

 // Generic convenience methods:

 public static <K,V> MapData<K,V>

 map(Generator<Pair<K,V>> gen, int quantity) {

 return new MapData<K,V>(gen, quantity);

 }

 public static <K,V> MapData<K,V>

 map(Generator<K> genK, Generator<V> genV, int quantity) {

 return new MapData<K,V>(genK, genV, quantity);

 }

 public static <K,V> MapData<K,V>

 map(Generator<K> genK, V value, int quantity) {

 return new MapData<K,V>(genK, value, quantity);

 }

 public static <K,V> MapData<K,V>

 map(Iterable<K> genK, Generator<V> genV) {

 return new MapData<K,V>(genK, genV);

 }

 public static <K,V> MapData<K,V>

 map(Iterable<K> genK, V value) {

 return new MapData<K,V>(genK, value);

 }

} ///:~

This gives you a choice of using a single Generator<Pair<K,V>>, two

separate Generators, one Generator and a constant value, an Iterable

(which includes any Collection) and a Generator, or an Iterable and a

single value. The generic convenience methods reduce the amount of typing

necessary when creating a MapData object.

Here’s an example using MapData. The Letters Generator also

implements Iterable by producing an Iterator; this way, it can be used to

test the MapData.map() methods that work with an Iterable:

//: containers/MapDataTest.java

import java.util.*;

import net.mindview.util.*;

import static net.mindview.util.Print.*;

class Letters implements Generator<Pair<Integer,String>>,

Containers in Depth 795

 Iterable<Integer> {

 private int size = 9;

 private int number = 1;

 private char letter = 'A';

 public Pair<Integer,String> next() {

 return new Pair<Integer,String>(

 number++, "" + letter++);

 }

 public Iterator<Integer> iterator() {

 return new Iterator<Integer>() {

 public Integer next() { return number++; }

 public boolean hasNext() { return number < size; }

 public void remove() {

 throw new UnsupportedOperationException();

 }

 };

 }

}

public class MapDataTest {

 public static void main(String[] args) {

 // Pair Generator:

 print(MapData.map(new Letters(), 11));

 // Two separate generators:

 print(MapData.map(new CountingGenerator.Character(),

 new RandomGenerator.String(3), 8));

 // A key Generator and a single value:

 print(MapData.map(new CountingGenerator.Character(),

 "Value", 6));

 // An Iterable and a value Generator:

 print(MapData.map(new Letters(),

 new RandomGenerator.String(3)));

 // An Iterable and a single value:

 print(MapData.map(new Letters(), "Pop"));

 }

} /* Output:

{1=A, 2=B, 3=C, 4=D, 5=E, 6=F, 7=G, 8=H, 9=I, 10=J, 11=K}

{a=YNz, b=brn, c=yGc, d=FOW, e=ZnT, f=cQr, g=Gse, h=GZM}

{a=Value, b=Value, c=Value, d=Value, e=Value, f=Value}

{1=mJM, 2=RoE, 3=suE, 4=cUO, 5=neO, 6=EdL, 7=smw, 8=HLG}

{1=Pop, 2=Pop, 3=Pop, 4=Pop, 5=Pop, 6=Pop, 7=Pop, 8=Pop}

*///:~

This example also uses the generators from the Arrays chapter.

796 Thinking in Java Bruce Eckel

You can create any generated data set for Maps or Collections using these

tools, and then initialize a Map or Collection using the constructor or the

Map.putAll() or Collection.addAll() methods.

Using Abstract classes
An alternative approach to the problem of producing test data for containers

is to create custom Collection and Map implementations. Each java.util

container has its own Abstract class that provides a partial implementation

of that container, so all you must do is implement the necessary methods in

order to produce the desired container. If the resulting container is read-only,

as it typically is for test data, the number of methods you need to provide is

minimized.

Although it isn’t particularly necessary in this case, the following solution also

provides the opportunity to demonstrate another design pattern: the

Flyweight. You use a flyweight when the ordinary solution requires too many

objects, or when producing normal objects takes up too much space. The

Flyweight pattern externalizes part of the object so that, instead of everything

in the object being contained within the object, some or all of the object is

looked up in a more efficient external table (or produced through some other

calculation that saves space).

An important point of this example is to demonstrate how relatively simple it

is to create a custom Map and Collection by inheriting from the

java.util.Abstract classes. In order to create a read-only Map, you inherit

from AbstractMap and implement entrySet(). In order to create a read-

only Set, you inherit from AbstractSet and implement iterator() and

size().

The data set in this example is a Map of the countries of the world and their

capitals.2 The capitals() method produces a Map of countries and capitals.

The names() method produces a List of the country names. In both cases

you can get a partial listing by providing an int argument indicating the

desired size:

//: net/mindview/util/Countries.java

2 This data was found on the Internet. Various corrections have been submitted by readers
over time.

Containers in Depth 797

// "Flyweight" Maps and Lists of sample data.

package net.mindview.util;

import java.util.*;

import static net.mindview.util.Print.*;

public class Countries {

 public static final String[][] DATA = {

 // Africa

 {"ALGERIA","Algiers"}, {"ANGOLA","Luanda"},

 {"BENIN","Porto-Novo"}, {"BOTSWANA","Gaberone"},

 {"BURKINA FASO","Ouagadougou"},

 {"BURUNDI","Bujumbura"},

 {"CAMEROON","Yaounde"}, {"CAPE VERDE","Praia"},

 {"CENTRAL AFRICAN REPUBLIC","Bangui"},

 {"CHAD","N'djamena"}, {"COMOROS","Moroni"},

 {"CONGO","Brazzaville"}, {"DJIBOUTI","Dijibouti"},

 {"EGYPT","Cairo"}, {"EQUATORIAL GUINEA","Malabo"},

 {"ERITREA","Asmara"}, {"ETHIOPIA","Addis Ababa"},

 {"GABON","Libreville"}, {"THE GAMBIA","Banjul"},

 {"GHANA","Accra"}, {"GUINEA","Conakry"},

 {"BISSAU","Bissau"},

 {"COTE D'IVOIR (IVORY COAST)","Yamoussoukro"},

 {"KENYA","Nairobi"}, {"LESOTHO","Maseru"},

 {"LIBERIA","Monrovia"}, {"LIBYA","Tripoli"},

 {"MADAGASCAR","Antananarivo"}, {"MALAWI","Lilongwe"},

 {"MALI","Bamako"}, {"MAURITANIA","Nouakchott"},

 {"MAURITIUS","Port Louis"}, {"MOROCCO","Rabat"},

 {"MOZAMBIQUE","Maputo"}, {"NAMIBIA","Windhoek"},

 {"NIGER","Niamey"}, {"NIGERIA","Abuja"},

 {"RWANDA","Kigali"},

 {"SAO TOME E PRINCIPE","Sao Tome"},

 {"SENEGAL","Dakar"}, {"SEYCHELLES","Victoria"},

 {"SIERRA LEONE","Freetown"}, {"SOMALIA","Mogadishu"},

 {"SOUTH AFRICA","Pretoria/Cape Town"},

 {"SUDAN","Khartoum"},

 {"SWAZILAND","Mbabane"}, {"TANZANIA","Dodoma"},

 {"TOGO","Lome"}, {"TUNISIA","Tunis"},

 {"UGANDA","Kampala"},

 {"DEMOCRATIC REPUBLIC OF THE CONGO (ZAIRE)",

 "Kinshasa"},

 {"ZAMBIA","Lusaka"}, {"ZIMBABWE","Harare"},

 // Asia

 {"AFGHANISTAN","Kabul"}, {"BAHRAIN","Manama"},

 {"BANGLADESH","Dhaka"}, {"BHUTAN","Thimphu"},

798 Thinking in Java Bruce Eckel

 {"BRUNEI","Bandar Seri Begawan"},

 {"CAMBODIA","Phnom Penh"},

 {"CHINA","Beijing"}, {"CYPRUS","Nicosia"},

 {"INDIA","New Delhi"}, {"INDONESIA","Jakarta"},

 {"IRAN","Tehran"}, {"IRAQ","Baghdad"},

 {"ISRAEL","Jerusalem"}, {"JAPAN","Tokyo"},

 {"JORDAN","Amman"}, {"KUWAIT","Kuwait City"},

 {"LAOS","Vientiane"}, {"LEBANON","Beirut"},

 {"MALAYSIA","Kuala Lumpur"}, {"THE MALDIVES","Male"},

 {"MONGOLIA","Ulan Bator"},

 {"MYANMAR (BURMA)","Rangoon"},

 {"NEPAL","Katmandu"}, {"NORTH KOREA","P'yongyang"},

 {"OMAN","Muscat"}, {"PAKISTAN","Islamabad"},

 {"PHILIPPINES","Manila"}, {"QATAR","Doha"},

 {"SAUDI ARABIA","Riyadh"}, {"SINGAPORE","Singapore"},

 {"SOUTH KOREA","Seoul"}, {"SRI LANKA","Colombo"},

 {"SYRIA","Damascus"},

 {"TAIWAN (REPUBLIC OF CHINA)","Taipei"},

 {"THAILAND","Bangkok"}, {"TURKEY","Ankara"},

 {"UNITED ARAB EMIRATES","Abu Dhabi"},

 {"VIETNAM","Hanoi"}, {"YEMEN","Sana'a"},

 // Australia and Oceania

 {"AUSTRALIA","Canberra"}, {"FIJI","Suva"},

 {"KIRIBATI","Bairiki"},

 {"MARSHALL ISLANDS","Dalap-Uliga-Darrit"},

 {"MICRONESIA","Palikir"}, {"NAURU","Yaren"},

 {"NEW ZEALAND","Wellington"}, {"PALAU","Koror"},

 {"PAPUA NEW GUINEA","Port Moresby"},

 {"SOLOMON ISLANDS","Honaira"}, {"TONGA","Nuku'alofa"},

 {"TUVALU","Fongafale"}, {"VANUATU","< Port-Vila"},

 {"WESTERN SAMOA","Apia"},

 // Eastern Europe and former USSR

 {"ARMENIA","Yerevan"}, {"AZERBAIJAN","Baku"},

 {"BELARUS (BYELORUSSIA)","Minsk"},

 {"BULGARIA","Sofia"}, {"GEORGIA","Tbilisi"},

 {"KAZAKSTAN","Almaty"}, {"KYRGYZSTAN","Alma-Ata"},

 {"MOLDOVA","Chisinau"}, {"RUSSIA","Moscow"},

 {"TAJIKISTAN","Dushanbe"}, {"TURKMENISTAN","Ashkabad"},

 {"UKRAINE","Kyiv"}, {"UZBEKISTAN","Tashkent"},

 // Europe

 {"ALBANIA","Tirana"}, {"ANDORRA","Andorra la Vella"},

 {"AUSTRIA","Vienna"}, {"BELGIUM","Brussels"},

 {"BOSNIA","-"}, {"HERZEGOVINA","Sarajevo"},

 {"CROATIA","Zagreb"}, {"CZECH REPUBLIC","Prague"},

Containers in Depth 799

 {"DENMARK","Copenhagen"}, {"ESTONIA","Tallinn"},

 {"FINLAND","Helsinki"}, {"FRANCE","Paris"},

 {"GERMANY","Berlin"}, {"GREECE","Athens"},

 {"HUNGARY","Budapest"}, {"ICELAND","Reykjavik"},

 {"IRELAND","Dublin"}, {"ITALY","Rome"},

 {"LATVIA","Riga"}, {"LIECHTENSTEIN","Vaduz"},

 {"LITHUANIA","Vilnius"}, {"LUXEMBOURG","Luxembourg"},

 {"MACEDONIA","Skopje"}, {"MALTA","Valletta"},

 {"MONACO","Monaco"}, {"MONTENEGRO","Podgorica"},

 {"THE NETHERLANDS","Amsterdam"}, {"NORWAY","Oslo"},

 {"POLAND","Warsaw"}, {"PORTUGAL","Lisbon"},

 {"ROMANIA","Bucharest"}, {"SAN MARINO","San Marino"},

 {"SERBIA","Belgrade"}, {"SLOVAKIA","Bratislava"},

 {"SLOVENIA","Ljuijana"}, {"SPAIN","Madrid"},

 {"SWEDEN","Stockholm"}, {"SWITZERLAND","Berne"},

 {"UNITED KINGDOM","London"}, {"VATICAN CITY","---"},

 // North and Central America

 {"ANTIGUA AND BARBUDA","Saint John's"},

 {"BAHAMAS","Nassau"},

 {"BARBADOS","Bridgetown"}, {"BELIZE","Belmopan"},

 {"CANADA","Ottawa"}, {"COSTA RICA","San Jose"},

 {"CUBA","Havana"}, {"DOMINICA","Roseau"},

 {"DOMINICAN REPUBLIC","Santo Domingo"},

 {"EL SALVADOR","San Salvador"},

 {"GRENADA","Saint George's"},

 {"GUATEMALA","Guatemala City"},

 {"HAITI","Port-au-Prince"},

 {"HONDURAS","Tegucigalpa"}, {"JAMAICA","Kingston"},

 {"MEXICO","Mexico City"}, {"NICARAGUA","Managua"},

 {"PANAMA","Panama City"}, {"ST. KITTS","-"},

 {"NEVIS","Basseterre"}, {"ST. LUCIA","Castries"},

 {"ST. VINCENT AND THE GRENADINES","Kingstown"},

 {"UNITED STATES OF AMERICA","Washington, D.C."},

 // South America

 {"ARGENTINA","Buenos Aires"},

 {"BOLIVIA","Sucre (legal)/La Paz(administrative)"},

 {"BRAZIL","Brasilia"}, {"CHILE","Santiago"},

 {"COLOMBIA","Bogota"}, {"ECUADOR","Quito"},

 {"GUYANA","Georgetown"}, {"PARAGUAY","Asuncion"},

 {"PERU","Lima"}, {"SURINAME","Paramaribo"},

 {"TRINIDAD AND TOBAGO","Port of Spain"},

 {"URUGUAY","Montevideo"}, {"VENEZUELA","Caracas"},

 };

 // Use AbstractMap by implementing entrySet()

800 Thinking in Java Bruce Eckel

 private static class FlyweightMap

 extends AbstractMap<String,String> {

 private static class Entry

 implements Map.Entry<String,String> {

 int index;

 Entry(int index) { this.index = index; }

 public boolean equals(Object o) {

 return DATA[index][0].equals(o);

 }

 public String getKey() { return DATA[index][0]; }

 public String getValue() { return DATA[index][1]; }

 public String setValue(String value) {

 throw new UnsupportedOperationException();

 }

 public int hashCode() {

 return DATA[index][0].hashCode();

 }

 }

 // Use AbstractSet by implementing size() & iterator()

 static class EntrySet

 extends AbstractSet<Map.Entry<String,String>> {

 private int size;

 EntrySet(int size) {

 if(size < 0)

 this.size = 0;

 // Can't be any bigger than the array:

 else if(size > DATA.length)

 this.size = DATA.length;

 else

 this.size = size;

 }

 public int size() { return size; }

 private class Iter

 implements Iterator<Map.Entry<String,String>> {

 // Only one Entry object per Iterator:

 private Entry entry = new Entry(-1);

 public boolean hasNext() {

 return entry.index < size - 1;

 }

 public Map.Entry<String,String> next() {

 entry.index++;

 return entry;

 }

 public void remove() {

Containers in Depth 801

 throw new UnsupportedOperationException();

 }

 }

 public

 Iterator<Map.Entry<String,String>> iterator() {

 return new Iter();

 }

 }

 private static Set<Map.Entry<String,String>> entries =

 new EntrySet(DATA.length);

 public Set<Map.Entry<String,String>> entrySet() {

 return entries;

 }

 }

 // Create a partial map of 'size' countries:

 static Map<String,String> select(final int size) {

 return new FlyweightMap() {

 public Set<Map.Entry<String,String>> entrySet() {

 return new EntrySet(size);

 }

 };

 }

 static Map<String,String> map = new FlyweightMap();

 public static Map<String,String> capitals() {

 return map; // The entire map

 }

 public static Map<String,String> capitals(int size) {

 return select(size); // A partial map

 }

 static List<String> names =

 new ArrayList<String>(map.keySet());

 // All the names:

 public static List<String> names() { return names; }

 // A partial list:

 public static List<String> names(int size) {

 return new ArrayList<String>(select(size).keySet());

 }

 public static void main(String[] args) {

 print(capitals(10));

 print(names(10));

 print(new HashMap<String,String>(capitals(3)));

 print(new LinkedHashMap<String,String>(capitals(3)));

 print(new TreeMap<String,String>(capitals(3)));

 print(new Hashtable<String,String>(capitals(3)));

802 Thinking in Java Bruce Eckel

 print(new HashSet<String>(names(6)));

 print(new LinkedHashSet<String>(names(6)));

 print(new TreeSet<String>(names(6)));

 print(new ArrayList<String>(names(6)));

 print(new LinkedList<String>(names(6)));

 print(capitals().get("BRAZIL"));

 }

} /* Output:

{ALGERIA=Algiers, ANGOLA=Luanda, BENIN=Porto-Novo,

BOTSWANA=Gaberone, BURKINA FASO=Ouagadougou,

BURUNDI=Bujumbura, CAMEROON=Yaounde, CAPE VERDE=Praia,

CENTRAL AFRICAN REPUBLIC=Bangui, CHAD=N'djamena}

[ALGERIA, ANGOLA, BENIN, BOTSWANA, BURKINA FASO, BURUNDI,

CAMEROON, CAPE VERDE, CENTRAL AFRICAN REPUBLIC, CHAD]

{ANGOLA=Luanda, ALGERIA=Algiers, BENIN=Porto-Novo}

{ALGERIA=Algiers, ANGOLA=Luanda, BENIN=Porto-Novo}

{ALGERIA=Algiers, ANGOLA=Luanda, BENIN=Porto-Novo}

{ALGERIA=Algiers, ANGOLA=Luanda, BENIN=Porto-Novo}

[ANGOLA, ALGERIA, BURKINA FASO, BENIN, BURUNDI, BOTSWANA]

[ALGERIA, ANGOLA, BENIN, BOTSWANA, BURKINA FASO, BURUNDI]

[ALGERIA, ANGOLA, BENIN, BOTSWANA, BURKINA FASO, BURUNDI]

[ALGERIA, ANGOLA, BENIN, BOTSWANA, BURKINA FASO, BURUNDI]

[ALGERIA, ANGOLA, BENIN, BOTSWANA, BURKINA FASO, BURUNDI]

Brasilia

*///:~

The two-dimensional array of String DATA is public so it can be used

elsewhere. FlyweightMap must implement the entrySet() method, which

requires both a custom Set implementation and a custom Map.Entry class.

Here’s part of the flyweight: each Map.Entry object simply stores its index,

rather than the actual key and value. When you call getKey() or

getValue(), it uses the index to return the appropriate DATA element. The

EntrySet ensures that its size is no bigger than DATA.

You can see the other part of the flyweight implemented in

EntrySet.Iterator. Instead of creating a Map.Entry object for each data

pair in DATA, there’s only one Map.Entry object per iterator. The Entry

object is used as a window into the data; it only contains an index into the

static array of strings. Every time you call next() for the iterator, the index

Containers in Depth 803

in the Entry is incremented so that it points to the next element pair, and

then that Iterator’s single Entry object is returned from next().3

The select() method produces a FlyweightMap containing an EntrySet

of the desired size, and this is used in the overloaded capitals() and

names() methods that you see demonstrated in main().

For some tests, the limited size of Countries is a problem. We can take the

same approach to produce initialized custom containers that have a data set

of any size. This class is a List that can be any size, and is (effectively) pre-

initialized with Integer data:

//: net/mindview/util/CountingIntegerList.java

// List of any length, containing sample data.

package net.mindview.util;

import java.util.*;

public class CountingIntegerList

extends AbstractList<Integer> {

 private int size;

 public CountingIntegerList(int size) {

 this.size = size < 0 ? 0 : size;

 }

 public Integer get(int index) {

 return Integer.valueOf(index);

 }

 public int size() { return size; }

 public static void main(String[] args) {

 System.out.println(new CountingIntegerList(30));

 }

} /* Output:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]

*///:~

To create a read-only List from an AbstractList, you must implement

get() and size(). Again, a flyweight solution is used: get() produces the

value when you ask for it, so the List doesn’t actually have to be populated.

3 The Maps in java.util perform bulk copies using getKey() and getValue() for
Maps, so this works. If a custom Map were to simply copy the entire Map.Entry then
this approach would cause a problem.

804 Thinking in Java Bruce Eckel

Here is a Map containing pre-initialized unique Integers and Strings; it

can also be any size:

//: net/mindview/util/CountingMapData.java

// Unlimited-length Map containing sample data.

package net.mindview.util;

import java.util.*;

public class CountingMapData

extends AbstractMap<Integer,String> {

 private int size;

 private static String[] chars =

 "A B C D E F G H I J K L M N O P Q R S T U V W X Y Z"

 .split(" ");

 public CountingMapData(int size) {

 if(size < 0) this.size = 0;

 else this.size = size;

 }

 private static class Entry

 implements Map.Entry<Integer,String> {

 int index;

 Entry(int index) { this.index = index; }

 public boolean equals(Object o) {

 return Integer.valueOf(index).equals(o);

 }

 public Integer getKey() { return index; }

 public String getValue() {

 return

 chars[index % chars.length] +

 Integer.toString(index / chars.length);

 }

 public String setValue(String value) {

 throw new UnsupportedOperationException();

 }

 public int hashCode() {

 return Integer.valueOf(index).hashCode();

 }

 }

 public Set<Map.Entry<Integer,String>> entrySet() {

 // LinkedHashSet retains initialization order:

 Set<Map.Entry<Integer,String>> entries =

 new LinkedHashSet<Map.Entry<Integer,String>>();

 for(int i = 0; i < size; i++)

 entries.add(new Entry(i));

Containers in Depth 805

 return entries;

 }

 public static void main(String[] args) {

 System.out.println(new CountingMapData(60));

 }

} /* Output:

{0=A0, 1=B0, 2=C0, 3=D0, 4=E0, 5=F0, 6=G0, 7=H0, 8=I0, 9=J0,

10=K0, 11=L0, 12=M0, 13=N0, 14=O0, 15=P0, 16=Q0, 17=R0,

18=S0, 19=T0, 20=U0, 21=V0, 22=W0, 23=X0, 24=Y0, 25=Z0,

26=A1, 27=B1, 28=C1, 29=D1, 30=E1, 31=F1, 32=G1, 33=H1,

34=I1, 35=J1, 36=K1, 37=L1, 38=M1, 39=N1, 40=O1, 41=P1,

42=Q1, 43=R1, 44=S1, 45=T1, 46=U1, 47=V1, 48=W1, 49=X1,

50=Y1, 51=Z1, 52=A2, 53=B2, 54=C2, 55=D2, 56=E2, 57=F2,

58=G2, 59=H2}

*///:~

Here, a LinkedHashSet is used instead of creating a custom Set class, so

the flyweight is not fully implemented.

Exercise 1: (1) Create a List (try both ArrayList and LinkedList) and
fill it using Countries. Sort the list and print it, then apply
Collections.shuffle() to the list repeatedly, printing it each time so that
you can see how the shuffle() method randomizes the list differently each
time.

Exercise 2: (2) Produce a Map and a Set containing all the countries that
begin with ‘A’.

Exercise 3: (1) Using Countries, fill a Set multiple times with the same
data and verify that the Set ends up with only one of each instance. Try this
with HashSet, LinkedHashSet, and TreeSet.

Exercise 4: (2) Create a Collection initializer that opens a file and breaks
it into words using TextFile, and then uses the words as the source of data
for the resulting Collection. Demonstrate that it works.

Exercise 5: (3) Modify CountingMapData.java to fully implement the
flyweight by adding a custom EntrySet class like the one in
Countries.java.

Collection functionality
The following table shows everything you can do with a Collection (not

including the methods that automatically come through with Object), and

thus, everything you can do with a Set or a List. (List also has additional

806 Thinking in Java Bruce Eckel

functionality.) Maps are not inherited from Collection and will be treated

separately.

boolean add(T) Ensures that the container holds the
argument which is of generic type T.
Returns false if it doesn’t add the
argument. (This is an “optional” method,
described in the next section.)

boolean addAll(
Collection<? extends T>)

Adds all the elements in the argument.
Returns true if any elements were
added. (“Optional.”)

void clear() Removes all the elements in the
container. (“Optional.”)

boolean contains(T) true if the container holds the argument
which is of generic type T.

Boolean containsAll(
Collection<?>)

true if the container holds all the
elements in the argument.

boolean isEmpty() true if the container has no elements.

Iterator<T> iterator() Returns an Iterator<T> that you can
use to move through the elements in the
container.

Boolean
remove(Object)

If the argument is in the container, one
instance of that element is removed.
Returns true if a removal occurred.
(“Optional.”)

boolean removeAll(
Collection<?>)

Removes all the elements that are
contained in the argument. Returns true
if any removals occurred. (“Optional.”)

Boolean retainAll(
Collection<?>)

Retains only elements that are contained
in the argument (an “intersection,” from
set theory). Returns true if any changes
occurred. (“Optional.”)

int size() Returns the number of elements in the
container.

Object[] toArray() Returns an array containing all the
elements in the container.

<T> T[] toArray(T[] a) Returns an array containing all the
elements in the container. The runtime
type of the result is that of the argument

Containers in Depth 807

array a rather than plain Object.

Notice that there’s no get() method for random-access element selection.

That’s because Collection also includes Set, which maintains its own

internal ordering (and thus makes random-access lookup meaningless).

Thus, if you want to examine the elements of a Collection, you must use an

iterator.

The following example demonstrates all of these methods. Although these

methods work with anything that implements Collection, an ArrayList is

used as a “least-common denominator”:

//: containers/CollectionMethods.java

// Things you can do with all Collections.

import java.util.*;

import net.mindview.util.*;

import static net.mindview.util.Print.*;

public class CollectionMethods {

 public static void main(String[] args) {

 Collection<String> c = new ArrayList<String>();

 c.addAll(Countries.names(6));

 c.add("ten");

 c.add("eleven");

 print(c);

 // Make an array from the List:

 Object[] array = c.toArray();

 // Make a String array from the List:

 String[] str = c.toArray(new String[0]);

 // Find max and min elements; this means

 // different things depending on the way

 // the Comparable interface is implemented:

 print("Collections.max(c) = " + Collections.max(c));

 print("Collections.min(c) = " + Collections.min(c));

 // Add a Collection to another Collection

 Collection<String> c2 = new ArrayList<String>();

 c2.addAll(Countries.names(6));

 c.addAll(c2);

 print(c);

 c.remove(Countries.DATA[0][0]);

 print(c);

 c.remove(Countries.DATA[1][0]);

 print(c);

 // Remove all components that are

808 Thinking in Java Bruce Eckel

 // in the argument collection:

 c.removeAll(c2);

 print(c);

 c.addAll(c2);

 print(c);

 // Is an element in this Collection?

 String val = Countries.DATA[3][0];

 print("c.contains(" + val + ") = " + c.contains(val));

 // Is a Collection in this Collection?

 print("c.containsAll(c2) = " + c.containsAll(c2));

 Collection<String> c3 =

 ((List<String>)c).subList(3, 5);

 // Keep all the elements that are in both

 // c2 and c3 (an intersection of sets):

 c2.retainAll(c3);

 print(c2);

 // Throw away all the elements

 // in c2 that also appear in c3:

 c2.removeAll(c3);

 print("c2.isEmpty() = " + c2.isEmpty());

 c = new ArrayList<String>();

 c.addAll(Countries.names(6));

 print(c);

 c.clear(); // Remove all elements

 print("after c.clear():" + c);

 }

} /* Output:

[ALGERIA, ANGOLA, BENIN, BOTSWANA, BURKINA FASO, BURUNDI,

ten, eleven]

Collections.max(c) = ten

Collections.min(c) = ALGERIA

[ALGERIA, ANGOLA, BENIN, BOTSWANA, BURKINA FASO, BURUNDI,

ten, eleven, ALGERIA, ANGOLA, BENIN, BOTSWANA, BURKINA FASO,

BURUNDI]

[ANGOLA, BENIN, BOTSWANA, BURKINA FASO, BURUNDI, ten,

eleven, ALGERIA, ANGOLA, BENIN, BOTSWANA, BURKINA FASO,

BURUNDI]

[BENIN, BOTSWANA, BURKINA FASO, BURUNDI, ten, eleven,

ALGERIA, ANGOLA, BENIN, BOTSWANA, BURKINA FASO, BURUNDI]

[ten, eleven]

[ten, eleven, ALGERIA, ANGOLA, BENIN, BOTSWANA, BURKINA

FASO, BURUNDI]

c.contains(BOTSWANA) = true

c.containsAll(c2) = true

Containers in Depth 809

[ANGOLA, BENIN]

c2.isEmpty() = true

[ALGERIA, ANGOLA, BENIN, BOTSWANA, BURKINA FASO, BURUNDI]

after c.clear():[]

*///:~

ArrayLists are created containing different sets of data and upcast to

Collection objects, so it’s clear that nothing other than the Collection

interface is being used. main() uses simple exercises to show all of the

methods in Collection.

Subsequent sections in this chapter describe the various implementations of

List, Set, and Map and indicate in each case (with an asterisk) which one

should be your default choice. Descriptions of the legacy classes Vector,

Stack, and Hashtable are delayed to the end of the chapter—although you

shouldn’t use these classes, you will see them in old code.

Optional operations
The methods that perform various kinds of addition and removal are optional

operations in the Collection interface. This means that the implementing

class is not required to provide functioning definitions for these methods.

This is a very unusual way to define an interface. As you’ve seen, an interface

is a contract in object-oriented design. It says, “No matter how you choose to

implement this interface, I guarantee that you can send these messages to

this object.”4 But an “optional” operation violates this very fundamental

principle; it says that calling some methods will not perform meaningful

behavior. Instead, they will throw exceptions! It appears that compile-time

type safety is discarded.

It’s not quite that bad. If an operation is optional, the compiler still restricts

you to calling only the methods in that interface. It’s not like a dynamic

language, in which you can call any method for any object, and find out at run

time whether a particular call will work.5 In addition, most methods that take

4 I am using the term “interface” here to describe both the formal interface keyword and
the more general meaning of “the methods supported by any class or subclass.”

5 Although this sounds odd and possibly useless when I describe it this way, you’ve seen,
especially in the Type Information chapter, that this kind of dynamic behavior can be very
powerful.

810 Thinking in Java Bruce Eckel

a Collection as an argument only read from that Collection, and all the

“read” methods of Collection are not optional.

Why would you define methods as “optional”? Doing so prevents an

explosion of interfaces in the design. Other designs for container libraries

always seem to end up with a confusing plethora of interfaces to describe

each of the variations on the main theme. It’s not even possible to capture all

of the special cases in interfaces, because someone can always invent a new

interface. The “unsupported operation” approach achieves an important goal

of the Java containers library: The containers are simple to learn and use.

Unsupported operations are a special case that can be delayed until

necessary. For this approach to work, however:

1. The UnsupportedOperationException must be a rare event.

That is, for most classes, all operations should work, and only in

special cases should an operation be unsupported. This is true in

the Java containers library, since the classes you’ll use 99 percent

of the time—ArrayList, LinkedList, HashSet, and HashMap,

as well as the other concrete implementations—support all of the

operations. The design does provide a “back door” if you want to

create a new Collection without providing meaningful definitions

for all the methods in the Collection interface, and yet still fit it

into the existing library.

2. When an operation is unsupported, there should be reasonable

likelihood that an UnsupportedOperationException will

appear at implementation time, rather than after you’ve shipped

the product to the customer. After all, it indicates a programming

error: You’ve used an implementation incorrectly.

It’s worth noting that unsupported operations are only detectable at run time,

and therefore represent dynamic type checking. If you’re coming from a

statically typed language like C++, Java might appear to be just another

statically typed language. Java certainly has static type checking, but it also

has a significant amount of dynamic typing, so it’s hard to say that it’s exactly

one type of language or another. Once you begin to notice this, you’ll start to

see other examples of dynamic type checking in Java.

Containers in Depth 811

Unsupported operations
A common source of unsupported operations involves a container backed by

a fixed-sized data structure. You get such a container when you turn an array

into a List with the Arrays.asList() method. You can also choose to make

any container (including a Map) throw

UnsupportedOperationExceptions by using the “unmodifiable” methods

in the Collections class. This example shows both cases:

//: containers/Unsupported.java

// Unsupported operations in Java containers.

import java.util.*;

public class Unsupported {

 static void test(String msg, List<String> list) {

 System.out.println("--- " + msg + " ---");

 Collection<String> c = list;

 Collection<String> subList = list.subList(1,8);

 // Copy of the sublist:

 Collection<String> c2 = new ArrayList<String>(subList);

 try { c.retainAll(c2); } catch(Exception e) {

 System.out.println("retainAll(): " + e);

 }

 try { c.removeAll(c2); } catch(Exception e) {

 System.out.println("removeAll(): " + e);

 }

 try { c.clear(); } catch(Exception e) {

 System.out.println("clear(): " + e);

 }

 try { c.add("X"); } catch(Exception e) {

 System.out.println("add(): " + e);

 }

 try { c.addAll(c2); } catch(Exception e) {

 System.out.println("addAll(): " + e);

 }

 try { c.remove("C"); } catch(Exception e) {

 System.out.println("remove(): " + e);

 }

 // The List.set() method modifies the value but

 // doesn't change the size of the data structure:

 try {

 list.set(0, "X");

 } catch(Exception e) {

 System.out.println("List.set(): " + e);

812 Thinking in Java Bruce Eckel

 }

 }

 public static void main(String[] args) {

 List<String> list =

 Arrays.asList("A B C D E F G H I J K L".split(" "));

 test("Modifiable Copy", new ArrayList<String>(list));

 test("Arrays.asList()", list);

 test("unmodifiableList()",

 Collections.unmodifiableList(

 new ArrayList<String>(list)));

 }

} /* Output:

--- Modifiable Copy ---

--- Arrays.asList() ---

retainAll(): java.lang.UnsupportedOperationException

removeAll(): java.lang.UnsupportedOperationException

clear(): java.lang.UnsupportedOperationException

add(): java.lang.UnsupportedOperationException

addAll(): java.lang.UnsupportedOperationException

remove(): java.lang.UnsupportedOperationException

--- unmodifiableList() ---

retainAll(): java.lang.UnsupportedOperationException

removeAll(): java.lang.UnsupportedOperationException

clear(): java.lang.UnsupportedOperationException

add(): java.lang.UnsupportedOperationException

addAll(): java.lang.UnsupportedOperationException

remove(): java.lang.UnsupportedOperationException

List.set(): java.lang.UnsupportedOperationException

*///:~

Because Arrays.asList() produces a List that is backed by a fixed-size

array, it makes sense that the only supported operations are the ones that

don’t change the size of the array. Any method that would cause a change to

the size of the underlying data structure produces an

UnsupportedOperationException, to indicate a call to an unsupported

method (a programming error).

Note that you can always pass the result of Arrays.asList() as a constructor

argument to any Collection (or use the addAll() method, or the

Collections.addAll() static method) in order to create a regular container

that allows the use of all the methods—this is shown in the first call to test()

in main(). Such a call produces a new resizable underlying data structure.

Containers in Depth 813

The “unmodifiable” methods in the Collections class wrap the container in a

proxy that produces an UnsupportedOperationException if you perform

any operation that modifies the container in any way. The goal of using these

methods is to produce a “constant” container object. The full list of

“unmodifiable” Collections methods is described later.

The last try block in test() examines the set() method that’s part of List.

This is interesting, because you can see how the granularity of the

“unsupported operation” technique comes in handy—the resulting “interface”

can vary by one method between the object returned by Arrays.asList()

and that returned by Collections.unmodifiableList(). Arrays.asList()

returns a fixed-sized List, whereas Collections.unmodifiableList()

produces a list that cannot be changed. As you can see from the output, it’s

OK to modify the elements in the List returned by Arrays.asList(),

because this would not violate the “fixed-sized” nature of that List. But

clearly, the result of unmodifiableList() should not be modifiable in any

way. If interfaces were used, this would have required two additional

interfaces, one with a working set() method and one without. Additional

interfaces would be required for various unmodifiable subtypes of

Collection.

The documentation for a method that takes a container as an argument

should specify which of the optional methods must be implemented.

Exercise 6: (2) Note that List has additional “optional” operations that
are not included in Collection. Write a version of Unsupported.java that
tests these additional optional operations.

List functionality
As you’ve seen, the basic List is quite simple to use: Most of the time you just

call add() to insert objects, use get() to get them out one at a time, and call

iterator() to get an Iterator for the sequence.

The methods in the following example each cover a different group of

activities: things that every List can do (basicTest()), moving around with

an Iterator (iterMotion()) versus changing things with an Iterator

(iterManipulation()), seeing the effects of List manipulation

(testVisual()), and operations available only to LinkedLists:

//: containers/Lists.java

// Things you can do with Lists.

814 Thinking in Java Bruce Eckel

import java.util.*;

import net.mindview.util.*;

import static net.mindview.util.Print.*;

public class Lists {

 private static boolean b;

 private static String s;

 private static int i;

 private static Iterator<String> it;

 private static ListIterator<String> lit;

 public static void basicTest(List<String> a) {

 a.add(1, "x"); // Add at location 1

 a.add("x"); // Add at end

 // Add a collection:

 a.addAll(Countries.names(25));

 // Add a collection starting at location 3:

 a.addAll(3, Countries.names(25));

 b = a.contains("1"); // Is it in there?

 // Is the entire collection in there?

 b = a.containsAll(Countries.names(25));

 // Lists allow random access, which is cheap

 // for ArrayList, expensive for LinkedList:

 s = a.get(1); // Get (typed) object at location 1

 i = a.indexOf("1"); // Tell index of object

 b = a.isEmpty(); // Any elements inside?

 it = a.iterator(); // Ordinary Iterator

 lit = a.listIterator(); // ListIterator

 lit = a.listIterator(3); // Start at loc 3

 i = a.lastIndexOf("1"); // Last match

 a.remove(1); // Remove location 1

 a.remove("3"); // Remove this object

 a.set(1, "y"); // Set location 1 to "y"

 // Keep everything that's in the argument

 // (the intersection of the two sets):

 a.retainAll(Countries.names(25));

 // Remove everything that's in the argument:

 a.removeAll(Countries.names(25));

 i = a.size(); // How big is it?

 a.clear(); // Remove all elements

 }

 public static void iterMotion(List<String> a) {

 ListIterator<String> it = a.listIterator();

 b = it.hasNext();

 b = it.hasPrevious();

Containers in Depth 815

 s = it.next();

 i = it.nextIndex();

 s = it.previous();

 i = it.previousIndex();

 }

 public static void iterManipulation(List<String> a) {

 ListIterator<String> it = a.listIterator();

 it.add("47");

 // Must move to an element after add():

 it.next();

 // Remove the element after the newly produced one:

 it.remove();

 // Must move to an element after remove():

 it.next();

 // Change the element after the deleted one:

 it.set("47");

 }

 public static void testVisual(List<String> a) {

 print(a);

 List<String> b = Countries.names(25);

 print("b = " + b);

 a.addAll(b);

 a.addAll(b);

 print(a);

 // Insert, remove, and replace elements

 // using a ListIterator:

 ListIterator<String> x = a.listIterator(a.size()/2);

 x.add("one");

 print(a);

 print(x.next());

 x.remove();

 print(x.next());

 x.set("47");

 print(a);

 // Traverse the list backwards:

 x = a.listIterator(a.size());

 while(x.hasPrevious())

 printnb(x.previous() + " ");

 print();

 print("testVisual finished");

 }

 // There are some things that only LinkedLists can do:

 public static void testLinkedList() {

 LinkedList<String> ll = new LinkedList<String>();

816 Thinking in Java Bruce Eckel

 ll.addAll(Countries.names(25));

 print(ll);

 // Treat it like a stack, pushing:

 ll.addFirst("one");

 ll.addFirst("two");

 print(ll);

 // Like "peeking" at the top of a stack:

 print(ll.getFirst());

 // Like popping a stack:

 print(ll.removeFirst());

 print(ll.removeFirst());

 // Treat it like a queue, pulling elements

 // off the tail end:

 print(ll.removeLast());

 print(ll);

 }

 public static void main(String[] args) {

 // Make and fill a new list each time:

 basicTest(

 new LinkedList<String>(Countries.names(25)));

 basicTest(

 new ArrayList<String>(Countries.names(25)));

 iterMotion(

 new LinkedList<String>(Countries.names(25)));

 iterMotion(

 new ArrayList<String>(Countries.names(25)));

 iterManipulation(

 new LinkedList<String>(Countries.names(25)));

 iterManipulation(

 new ArrayList<String>(Countries.names(25)));

 testVisual(

 new LinkedList<String>(Countries.names(25)));

 testLinkedList();

 }

} /* (Execute to see output) *///:~

In basicTest() and iterMotion() the calls are made in order to show the

proper syntax, and although the return value is captured, it is not used. In

some cases, the return value isn’t captured at all. You should look up the full

usage of each of these methods in the JDK documentation before you use

them.

Exercise 7: (4) Create both an ArrayList and a LinkedList, and fill
each using the Countries.names() generator. Print each list using an

Containers in Depth 817

ordinary Iterator, then insert one list into the other by using a
ListIterator, inserting at every other location. Now perform the insertion
starting at the end of the first list and moving backward.

Exercise 8: (7) Create a generic, singly linked list class called SList,
which, to keep things simple, does not implement the List interface. Each
Link object in the list should contain a reference to the next element in the
list, but not the previous one (LinkedList, in contrast, is a doubly linked list,
which means it maintains links in both directions). Create your own
SListIterator which, again for simplicity, does not implement
ListIterator. The only method in SList other than toString() should be
iterator(), which produces an SListIterator. The only way to insert and
remove elements from an SList is through SListIterator. Write code to
demonstrate SList.

Sets and storage order
The Set examples in the Holding Your Objects chapter provide a good

introduction to the operations that can be performed with basic Sets.

However, those examples conveniently use predefined Java types such as

Integer and String, which were designed to be usable inside containers.

When creating your own types, be aware that a Set needs a way to maintain

storage order. How the storage order is maintained varies from one

implementation of Set to another. Thus, different Set implementations not

only have different behaviors, they have different requirements for the type of

object that you can put into a particular Set:

Set (interface) Each element that you add to the Set must be
unique; otherwise, the Set doesn’t add the
duplicate element. Elements added to a Set must
at least define equals() to establish object
uniqueness. Set has exactly the same interface as
Collection. The Set interface does not guarantee
that it will maintain its elements in any particular
order.

HashSet* For Sets where fast lookup time is important.
Elements must also define hashCode().

TreeSet An ordered Set backed by a tree. This way, you
can extract an ordered sequence from a Set.
Elements must also implement the Comparable
interface.

LinkedHashSet Has the lookup speed of a HashSet, but

818 Thinking in Java Bruce Eckel

 internally maintains the order in which you add
the elements (the insertion order) using a linked
list. Thus, when you iterate through the Set, the
results appear in insertion order. Elements must
also define hashCode().

The asterisk on HashSet indicates that, in the absence of other constraints,

this should be your default choice because it is optimized for speed.

Defining hashCode() will be described later in this chapter. You must

create an equals() for both hashed and tree storage, but the hashCode()

is necessary only if the class will be placed in a HashSet (which is likely,

since that should generally be your first choice as a Set implementation) or

LinkedHashSet. However, for good programming style, you should always

override hashCode() when you override equals().

This example demonstrates the methods that must be defined in order to

successfully use a type with a particular Set implementation:

//: containers/TypesForSets.java

// Methods necessary to put your own type in a Set.

import java.util.*;

class SetType {

 int i;

 public SetType(int n) { i = n; }

 public boolean equals(Object o) {

 return o instanceof SetType && (i == ((SetType)o).i);

 }

 public String toString() { return Integer.toString(i); }

}

class HashType extends SetType {

 public HashType(int n) { super(n); }

 public int hashCode() { return i; }

}

class TreeType extends SetType

implements Comparable<TreeType> {

 public TreeType(int n) { super(n); }

 public int compareTo(TreeType arg) {

 return (arg.i < i ? -1 : (arg.i == i ? 0 : 1));

 }

}

Containers in Depth 819

public class TypesForSets {

 static <T> Set<T> fill(Set<T> set, Class<T> type) {

 try {

 for(int i = 0; i < 10; i++)

 set.add(

 type.getConstructor(int.class).newInstance(i));

 } catch(Exception e) {

 throw new RuntimeException(e);

 }

 return set;

 }

 static <T> void test(Set<T> set, Class<T> type) {

 fill(set, type);

 fill(set, type); // Try to add duplicates

 fill(set, type);

 System.out.println(set);

 }

 public static void main(String[] args) {

 test(new HashSet<HashType>(), HashType.class);

 test(new LinkedHashSet<HashType>(), HashType.class);

 test(new TreeSet<TreeType>(), TreeType.class);

 // Things that don't work:

 test(new HashSet<SetType>(), SetType.class);

 test(new HashSet<TreeType>(), TreeType.class);

 test(new LinkedHashSet<SetType>(), SetType.class);

 test(new LinkedHashSet<TreeType>(), TreeType.class);

 try {

 test(new TreeSet<SetType>(), SetType.class);

 } catch(Exception e) {

 System.out.println("Expected: " + e.getMessage());

 }

 try {

 test(new TreeSet<HashType>(), HashType.class);

 } catch(Exception e) {

 System.out.println("Expected: " + e.getMessage());

 }

 }

} /* Output: (Sample)

[2, 4, 9, 8, 6, 1, 3, 7, 5, 0]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

[9, 9, 7, 5, 1, 2, 6, 3, 0, 7, 2, 4, 4, 7, 9, 1, 3, 6, 2, 4,

3, 0, 5, 0, 8, 8, 8, 6, 5, 1]

820 Thinking in Java Bruce Eckel

[0, 5, 5, 6, 5, 0, 3, 1, 9, 8, 4, 2, 3, 9, 7, 3, 4, 4, 0, 7,

1, 9, 6, 2, 1, 8, 2, 8, 6, 7]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Expected: java.lang.ClassCastException: SetType cannot be

cast to java.lang.Comparable

Expected: java.lang.ClassCastException: HashType cannot be

cast to java.lang.Comparable

*///:~

In order to prove which methods are necessary for a particular Set and at the

same time to avoid code duplication, three classes are created. The base class,

SetType, simply stores an int, and produces it via toString(). Since all

classes stored in Sets must have an equals(), that method is also placed in

the base class. Equality is based on the value of the int i.

HashType inherits from SetType and adds the hashCode() method

necessary for an object to be placed in a hashed implementation of a Set.

The Comparable interface, implemented by TreeType, is necessary if an

object is to be used in any kind of sorted container, such as a SortedSet (of

which TreeSet is the only implementation). In compareTo(), note that I

did not use the “simple and obvious” form return i-i2. Although this is a

common programming error, it would only work properly if i and i2 were

“unsigned” ints (if Java had an “unsigned” keyword, which it does not). It

breaks for Java’s signed int, which is not big enough to represent the

difference of two signed ints. If i is a large positive integer and j is a large

negative integer, i-j will overflow and return a negative value, which will not

work.

You’ll usually want the compareTo() method to produce a natural ordering

that is consistent with the equals() method. If equals() produces true for

a particular comparison, then compareTo() should produce a zero result

for that comparison, and if equals() produces false for a comparison then

compareTo() should produce a nonzero result for that comparison.

In TypesForSets, both fill() and test() are defined using generics, in

order to prevent code duplication. To verify the behavior of a Set, test()

calls fill() on the test set three times, attempting to introduce duplicate

objects. The fill() method takes a Set of any type, and a Class object of the

Containers in Depth 821

same type. It uses the Class object to discover the constructor that takes an

int argument, and calls that constructor to add elements to the Set.

From the output, you can see that the HashSet keeps the elements in some

mysterious order (which will be made clear later in the chapter), the

LinkedHashSet keeps the elements in the order in which they were

inserted, and the TreeSet maintains the elements in sorted order (because of

the way that compareTo() is implemented, this happens to be descending

order).

If we try to use types that don’t properly support the necessary operations

with Sets that require those operations, things go very wrong. Placing a

SetType or TreeType object, which doesn’t include a redefined

hashCode() method, into any hashed implementations results in duplicate

values, so the primary contract of the Set is violated. This is rather disturbing

because there’s not even a runtime error. However, the default hashCode()

is legitimate and so this is legal behavior, even if it’s incorrect. The only

reliable way to ensure the correctness of such a program is to incorporate unit

tests into your build system.

If you try to use a type that doesn’t implement Comparable in a TreeSet,

you get a more definitive result: An exception is thrown when the TreeSet

attempts to use the object as a Comparable.

SortedSet
The elements in a SortedSet are guaranteed to be in sorted order, which

allows additional functionality to be provided with the following methods

that are in the SortedSet interface:

Comparator comparator(): Produces the Comparator used for this

Set, or null for natural ordering.

Object first(): Produces the lowest element.

Object last(): Produces the highest element.

SortedSet subSet(fromElement, toElement): Produces a view of

this Set with elements from fromElement, inclusive, to toElement,

exclusive.

SortedSet headSet(toElement): Produces a view of this Set with

elements less than toElement.

SortedSet tailSet(fromElement): Produces a view of this Set with

elements greater than or equal to fromElement.

822 Thinking in Java Bruce Eckel

Here’s a simple demonstration:

//: containers/SortedSetDemo.java

// What you can do with a TreeSet.

import java.util.*;

import static net.mindview.util.Print.*;

public class SortedSetDemo {

 public static void main(String[] args) {

 SortedSet<String> sortedSet = new TreeSet<String>();

 Collections.addAll(sortedSet,

 "one two three four five six seven eight"

 .split(" "));

 print(sortedSet);

 String low = sortedSet.first();

 String high = sortedSet.last();

 print(low);

 print(high);

 Iterator<String> it = sortedSet.iterator();

 for(int i = 0; i <= 6; i++) {

 if(i == 3) low = it.next();

 if(i == 6) high = it.next();

 else it.next();

 }

 print(low);

 print(high);

 print(sortedSet.subSet(low, high));

 print(sortedSet.headSet(high));

 print(sortedSet.tailSet(low));

 }

} /* Output:

[eight, five, four, one, seven, six, three, two]

eight

two

one

two

[one, seven, six, three]

[eight, five, four, one, seven, six, three]

[one, seven, six, three, two]

*///:~

Note that SortedSet means “sorted according to the comparison function of

the object,” not “insertion order.” Insertion order can be preserved using a

LinkedHashSet.

Containers in Depth 823

Exercise 9: (2) Use RandomGenerator.String to fill a TreeSet, but
use alphabetic ordering. Print the TreeSet to verify the sort order.

Exercise 10: (7) Using a LinkedList as your underlying
implementation, define your own SortedSet.

Queues
Other than concurrency applications, the only two Java SE5 implementations

of Queue are LinkedList and PriorityQueue, which are differentiated by

ordering behavior rather than performance. Here’s a basic example that

involves most of the Queue implementations (not all of them will work in

this example), including the concurrency-based Queues. You place elements

in one end and extract them from the other:

//: containers/QueueBehavior.java

// Compares the behavior of some of the queues

import java.util.concurrent.*;

import java.util.*;

import net.mindview.util.*;

public class QueueBehavior {

 private static int count = 10;

 static <T> void test(Queue<T> queue, Generator<T> gen) {

 for(int i = 0; i < count; i++)

 queue.offer(gen.next());

 while(queue.peek() != null)

 System.out.print(queue.remove() + " ");

 System.out.println();

 }

 static class Gen implements Generator<String> {

 String[] s = ("one two three four five six seven " +

 "eight nine ten").split(" ");

 int i;

 public String next() { return s[i++]; }

 }

 public static void main(String[] args) {

 test(new LinkedList<String>(), new Gen());

 test(new PriorityQueue<String>(), new Gen());

 test(new ArrayBlockingQueue<String>(count), new Gen());

 test(new ConcurrentLinkedQueue<String>(), new Gen());

 test(new LinkedBlockingQueue<String>(), new Gen());

 test(new PriorityBlockingQueue<String>(), new Gen());

 }

824 Thinking in Java Bruce Eckel

} /* Output:

one two three four five six seven eight nine ten

eight five four nine one seven six ten three two

one two three four five six seven eight nine ten

one two three four five six seven eight nine ten

one two three four five six seven eight nine ten

eight five four nine one seven six ten three two

*///:~

You can see that, with the exception of the priority queues, a Queue will

produce elements in exactly the same order as they are placed in the Queue.

Priority queues
Priority queues were given a simple introduction in the Holding Your Objects

chapter. A more interesting problem is a to-do list, where each object

contains a string and a primary and secondary priority value. The ordering of

this list is again controlled by implementing Comparable:

//: containers/ToDoList.java

// A more complex use of PriorityQueue.

import java.util.*;

class ToDoList extends PriorityQueue<ToDoList.ToDoItem> {

 static class ToDoItem implements Comparable<ToDoItem> {

 private char primary;

 private int secondary;

 private String item;

 public ToDoItem(String td, char pri, int sec) {

 primary = pri;

 secondary = sec;

 item = td;

 }

 public int compareTo(ToDoItem arg) {

 if(primary > arg.primary)

 return +1;

 if(primary == arg.primary)

 if(secondary > arg.secondary)

 return +1;

 else if(secondary == arg.secondary)

 return 0;

 return -1;

 }

 public String toString() {

Containers in Depth 825

 return Character.toString(primary) +

 secondary + ": " + item;

 }

 }

 public void add(String td, char pri, int sec) {

 super.add(new ToDoItem(td, pri, sec));

 }

 public static void main(String[] args) {

 ToDoList toDoList = new ToDoList();

 toDoList.add("Empty trash", 'C', 4);

 toDoList.add("Feed dog", 'A', 2);

 toDoList.add("Feed bird", 'B', 7);

 toDoList.add("Mow lawn", 'C', 3);

 toDoList.add("Water lawn", 'A', 1);

 toDoList.add("Feed cat", 'B', 1);

 while(!toDoList.isEmpty())

 System.out.println(toDoList.remove());

 }

} /* Output:

A1: Water lawn

A2: Feed dog

B1: Feed cat

B7: Feed bird

C3: Mow lawn

C4: Empty trash

*///:~

You can see how the ordering of the items happens automatically because of

the priority queue.

Exercise 11: (2) Create a class that contains an Integer that is initialized
to a value between 0 and 100 using java.util.Random. Implement
Comparable using this Integer field. Fill a PriorityQueue with objects of
your class, and extract the values using poll() to show that it produces the
expected order.

Deques
A deque (double-ended queue) is like a queue, but you can add and remove

elements from either end. There are methods in LinkedList that support

deque operations, but there is no explicit interface for a deque in the Java

standard libraries. Thus, LinkedList cannot implement this interface and

you cannot upcast to a Deque interface as you can to a Queue in the

826 Thinking in Java Bruce Eckel

previous example. However, you can create a Deque class using

composition, and simply expose the relevant methods from LinkedList:

//: net/mindview/util/Deque.java

// Creating a Deque from a LinkedList.

package net.mindview.util;

import java.util.*;

public class Deque<T> {

 private LinkedList<T> deque = new LinkedList<T>();

 public void addFirst(T e) { deque.addFirst(e); }

 public void addLast(T e) { deque.addLast(e); }

 public T getFirst() { return deque.getFirst(); }

 public T getLast() { return deque.getLast(); }

 public T removeFirst() { return deque.removeFirst(); }

 public T removeLast() { return deque.removeLast(); }

 public int size() { return deque.size(); }

 public String toString() { return deque.toString(); }

 // And other methods as necessary...

} ///:~

If you put this Deque to use in your own programs, you may discover that

you need to add other methods in order to make it practical.

Here’s a simple test of the Deque class:

//: containers/DequeTest.java

import net.mindview.util.*;

import static net.mindview.util.Print.*;

public class DequeTest {

 static void fillTest(Deque<Integer> deque) {

 for(int i = 20; i < 27; i++)

 deque.addFirst(i);

 for(int i = 50; i < 55; i++)

 deque.addLast(i);

 }

 public static void main(String[] args) {

 Deque<Integer> di = new Deque<Integer>();

 fillTest(di);

 print(di);

 while(di.size() != 0)

 printnb(di.removeFirst() + " ");

 print();

 fillTest(di);

Containers in Depth 827

 while(di.size() != 0)

 printnb(di.removeLast() + " ");

 }

} /* Output:

[26, 25, 24, 23, 22, 21, 20, 50, 51, 52, 53, 54]

26 25 24 23 22 21 20 50 51 52 53 54

54 53 52 51 50 20 21 22 23 24 25 26

*///:~

It’s less likely that you’ll put elements in and take them out at both ends, so

Deque is not as commonly used as Queue.

Understanding Maps
As you learned in the Holding Your Objects chapter, the basic idea of a map

(also called an associative array) is that it maintains key-value associations

(pairs) so you can look up a value using a key. The standard Java library

contains different basic implementations of Maps: HashMap, TreeMap,

LinkedHashMap, WeakHashMap, ConcurrentHashMap, and

IdentityHashMap. They all have the same basic Map interface, but they

differ in behaviors including efficiency, the order in which the pairs are held

and presented, how long the objects are held by the map, how the map works

in multithreaded programs, and how key equality is determined. The number

of implementations of the Map interface should tell you something about the

importance of this tool.

So you can gain a deeper understanding of Maps, it is helpful to look at how

an associative array is constructed. Here is an extremely simple

implementation:

//: containers/AssociativeArray.java

// Associates keys with values.

import static net.mindview.util.Print.*;

public class AssociativeArray<K,V> {

 private Object[][] pairs;

 private int index;

 public AssociativeArray(int length) {

 pairs = new Object[length][2];

 }

 public void put(K key, V value) {

 if(index >= pairs.length)

 throw new ArrayIndexOutOfBoundsException();

828 Thinking in Java Bruce Eckel

 pairs[index++] = new Object[]{ key, value };

 }

 @SuppressWarnings("unchecked")

 public V get(K key) {

 for(int i = 0; i < index; i++)

 if(key.equals(pairs[i][0]))

 return (V)pairs[i][1];

 return null; // Did not find key

 }

 public String toString() {

 StringBuilder result = new StringBuilder();

 for(int i = 0; i < index; i++) {

 result.append(pairs[i][0].toString());

 result.append(" : ");

 result.append(pairs[i][1].toString());

 if(i < index - 1)

 result.append("\n");

 }

 return result.toString();

 }

 public static void main(String[] args) {

 AssociativeArray<String,String> map =

 new AssociativeArray<String,String>(6);

 map.put("sky", "blue");

 map.put("grass", "green");

 map.put("ocean", "dancing");

 map.put("tree", "tall");

 map.put("earth", "brown");

 map.put("sun", "warm");

 try {

 map.put("extra", "object"); // Past the end

 } catch(ArrayIndexOutOfBoundsException e) {

 print("Too many objects!");

 }

 print(map);

 print(map.get("ocean"));

 }

} /* Output:

Too many objects!

sky : blue

grass : green

ocean : dancing

tree : tall

earth : brown

Containers in Depth 829

sun : warm

dancing

*///:~

The essential methods in an associative array are put() and get(), but for

easy display, toString() has been overridden to print the key-value pairs. To

show that it works, main() loads an AssociativeArray with pairs of

strings and prints the resulting map, followed by a get() of one of the values.

To use the get() method, you pass in the key that you want it to look up, and

it produces the associated value as the result or returns null if it can’t be

found. The get() method is using what is possibly the least efficient

approach imaginable to locate the value: starting at the top of the array and

using equals() to compare keys. But the point here is simplicity, not

efficiency.

So the above version is instructive, but it isn’t very efficient and it has a fixed

size, which is inflexible. Fortunately, the Maps in java.util do not have these

problems and can be substituted into the above example.

Exercise 12: (1) Substitute a HashMap, a TreeMap and a
LinkedHashMap in AssociativeArray.java’s main().

Exercise 13: (4) Use AssociativeArray.java to create a word-
occurrence counter, mapping String to Integer. Using the
net.mindview.util.TextFile utility in this book, open a text file and break
up the words in that file using whitespace and punctuation, and count the
occurrence of the words in that file.

Performance
Performance is a fundamental issue for maps, and it’s very slow to use a

linear search in get() when hunting for a key. This is where HashMap

speeds things up. Instead of a slow search for the key, it uses a special value

called a hash code. The hash code is a way to take some information in the

object in question and turn it into a “relatively unique” int for that object.

hashCode() is a method in the root class Object, so all Java objects can

produce a hash code. A HashMap takes the hashCode() of the object and

830 Thinking in Java Bruce Eckel

uses it to quickly hunt for the key. This results in a dramatic performance

improvement.6

Here are the basic Map implementations. The asterisk on HashMap

indicates that, in the absence of other constraints, this should be your default

choice because it is optimized for speed. The other implementations

emphasize other characteristics, and are thus not as fast as HashMap.

HashMap* Implementation based on a hash table.
(Use this class instead of Hashtable.)
Provides constant-time performance for
inserting and locating pairs. Performance
can be adjusted via constructors that
allow you to set the capacity and load
factor of the hash table.

LinkedHashMap

Like a HashMap, but when you iterate
through it, you get the pairs in insertion
order, or in least-recently-used (LRU)
order. Only slightly slower than a
HashMap, except when iterating, where
it is faster due to the linked list used to
maintain the internal ordering.

TreeMap Implementation based on a red-black
tree. When you view the keys or the pairs,
they will be in sorted order (determined
by Comparable or Comparator). The
point of a TreeMap is that you get the
results in sorted order. TreeMap is the
only Map with the subMap() method,
which allows you to return a portion of
the tree.

WeakHashMap A map of weak keys that allow objects
referred to by the map to be released;
designed to solve certain types of

6 If these speedups still don’t meet your performance needs, you can further accelerate
table lookup by writing your own Map and customizing it to your particular types to avoid
delays due to casting to and from Objects. To reach even higher levels of performance,
speed enthusiasts can use Donald Knuth’s The Art of Computer Programming, Volume 3:
Sorting and Searching, Second Edition, to replace overflow bucket lists with arrays that
have two additional benefits: they can be optimized for disk storage characteristics and
they can save most of the time of creating and garbage collecting individual records.

Containers in Depth 831

 problems. If no references to a particular
key are held outside the map, that key
may be garbage collected.

ConcurrentHashMap

A thread-safe Map which does not
involve synchronization locking. This is
discussed in the Concurrency chapter.

IdentityHashMap

A hash map that uses == instead of
equals() to compare keys. Only for
solving special types of problems; not for
general use.

Hashing is the most commonly used way to store elements in a map. Later,

you’ll learn how hashing works.

The requirements for the keys used in a Map are the same as for the

elements in a Set. You saw these demonstrated in TypesForSets.java. Any

key must have an equals() method. If the key is used in a hashed Map, it

must also have a proper hashCode(). If the key is used in a TreeMap, it

must implement Comparable.

The following example shows the operations available through the Map

interface, using the previously defined CountingMapData test data set:

//: containers/Maps.java

// Things you can do with Maps.

import java.util.concurrent.*;

import java.util.*;

import net.mindview.util.*;

import static net.mindview.util.Print.*;

public class Maps {

 public static void printKeys(Map<Integer,String> map) {

 printnb("Size = " + map.size() + ", ");

 printnb("Keys: ");

 print(map.keySet()); // Produce a Set of the keys

 }

 public static void test(Map<Integer,String> map) {

 print(map.getClass().getSimpleName());

 map.putAll(new CountingMapData(25));

 // Map has 'Set' behavior for keys:

 map.putAll(new CountingMapData(25));

 printKeys(map);

 // Producing a Collection of the values:

832 Thinking in Java Bruce Eckel

 printnb("Values: ");

 print(map.values());

 print(map);

 print("map.containsKey(11): " + map.containsKey(11));

 print("map.get(11): " + map.get(11));

 print("map.containsValue(\"F0\"): "

 + map.containsValue("F0"));

 Integer key = map.keySet().iterator().next();

 print("First key in map: " + key);

 map.remove(key);

 printKeys(map);

 map.clear();

 print("map.isEmpty(): " + map.isEmpty());

 map.putAll(new CountingMapData(25));

 // Operations on the Set change the Map:

 map.keySet().removeAll(map.keySet());

 print("map.isEmpty(): " + map.isEmpty());

 }

 public static void main(String[] args) {

 test(new HashMap<Integer,String>());

 test(new TreeMap<Integer,String>());

 test(new LinkedHashMap<Integer,String>());

 test(new IdentityHashMap<Integer,String>());

 test(new ConcurrentHashMap<Integer,String>());

 test(new WeakHashMap<Integer,String>());

 }

} /* Output:

HashMap

Size = 25, Keys: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 17, 16, 19, 18, 21, 20, 23, 22, 24]

Values: [A0, B0, C0, D0, E0, F0, G0, H0, I0, J0, K0, L0, M0,

N0, O0, P0, R0, Q0, T0, S0, V0, U0, X0, W0, Y0]

{0=A0, 1=B0, 2=C0, 3=D0, 4=E0, 5=F0, 6=G0, 7=H0, 8=I0, 9=J0,

10=K0, 11=L0, 12=M0, 13=N0, 14=O0, 15=P0, 17=R0, 16=Q0,

19=T0, 18=S0, 21=V0, 20=U0, 23=X0, 22=W0, 24=Y0}

map.containsKey(11): true

map.get(11): L0

map.containsValue("F0"): true

First key in map: 0

Size = 24, Keys: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 17, 16, 19, 18, 21, 20, 23, 22, 24]

map.isEmpty(): true

map.isEmpty(): true

...

Containers in Depth 833

*///:~

The printKeys() method demonstrates how to produce a Collection view

of a Map. The keySet() method produces a Set backed by the keys in the

Map. Because of improved printing support in Java SE5, you can simply

print the result of the values() method, which produces a Collection

containing all the values in the Map. (Note that keys must be unique, but

values may contain duplicates.) Since these Collections are backed by the

Map, any changes in a Collection will be reflected in the associated Map.

The rest of the program provides simple examples of each Map operation

and tests each basic type of Map.

Exercise 14: (3) Show that java.util.Properties works in the above
program.

SortedMap
If you have a SortedMap (of which TreeMap is the only one available), the

keys are guaranteed to be in sorted order, which allows additional

functionality to be provided with these methods in the SortedMap interface:

Comparator comparator(): Produces the comparator used for this

Map, or null for natural ordering.

T firstKey(): Produces the lowest key.

T lastKey(): Produces the highest key.

SortedMap subMap(fromKey, toKey): Produces a view of this Map

with keys from fromKey, inclusive, to toKey, exclusive.

SortedMap headMap(toKey): Produces a view of this Map with keys

less than toKey.

SortedMap tailMap(fromKey): Produces a view of this Map with

keys greater than or equal to fromKey.

Here’s an example that’s similar to SortedSetDemo.java and shows this

additional behavior of TreeMaps:

//: containers/SortedMapDemo.java

// What you can do with a TreeMap.

import java.util.*;

import net.mindview.util.*;

import static net.mindview.util.Print.*;

834 Thinking in Java Bruce Eckel

public class SortedMapDemo {

 public static void main(String[] args) {

 TreeMap<Integer,String> sortedMap =

 new TreeMap<Integer,String>(new CountingMapData(10));

 print(sortedMap);

 Integer low = sortedMap.firstKey();

 Integer high = sortedMap.lastKey();

 print(low);

 print(high);

 Iterator<Integer> it = sortedMap.keySet().iterator();

 for(int i = 0; i <= 6; i++) {

 if(i == 3) low = it.next();

 if(i == 6) high = it.next();

 else it.next();

 }

 print(low);

 print(high);

 print(sortedMap.subMap(low, high));

 print(sortedMap.headMap(high));

 print(sortedMap.tailMap(low));

 }

} /* Output:

{0=A0, 1=B0, 2=C0, 3=D0, 4=E0, 5=F0, 6=G0, 7=H0, 8=I0, 9=J0}

0

9

3

7

{3=D0, 4=E0, 5=F0, 6=G0}

{0=A0, 1=B0, 2=C0, 3=D0, 4=E0, 5=F0, 6=G0}

{3=D0, 4=E0, 5=F0, 6=G0, 7=H0, 8=I0, 9=J0}

*///:~

Here, the pairs are stored by key-sorted order. Because there is a sense of

order in the TreeMap, the concept of “location” makes sense, so you can

have first and last elements and submaps.

LinkedHashMap
The LinkedHashMap hashes everything for speed, but also produces the

pairs in insertion order during a traversal (System.out.println() iterates

through the map, so you see the results of traversal). In addition, a

LinkedHashMap can be configured in the constructor to use a least-

recently-used (LRU) algorithm based on accesses, so elements that haven’t

been accessed (and thus are candidates for removal) appear at the front of the

Containers in Depth 835

list. This allows easy creation of programs that do periodic cleanup in order to

save space. Here’s a simple example showing both features:

//: containers/LinkedHashMapDemo.java

// What you can do with a LinkedHashMap.

import java.util.*;

import net.mindview.util.*;

import static net.mindview.util.Print.*;

public class LinkedHashMapDemo {

 public static void main(String[] args) {

 LinkedHashMap<Integer,String> linkedMap =

 new LinkedHashMap<Integer,String>(

 new CountingMapData(9));

 print(linkedMap);

 // Least-recently-used order:

 linkedMap =

 new LinkedHashMap<Integer,String>(16, 0.75f, true);

 linkedMap.putAll(new CountingMapData(9));

 print(linkedMap);

 for(int i = 0; i < 6; i++) // Cause accesses:

 linkedMap.get(i);

 print(linkedMap);

 linkedMap.get(0);

 print(linkedMap);

 }

} /* Output:

{0=A0, 1=B0, 2=C0, 3=D0, 4=E0, 5=F0, 6=G0, 7=H0, 8=I0}

{0=A0, 1=B0, 2=C0, 3=D0, 4=E0, 5=F0, 6=G0, 7=H0, 8=I0}

{6=G0, 7=H0, 8=I0, 0=A0, 1=B0, 2=C0, 3=D0, 4=E0, 5=F0}

{6=G0, 7=H0, 8=I0, 1=B0, 2=C0, 3=D0, 4=E0, 5=F0, 0=A0}

*///:~

You can see from the output that the pairs are indeed traversed in insertion

order, even for the LRU version. However, after the first six items (only) are

accessed in the LRU version, the last three items move to the front of the list.

Then, when “0” is accessed again, it moves to the back of the list.

Hashing and hash codes
The examples in the Holding Your Objects chapter used predefined classes as

HashMap keys. These examples worked because the predefined classes had

all the necessary wiring to make them behave correctly as keys.

836 Thinking in Java Bruce Eckel

A common pitfall occurs when you create your own classes to be used as keys

for HashMaps, and forget to put in the necessary wiring. For example,

consider a weather predicting system that matches Groundhog objects to

Prediction objects. This seems fairly straightforward—you create the two

classes, and use Groundhog as the key and Prediction as the value:

//: containers/Groundhog.java

// Looks plausible, but doesn't work as a HashMap key.

public class Groundhog {

 protected int number;

 public Groundhog(int n) { number = n; }

 public String toString() {

 return "Groundhog #" + number;

 }

} ///:~

//: containers/Prediction.java

// Predicting the weather with groundhogs.

import java.util.*;

public class Prediction {

 private static Random rand = new Random(47);

 private boolean shadow = rand.nextDouble() > 0.5;

 public String toString() {

 if(shadow)

 return "Six more weeks of Winter!";

 else

 return "Early Spring!";

 }

} ///:~

//: containers/SpringDetector.java

// What will the weather be?

import java.lang.reflect.*;

import java.util.*;

import static net.mindview.util.Print.*;

public class SpringDetector {

 // Uses a Groundhog or class derived from Groundhog:

 public static <T extends Groundhog>

 void detectSpring(Class<T> type) throws Exception {

 Constructor<T> ghog = type.getConstructor(int.class);

 Map<Groundhog,Prediction> map =

 new HashMap<Groundhog,Prediction>();

Containers in Depth 837

 for(int i = 0; i < 10; i++)

 map.put(ghog.newInstance(i), new Prediction());

 print("map = " + map);

 Groundhog gh = ghog.newInstance(3);

 print("Looking up prediction for " + gh);

 if(map.containsKey(gh))

 print(map.get(gh));

 else

 print("Key not found: " + gh);

 }

 public static void main(String[] args) throws Exception {

 detectSpring(Groundhog.class);

 }

} /* Output:

map = {Groundhog #0=Six more weeks of Winter!, Groundhog

#4=Six more weeks of Winter!, Groundhog #3=Early Spring!,

Groundhog #8=Six more weeks of Winter!, Groundhog #2=Early

Spring!, Groundhog #5=Early Spring!, Groundhog #9=Six more

weeks of Winter!, Groundhog #7=Early Spring!, Groundhog

#1=Six more weeks of Winter!, Groundhog #6=Early Spring!}

Looking up prediction for Groundhog #3

Key not found: Groundhog #3

*///:~

Each Groundhog is given an identity number, so you can look up a

Prediction in the HashMap by saying, “Give me the Prediction

associated with Groundhog #3.” The Prediction class contains a boolean

that is initialized using java.util.random() and a toString() that

interprets the result for you. The detectSpring() method is created using

reflection to instantiate and use the class Groundhog or any class derived

from Groundhog. This will come in handy later, when we inherit a new type

of Groundhog to solve the problem demonstrated here.

A HashMap is filled with Groundhogs and their associated Predictions.

The HashMap is printed so that you can see it has been filled. Then a

Groundhog with an identity number of 3 is used as a key to look up the

prediction for Groundhog #3 (which you can see must be in the Map).

It seems simple enough, but it doesn’t work—it can’t find the key for #3. The

problem is that Groundhog is automatically inherited from the common

root class Object, and it is Object’s hashCode() method that is used to

generate the hash code for each object. By default this just uses the address of

its object. Thus, the first instance of Groundhog(3) does not produce a hash

838 Thinking in Java Bruce Eckel

code equal to the hash code for the second instance of Groundhog(3) that

we tried to use as a lookup.

You might think that all you need to do is write an appropriate override for

hashCode(). But it still won’t work until you’ve done one more thing:

override the equals() that is also part of Object. equals() is used by the

HashMap when trying to determine if your key is equal to any of the keys in

the table.

A proper equals() must satisfy the following five conditions:

1. Reflexive: For any x, x.equals(x) should return true.

2. Symmetric: For any x and y, x.equals(y) should return true if and

only if y.equals(x) returns true.

3. Transitive: For any x, y, and z, if x.equals(y) returns true and

y.equals(z) returns true, then x.equals(z) should return true.

4. Consistent: For any x and y, multiple invocations of x.equals(y)

consistently return true or consistently return false, provided no

information used in equals comparisons on the object is modified.

5. For any non-null x, x.equals(null) should return false.

Again, the default Object.equals() simply compares object addresses, so

one Groundhog(3) is not equal to another Groundhog(3). Thus, to use

your own classes as keys in a HashMap, you must override both

hashCode() and equals(), as shown in the following solution to the

groundhog problem:

//: containers/Groundhog2.java

// A class that's used as a key in a HashMap

// must override hashCode() and equals().

public class Groundhog2 extends Groundhog {

 public Groundhog2(int n) { super(n); }

 public int hashCode() { return number; }

 public boolean equals(Object o) {

 return o instanceof Groundhog2 &&

 (number == ((Groundhog2)o).number);

 }

} ///:~

Containers in Depth 839

//: containers/SpringDetector2.java

// A working key.

public class SpringDetector2 {

 public static void main(String[] args) throws Exception {

 SpringDetector.detectSpring(Groundhog2.class);

 }

} /* Output:

map = {Groundhog #0=Six more weeks of Winter!, Groundhog

#1=Six more weeks of Winter!, Groundhog #2=Early Spring!,

Groundhog #3=Early Spring!, Groundhog #4=Six more weeks of

Winter!, Groundhog #5=Early Spring!, Groundhog #6=Early

Spring!, Groundhog #7=Early Spring!, Groundhog #8=Six more

weeks of Winter!, Groundhog #9=Six more weeks of Winter!}

Looking up prediction for Groundhog #3

Early Spring!

*///:~

Groundhog2.hashCode() returns the groundhog number as a hash value.

In this example, the programmer is responsible for ensuring that no two

groundhogs exist with the same ID number. The hashCode() is not

required to return a unique identifier (something you’ll understand better

later in this chapter), but the equals() method must strictly determine

whether two objects are equivalent. Here, equals() is based on the

groundhog number, so if two Groundhog2 objects exist as keys in the

HashMap with the same groundhog number, it will fail.

Even though it appears that the equals() method is only checking to see

whether the argument is an instance of Groundhog2 (using the instanceof

keyword, which was explained in the Type Information chapter), the

instanceof actually quietly does a second sanity check to see if the object is

null, since instanceof produces false if the left-hand argument is null.

Assuming it’s the correct type and not null, the comparison is based on the

actual number values in each object. You can see from the output that the

behavior is now correct.

When creating your own class to use in a HashSet, you must pay attention to

the same issues as when it is used as a key in a HashMap.

Understanding hashCode()
The preceding example is only a start toward solving the problem correctly. It

shows that if you do not override hashCode() and equals() for your key,

840 Thinking in Java Bruce Eckel

the hashed data structure (HashSet, HashMap, LinkedHashSet, or

LinkedHashMap) probably won’t deal with your key properly. For a good

solution to the problem, however, you need to understand what’s going on

inside the hashed data structure.

First, consider the motivation behind hashing: You want to look up an object

using another object. But you can also accomplish this with a TreeMap, or

you can even implement your own Map. In contrast to a hashed

implementation, the following example implements a Map using a pair of

ArrayLists. Unlike AssociativeArray.java, this includes a full

implementation of the Map interface, which accounts for the entrySet()

method:

//: containers/SlowMap.java

// A Map implemented with ArrayLists.

import java.util.*;

import net.mindview.util.*;

public class SlowMap<K,V> extends AbstractMap<K,V> {

 private List<K> keys = new ArrayList<K>();

 private List<V> values = new ArrayList<V>();

 public V put(K key, V value) {

 V oldValue = get(key); // The old value or null

 if(!keys.contains(key)) {

 keys.add(key);

 values.add(value);

 } else

 values.set(keys.indexOf(key), value);

 return oldValue;

 }

 public V get(Object key) { // key is type Object, not K

 if(!keys.contains(key))

 return null;

 return values.get(keys.indexOf(key));

 }

 public Set<Map.Entry<K,V>> entrySet() {

 Set<Map.Entry<K,V>> set= new HashSet<Map.Entry<K,V>>();

 Iterator<K> ki = keys.iterator();

 Iterator<V> vi = values.iterator();

 while(ki.hasNext())

 set.add(new MapEntry<K,V>(ki.next(), vi.next()));

 return set;

 }

 public static void main(String[] args) {

Containers in Depth 841

 SlowMap<String,String> m= new SlowMap<String,String>();

 m.putAll(Countries.capitals(15));

 System.out.println(m);

 System.out.println(m.get("BULGARIA"));

 System.out.println(m.entrySet());

 }

} /* Output:

{CHAD=N'djamena, ALGERIA=Algiers, BOTSWANA=Gaberone,

BURUNDI=Bujumbura, CONGO=Brazzaville, DJIBOUTI=Dijibouti,

COMOROS=Moroni, EQUATORIAL GUINEA=Malabo, ANGOLA=Luanda,

EGYPT=Cairo, CAPE VERDE=Praia, BURKINA FASO=Ouagadougou,

BENIN=Porto-Novo, CENTRAL AFRICAN REPUBLIC=Bangui,

CAMEROON=Yaounde}

null

[CHAD=N'djamena, ALGERIA=Algiers, BOTSWANA=Gaberone,

BURUNDI=Bujumbura, CONGO=Brazzaville, DJIBOUTI=Dijibouti,

COMOROS=Moroni, EQUATORIAL GUINEA=Malabo, ANGOLA=Luanda,

EGYPT=Cairo, CAPE VERDE=Praia, BURKINA FASO=Ouagadougou,

BENIN=Porto-Novo, CENTRAL AFRICAN REPUBLIC=Bangui,

CAMEROON=Yaounde]

*///:~

The put() method simply places the keys and values in corresponding

ArrayLists. In accordance with the Map interface, it must return the old key

or null if there was no old key.

Also following the specifications for Map, get() produces null if the key is

not in the SlowMap. If the key exists, it is used to look up the numerical

index indicating its location in the keys List, and this number is used as an

index to produce the associated value from the values List. Notice that the

type of key is Object in get(), rather than the parameterized type K as you

might expect (and which was indeed used in AssociativeArray.java). This

is a result of the injection of generics into the Java language at such a late

date—if generics had been an original feature in the language, get() could

have specified the type of its parameter.

The Map.entrySet() method must produce a set of Map.Entry objects.

However, Map.Entry is an interface describing an implementation-

dependent structure, so if you want to make your own type of Map, you must

also define an implementation of Map.Entry:

//: containers/MapEntry.java

// A simple Map.Entry for sample Map implementations.

import java.util.*;

842 Thinking in Java Bruce Eckel

public class MapEntry<K,V> implements Map.Entry<K,V> {

 private K key;

 private V value;

 public MapEntry(K key, V value) {

 this.key = key;

 this.value = value;

 }

 public K getKey() { return key; }

 public V getValue() { return value; }

 public V setValue(V v) {

 V result = value;

 value = v;

 return result;

 }

 public int hashCode() {

 return (key==null ? 0 : key.hashCode()) ^

 (value==null ? 0 : value.hashCode());

 }

 public boolean equals(Object o) {

 if(!(o instanceof MapEntry)) return false;

 @SuppressWarnings("unchecked")

 MapEntry<K,V> me = (MapEntry<K,V>)o;

 return

 (key == null ?

 me.getKey() == null : key.equals(me.getKey())) &&

 (value == null ?

 me.getValue()== null : value.equals(me.getValue()));

 }

 public String toString() { return key + "=" + value; }

} ///:~

Here, a very simple class called MapEntry holds and retrieves the keys and

values. This is used in entrySet() to produce a Set of key-value pairs.

Notice that entrySet() uses a HashSet to hold the pairs, and MapEntry

takes the simple approach of just using key’s hashCode(). Although this

solution is very simple, and appears to work in the trivial test in

SlowMap.main(), it is not a correct implementation because a copy of the

keys and values is made. A correct implementation of entrySet() will

provide a view into the Map, rather than a copy, and this view will allow

modification of the original map (which a copy doesn’t). Exercise 16 provides

the opportunity to repair the problem.

Note that the equals() method in MapEntry must check both keys and

values. The meaning of the hashCode() method will be described shortly.

Containers in Depth 843

The String representation of the contents of the SlowMap is automatically

produced by the toString() method defined in AbstractMap.

In SlowMap.main(), a SlowMap is loaded and then the contents are

displayed. A call to get() shows that it works.

Exercise 15: (1) Repeat Exercise 13 using a SlowMap.

Exercise 16: (7) Apply the tests in Maps.java to SlowMap to verify
that it works. Fix anything in SlowMap that doesn’t work correctly.

Exercise 17: (2) Implement the rest of the Map interface for SlowMap.

Exercise 18: (3) Using SlowMap.java for inspiration, create a
SlowSet.

Hashing for speed
SlowMap.java shows that it’s not that hard to produce a new type of Map.

But as the name suggests, a SlowMap isn’t very fast, so you probably

wouldn’t use it if you had an alternative available. The problem is in the

lookup of the key; the keys are not kept in any particular order, so a simple

linear search is used. A linear search is the slowest way to find something.

The whole point of hashing is speed: Hashing allows the lookup to happen

quickly. Since the bottleneck is in the speed of the key lookup, one of the

solutions to the problem is to keep the keys sorted and then use

Collections.binarySearch() to perform the lookup (an exercise will walk

you through this process).

Hashing goes further by saying that all you want to do is to store the key

somewhere in a way that it can be found quickly. The fastest structure in

which to store a group of elements is an array, so that will be used for

representing the key information (note that I said “key information,” and not

the key itself). But because an array cannot be resized, we have a problem:

We want to store an indeterminate number of values in the Map, but if the

number of keys is fixed by the array size, how can this be?

The answer is that the array will not hold the keys. From the key object, a

number will be derived that will index into the array. This number is the hash

code, produced by the hashCode() method (in computer science parlance,

this is the hash function) defined in Object and presumably overridden by

your class.

844 Thinking in Java Bruce Eckel

To solve the problem of the fixed-size array, more than one key may produce

the same index. That is, there may be collisions. Because of this, it doesn’t

matter how big the array is; any key object’s hash code will land somewhere

in that array.

So the process of looking up a value starts by computing the hash code and

using it to index into the array. If you could guarantee that there were no

collisions (which is possible if you have a fixed number of values), then you’d

have a perfect hashing function, but that’s a special case.7 In all other cases,

collisions are handled by external chaining: The array doesn’t point directly

to a value, but instead to a list of values. These values are searched in a linear

fashion using the equals() method. Of course, this aspect of the search is

much slower, but if the hash function is good, there will only be a few values

in each slot. So instead of searching through the entire list, you quickly jump

to a slot where you only have to compare a few entries to find the value. This

is much faster, which is why the HashMap is so quick.

Knowing the basics of hashing, you can implement a simple hashed Map:

//: containers/SimpleHashMap.java

// A demonstration hashed Map.

import java.util.*;

import net.mindview.util.*;

public class SimpleHashMap<K,V> extends AbstractMap<K,V> {

 // Choose a prime number for the hash table

 // size, to achieve a uniform distribution:

 static final int SIZE = 997;

 // You can't have a physical array of generics,

 // but you can upcast to one:

 @SuppressWarnings("unchecked")

 LinkedList<MapEntry<K,V>>[] buckets =

 new LinkedList[SIZE];

 public V put(K key, V value) {

 V oldValue = null;

 int index = Math.abs(key.hashCode()) % SIZE;

 if(buckets[index] == null)

 buckets[index] = new LinkedList<MapEntry<K,V>>();

7 The case of a perfect hashing function is implemented in the Java SE5 EnumMap and
EnumSet, because an enum defines a fixed number of instances. See the Enumerated
Types chapter.

Containers in Depth 845

 LinkedList<MapEntry<K,V>> bucket = buckets[index];

 MapEntry<K,V> pair = new MapEntry<K,V>(key, value);

 boolean found = false;

 ListIterator<MapEntry<K,V>> it = bucket.listIterator();

 while(it.hasNext()) {

 MapEntry<K,V> iPair = it.next();

 if(iPair.getKey().equals(key)) {

 oldValue = iPair.getValue();

 it.set(pair); // Replace old with new

 found = true;

 break;

 }

 }

 if(!found)

 buckets[index].add(pair);

 return oldValue;

 }

 public V get(Object key) {

 int index = Math.abs(key.hashCode()) % SIZE;

 if(buckets[index] == null) return null;

 for(MapEntry<K,V> iPair : buckets[index])

 if(iPair.getKey().equals(key))

 return iPair.getValue();

 return null;

 }

 public Set<Map.Entry<K,V>> entrySet() {

 Set<Map.Entry<K,V>> set= new HashSet<Map.Entry<K,V>>();

 for(LinkedList<MapEntry<K,V>> bucket : buckets) {

 if(bucket == null) continue;

 for(MapEntry<K,V> mpair : bucket)

 set.add(mpair);

 }

 return set;

 }

 public static void main(String[] args) {

 SimpleHashMap<String,String> m =

 new SimpleHashMap<String,String>();

 m.putAll(Countries.capitals(25));

 System.out.println(m);

 System.out.println(m.get("ERITREA"));

 System.out.println(m.entrySet());

 }

} /* Output:

846 Thinking in Java Bruce Eckel

{CHAD=N'djamena, BISSAU=Bissau, CONGO=Brazzaville,

BURUNDI=Bujumbura, DJIBOUTI=Dijibouti, EQUATORIAL

GUINEA=Malabo, GUINEA=Conakry, LESOTHO=Maseru, EGYPT=Cairo,

GHANA=Accra, CENTRAL AFRICAN REPUBLIC=Bangui, BENIN=Porto-

Novo, GABON=Libreville, COTE D'IVOIR (IVORY

COAST)=Yamoussoukro, KENYA=Nairobi, ETHIOPIA=Addis Ababa,

ALGERIA=Algiers, BOTSWANA=Gaberone, COMOROS=Moroni,

ANGOLA=Luanda, ERITREA=Asmara, CAPE VERDE=Praia, BURKINA

FASO=Ouagadougou, THE GAMBIA=Banjul, CAMEROON=Yaounde}

Asmara

[CHAD=N'djamena, BISSAU=Bissau, CONGO=Brazzaville,

BURUNDI=Bujumbura, DJIBOUTI=Dijibouti, EQUATORIAL

GUINEA=Malabo, GUINEA=Conakry, LESOTHO=Maseru, EGYPT=Cairo,

GHANA=Accra, CENTRAL AFRICAN REPUBLIC=Bangui, BENIN=Porto-

Novo, GABON=Libreville, COTE D'IVOIR (IVORY

COAST)=Yamoussoukro, KENYA=Nairobi, ETHIOPIA=Addis Ababa,

ALGERIA=Algiers, BOTSWANA=Gaberone, COMOROS=Moroni,

ANGOLA=Luanda, ERITREA=Asmara, CAPE VERDE=Praia, BURKINA

FASO=Ouagadougou, THE GAMBIA=Banjul, CAMEROON=Yaounde]

*///:~

Because the “slots” in a hash table are often referred to as buckets, the array

that represents the actual table is called buckets. To promote even

distribution, the number of buckets is typically a prime number.8 Notice that

it is an array of LinkedList, which automatically provides for collisions:

Each new item is simply added to the end of the list in a particular bucket.

Even though Java will not let you create an array of generics, it is possible to

make a reference to such an array. Here, it is convenient to upcast to such an

array, to prevent extra casting later in the code.

For a put(), the hashCode() is called for the key and the result is forced to

a positive number. To fit the resulting number into the buckets array, the

modulus operator is used with the size of that array. If that location is null, it

means there are no elements that hash to that location, so a new LinkedList

is created to hold the object that just did hash to that location. However, the

8 As it turns out, a prime number is not actually the ideal size for hash buckets, and recent
hashed implementations in Java use a power-of-two size (after extensive testing). Division
or remainder is the slowest operation on a modern processor. With a power-of-two hash
table length, masking can be used instead of division. Since get() is by far the most
common operation, the % is a large part of the cost, and the power-of-two approach
eliminates this (but may also affect some hashCode() methods).

Containers in Depth 847

normal process is to look through the list to see if there are duplicates, and if

there are, the old value is put into oldValue and the new value replaces the

old. The found flag keeps track of whether an old key-value pair was found

and, if not, the new pair is appended to the end of the list.

The get() calculates the index into the buckets array in the same fashion as

put() (this is important in order to guarantee that you end up in the same

spot). If a LinkedList exists, it is searched for a match.

Note that this implementation is not meant to be tuned for performance; it is

only intended to show the operations performed by a hash map. If you look at

the source code for java.util.HashMap, you’ll see a tuned implementation.

Also, for simplicity SimpleHashMap uses the same approach to

entrySet() as did SlowMap, which is oversimplified and will not work for

a general-purpose Map.

Exercise 19: (1) Repeat Exercise 13 using a SimpleHashMap.

Exercise 20: (3) Modify SimpleHashMap so that it reports collisions,
and test this by adding the same data set twice so that you see collisions.

Exercise 21: (2) Modify SimpleHashMap so that it reports the number
of “probes” necessary when collisions occur. That is, how many calls to
next() must be made on the Iterators that walk the LinkedLists looking
for matches?

Exercise 22: (4) Implement the clear() and remove() methods for
SimpleHashMap.

Exercise 23: (3) Implement the rest of the Map interface for
SimpleHashMap.

Exercise 24: (5) Following the example in SimpleHashMap.java,
create and test a SimpleHashSet.

Exercise 25: (6) Instead of using a ListIterator for each bucket, modify
MapEntry so that it is a self-contained singly linked list (each MapEntry
should have a forward link to the next MapEntry). Modify the rest of the
code in SimpleHashMap.java so that this new approach works correctly.

Overriding hashCode()
Now that you understand how hashing works, writing your own

hashCode() method will make more sense.

848 Thinking in Java Bruce Eckel

First of all, you don’t control the creation of the actual value that’s used to

index into the array of buckets. That is dependent on the capacity of the

particular HashMap object, and that capacity changes depending on how

full the container is, and what the load factor is (this term will be described

later). Thus, the value produced by your hashCode() will be further

processed in order to create the bucket index (in SimpleHashMap, the

calculation is just a modulo by the size of the bucket array).

The most important factor in creating a hashCode() is that, regardless of

when hashCode() is called, it produces the same value for a particular

object every time it is called. If you end up with an object that produces one

hashCode() value when it is put() into a HashMap and another during a

get(), you won’t be able to retrieve the objects. So if your hashCode()

depends on mutable data in the object, the user must be made aware that

changing the data will produce a different key because it generates a different

hashCode().

In addition, you will probably not want to generate a hashCode() that is

based on unique object information—in particular, the value of this makes a

bad hashCode() because then you can’t generate a new key identical to the

one used to put() the original key-value pair. This was the problem that

occurred in SpringDetector.java, because the default implementation of

hashCode() does use the object address. So you’ll want to use information

in the object that identifies the object in a meaningful way.

One example can be seen in the String class. Strings have the special

characteristic that if a program has several String objects that contain

identical character sequences, then those String objects all map to the same

memory. So it makes sense that the hashCode() produced by two separate

instances of the String “hello” should be identical. You can see this in the

following program:

//: containers/StringHashCode.java

public class StringHashCode {

 public static void main(String[] args) {

 String[] hellos = "Hello Hello".split(" ");

 System.out.println(hellos[0].hashCode());

 System.out.println(hellos[1].hashCode());

 }

} /* Output: (Sample)

69609650

Containers in Depth 849

69609650

*///:~

The hashCode() for String is clearly based on the contents of the String.

So, for a hashCode() to be effective, it must be fast and it must be

meaningful; that is, it must generate a value based on the contents of the

object. Remember that this value doesn’t have to be unique—you should lean

toward speed rather than uniqueness—but between hashCode() and

equals(), the identity of the object must be completely resolved.

Because the hashCode() is further processed before the bucket index is

produced, the range of values is not important; it just needs to generate an

int.

There’s one other factor: A good hashCode() should result in an even

distribution of values. If the values tend to cluster, then the HashMap or

HashSet will be more heavily loaded in some areas and will not be as fast as

it can be with an evenly distributed hashing function.

In Effective JavaTM Programming Language Guide (Addison-Wesley, 2001),

Joshua Bloch gives a basic recipe for generating a decent hashCode():

1. Store some constant nonzero value, say 17, in an int variable called

result.

2. For each significant field f in your object (that is, each field taken into

account by the equals() method), calculate an int hash code c for the

field:

Field type Calculation

boolean c = (f ? 0 : 1)

byte, char, short, or

int

c = (int)f

long c = (int)(f ^ (f >>>32))

float c = Float.floatToIntBits(f);

double long l = Double.doubleToLongBits(f);

c = (int)(l ^ (l >>> 32))

850 Thinking in Java Bruce Eckel

Object, where

equals() calls

equals() for this

field

c = f.hashCode()

Array Apply above rules to each element

3. Combine the hash code(s) computed above:

result = 37 * result + c;

4. Return result.

5. Look at the resulting hashCode() and make sure that equal instances

have equal hash codes.

Here’s an example that follows these guidelines:

//: containers/CountedString.java

// Creating a good hashCode().

import java.util.*;

import static net.mindview.util.Print.*;

public class CountedString {

 private static List<String> created =

 new ArrayList<String>();

 private String s;

 private int id = 0;

 public CountedString(String str) {

 s = str;

 created.add(s);

 // id is the total number of instances

 // of this string in use by CountedString:

 for(String s2 : created)

 if(s2.equals(s))

 id++;

 }

 public String toString() {

 return "String: " + s + " id: " + id +

 " hashCode(): " + hashCode();

 }

 public int hashCode() {

 // The very simple approach:

 // return s.hashCode() * id;

 // Using Joshua Bloch's recipe:

Containers in Depth 851

 int result = 17;

 result = 37 * result + s.hashCode();

 result = 37 * result + id;

 return result;

 }

 public boolean equals(Object o) {

 return o instanceof CountedString &&

 s.equals(((CountedString)o).s) &&

 id == ((CountedString)o).id;

 }

 public static void main(String[] args) {

 Map<CountedString,Integer> map =

 new HashMap<CountedString,Integer>();

 CountedString[] cs = new CountedString[5];

 for(int i = 0; i < cs.length; i++) {

 cs[i] = new CountedString("hi");

 map.put(cs[i], i); // Autobox int -> Integer

 }

 print(map);

 for(CountedString cstring : cs) {

 print("Looking up " + cstring);

 print(map.get(cstring));

 }

 }

} /* Output: (Sample)

{String: hi id: 4 hashCode(): 146450=3, String: hi id: 1

hashCode(): 146447=0, String: hi id: 3 hashCode(): 146449=2,

String: hi id: 5 hashCode(): 146451=4, String: hi id: 2

hashCode(): 146448=1}

Looking up String: hi id: 1 hashCode(): 146447

0

Looking up String: hi id: 2 hashCode(): 146448

1

Looking up String: hi id: 3 hashCode(): 146449

2

Looking up String: hi id: 4 hashCode(): 146450

3

Looking up String: hi id: 5 hashCode(): 146451

4

*///:~

CountedString includes a String and an id that represents the number of

CountedString objects that contain an identical String. The counting is

852 Thinking in Java Bruce Eckel

accomplished in the constructor by iterating through the static ArrayList

where all the Strings are stored.

Both hashCode() and equals() produce results based on both fields; if

they were just based on the String alone or the id alone, there would be

duplicate matches for distinct values.

In main(), several CountedString objects are created using the same

String, to show that the duplicates create unique values because of the count

id. The HashMap is displayed so that you can see how it is stored internally

(no discernible orders), and then each key is looked up individually to

demonstrate that the lookup mechanism is working properly.

As a second example, consider the Individual class that was used as the

base class for the typeinfo.pet library defined in the Type Information

chapter. The Individual class was used in that chapter but the definition has

been delayed until this chapter so you could properly understand the

implementation:

//: typeinfo/pets/Individual.java

package typeinfo.pets;

public class Individual implements Comparable<Individual> {

 private static long counter = 0;

 private final long id = counter++;

 private String name;

 public Individual(String name) { this.name = name; }

 // 'name' is optional:

 public Individual() {}

 public String toString() {

 return getClass().getSimpleName() +

 (name == null ? "" : " " + name);

 }

 public long id() { return id; }

 public boolean equals(Object o) {

 return o instanceof Individual &&

 id == ((Individual)o).id;

 }

 public int hashCode() {

 int result = 17;

 if(name != null)

 result = 37 * result + name.hashCode();

 result = 37 * result + (int)id;

 return result;

Containers in Depth 853

 }

 public int compareTo(Individual arg) {

 // Compare by class name first:

 String first = getClass().getSimpleName();

 String argFirst = arg.getClass().getSimpleName();

 int firstCompare = first.compareTo(argFirst);

 if(firstCompare != 0)

 return firstCompare;

 if(name != null && arg.name != null) {

 int secondCompare = name.compareTo(arg.name);

 if(secondCompare != 0)

 return secondCompare;

 }

 return (arg.id < id ? -1 : (arg.id == id ? 0 : 1));

 }

} ///:~

The compareTo() method has a hierarchy of comparisons, so that it will

produce a sequence that is sorted first by actual type, then by name if there

is one, and finally falls back to creation order. Here’s an example that shows

how it works:

//: containers/IndividualTest.java

import holding.MapOfList;

import typeinfo.pets.*;

import java.util.*;

public class IndividualTest {

 public static void main(String[] args) {

 Set<Individual> pets = new TreeSet<Individual>();

 for(List<? extends Pet> lp :

 MapOfList.petPeople.values())

 for(Pet p : lp)

 pets.add(p);

 System.out.println(pets);

 }

} /* Output:

[Cat Elsie May, Cat Pinkola, Cat Shackleton, Cat Stanford

aka Stinky el Negro, Cymric Molly, Dog Margrett, Mutt Spot,

Pug Louie aka Louis Snorkelstein Dupree, Rat Fizzy, Rat

Freckly, Rat Fuzzy]

*///:~

Since all of these pets have names, they are sorted first by type, then by name

within their type.

854 Thinking in Java Bruce Eckel

Writing a proper hashCode() and equals() for a new class can be tricky.

You can find tools to help you do this in Apache’s “Jakarta Commons” project

at jakarta.apache.org/commons, under “lang” (this project also has many

other potentially useful libraries, and appears to be the Java community’s

answer to the C++ community’s www.boost.org).

Exercise 26: (2) Add a char field to CountedString that is also
initialized in the constructor, and modify the hashCode() and equals()
methods to include the value of this char.

Exercise 27: (3) Modify the hashCode() in CountedString.java by
removing the combination with id, and demonstrate that CountedString
still works as a key. What is the problem with this approach?

Exercise 28: (4) Modify net/mindview/util/Tuple.java to make it a
general-purpose class by adding hashCode(), equals(), and implementing
Comparable for each type of Tuple.

Choosing an implementation
By now you should understand that although there are only four fundamental

container types—Map, List, Set, and Queue—there is more than one

implementation of each interface. If you need to use the functionality offered

by a particular interface, how do you decide which implementation to use?

Each different implementation has its own features, strengths, and

weaknesses. For example, you can see in the figure at the beginning of this

chapter that the “feature” of Hashtable, Vector, and Stack is that they are

legacy classes, so that old code doesn’t break (it’s best if you don’t use those

for new code).

The different types of Queues in the Java library are differentiated only by

the way they accept and produce values (you’ll see the importance of these in

the Concurrency chapter).

The distinction between containers often comes down to what they are

“backed by”—that is, the data structures that physically implement the

desired interface. For example, because ArrayList and LinkedList

implement the List interface, the basic List operations are the same

regardless of which one you use. However, ArrayList is backed by an array,

and LinkedList is implemented in the usual way for a doubly linked list, as

individual objects each containing data along with references to the previous

Containers in Depth 855

and next elements in the list. Because of this, if you want to do many

insertions and removals in the middle of a list, a LinkedList is the

appropriate choice. (LinkedList also has additional functionality that is

established in AbstractSequentialList.) If not, an ArrayList is typically

faster.

As another example, a Set can be implemented as either a TreeSet, a

HashSet, or a LinkedHashSet.9 Each one has different behaviors:

HashSet is for typical use and provides raw speed on lookup,

LinkedHashSet keeps pairs in insertion order, and TreeSet is backed by

TreeMap and is designed to produce a constantly sorted set. You choose the

implementation based on the behavior you need.

Sometimes different implementations of a particular container will have

operations in common, but the performance of those operations will be

different. In this case, you’ll choose between implementations based on how

often you use a particular operation, and how fast you need it to be. For cases

like this, one way to look at the differences between container

implementations is with a performance test.

A performance test framework
To prevent code duplication and to provide consistency among tests, I’ve put

the basic functionality of the test process into a framework. The following

code establishes a base class from which you create a list of anonymous inner

classes, one for each different test. Each of these inner classes is called as part

of the testing process. This approach allows you to easily add and remove new

kinds of tests.

This is another example of the Template Method design pattern. Although

you follow the typical Template Method approach of overriding the method

Test.test() for each particular test, in this case the core code (that doesn’t

change) is in a separate Tester class.10 The type of container under test is the

generic parameter C:

9 Or as an EnumSet or CopyOnWriteArraySet, which are special cases. While
acknowledging that there may be additional specialized implementations of various
container interfaces, this section attempts to look at the more general cases.

10 Krzysztof Sobolewski assisted me in figuring out the generics for this example.

856 Thinking in Java Bruce Eckel

//: containers/Test.java

// Framework for performing timed tests of containers.

public abstract class Test<C> {

 String name;

 public Test(String name) { this.name = name; }

 // Override this method for different tests.

 // Returns actual number of repetitions of test.

 abstract int test(C container, TestParam tp);

} ///:~

Each Test object stores the name of that test. When you call the test()

method, it must be given the container to be tested along with a “messenger”

or “data transfer object” that holds the various parameters for that particular

test. The parameters include size, indicating the number of elements in the

container, and loops, which controls the number of iterations for that test.

These parameters may or may not be used in every test.

Each container will undergo a sequence of calls to test(), each with a

different TestParam, so TestParam also contains static array() methods

that make it easy to create arrays of TestParam objects. The first version of

array() takes a variable argument list containing alternating size and

loops values, and the second version takes the same kind of list except that

the values are inside Strings—this way, it can be used to parse command-

line arguments:

//: containers/TestParam.java

// A "data transfer object."

public class TestParam {

 public final int size;

 public final int loops;

 public TestParam(int size, int loops) {

 this.size = size;

 this.loops = loops;

 }

 // Create an array of TestParam from a varargs sequence:

 public static TestParam[] array(int... values) {

 int size = values.length/2;

 TestParam[] result = new TestParam[size];

 int n = 0;

 for(int i = 0; i < size; i++)

 result[i] = new TestParam(values[n++], values[n++]);

 return result;

Containers in Depth 857

 }

 // Convert a String array to a TestParam array:

 public static TestParam[] array(String[] values) {

 int[] vals = new int[values.length];

 for(int i = 0; i < vals.length; i++)

 vals[i] = Integer.decode(values[i]);

 return array(vals);

 }

} ///:~

To use the framework, you pass the container to be tested along with a List of

Test objects to a Tester.run() method (these are overloaded generic

convenience methods which reduce the amount of typing necessary to use

them). Tester.run() calls the appropriate overloaded constructor, then calls

timedTest(), which executes each test in the list for that container.

timedTest() repeats each test for each of the TestParam objects in

paramList. Because paramList is initialized from the static

defaultParams array, you can change the paramList for all tests by

reassigning defaultParams, or you can change the paramList for one test

by passing in a custom paramList for that test:

//: containers/Tester.java

// Applies Test objects to lists of different containers.

import java.util.*;

public class Tester<C> {

 public static int fieldWidth = 8;

 public static TestParam[] defaultParams= TestParam.array(

 10, 5000, 100, 5000, 1000, 5000, 10000, 500);

 // Override this to modify pre-test initialization:

 protected C initialize(int size) { return container; }

 protected C container;

 private String headline = "";

 private List<Test<C>> tests;

 private static String stringField() {

 return "%" + fieldWidth + "s";

 }

 private static String numberField() {

 return "%" + fieldWidth + "d";

 }

 private static int sizeWidth = 5;

 private static String sizeField = "%" + sizeWidth + "s";

 private TestParam[] paramList = defaultParams;

 public Tester(C container, List<Test<C>> tests) {

858 Thinking in Java Bruce Eckel

 this.container = container;

 this.tests = tests;

 if(container != null)

 headline = container.getClass().getSimpleName();

 }

 public Tester(C container, List<Test<C>> tests,

 TestParam[] paramList) {

 this(container, tests);

 this.paramList = paramList;

 }

 public void setHeadline(String newHeadline) {

 headline = newHeadline;

 }

 // Generic methods for convenience :

 public static <C> void run(C cntnr, List<Test<C>> tests){

 new Tester<C>(cntnr, tests).timedTest();

 }

 public static <C> void run(C cntnr,

 List<Test<C>> tests, TestParam[] paramList) {

 new Tester<C>(cntnr, tests, paramList).timedTest();

 }

 private void displayHeader() {

 // Calculate width and pad with '-':

 int width = fieldWidth * tests.size() + sizeWidth;

 int dashLength = width - headline.length() - 1;

 StringBuilder head = new StringBuilder(width);

 for(int i = 0; i < dashLength/2; i++)

 head.append('-');

 head.append(' ');

 head.append(headline);

 head.append(' ');

 for(int i = 0; i < dashLength/2; i++)

 head.append('-');

 System.out.println(head);

 // Print column headers:

 System.out.format(sizeField, "size");

 for(Test<C> test : tests)

 System.out.format(stringField(), test.name);

 System.out.println();

 }

 // Run the tests for this container:

 public void timedTest() {

 displayHeader();

 for(TestParam param : paramList) {

Containers in Depth 859

 System.out.format(sizeField, param.size);

 for(Test<C> test : tests) {

 C kontainer = initialize(param.size);

 long start = System.nanoTime();

 // Call the overriden method:

 int reps = test.test(kontainer, param);

 long duration = System.nanoTime() - start;

 long timePerRep = duration / reps; // Nanoseconds

 System.out.format(numberField(), timePerRep);

 }

 System.out.println();

 }

 }

} ///:~

The stringField() and numberField() methods produce formatting

strings for outputting the results. The standard width for formatting can be

changed by modifying the static fieldWidth value. The displayHeader()

method formats and prints the header information for each test.

If you need to perform special initialization, override the initialize()

method. This produces an initialized container object of the appropriate

size—you can either modify the existing container object or create a new one.

You can see in test() that the result is captured in a local reference called

kontainer, which allows you to replace the stored member container with

a completely different initialized container.

The return value of each Test.test() method must be the number of

operations performed by that test, which is used to calculate the number of

nanoseconds required for each operation. You should be aware that

System.nanoTime() typically produces values with a granularity that is

greater than one (and this granularity will vary with machines and operating

systems), and this will produce a certain amount of rattle in the results.

The results may vary from machine to machine; these tests are only intended

to compare the performance of the different containers.

Choosing between Lists
Here is a performance test for the most essential of the List operations. For

comparison, it also shows the most important Queue operations. Two

separate lists of tests are created for testing each class of container. In this

case, Queue operations only apply to LinkedLists.

860 Thinking in Java Bruce Eckel

//: containers/ListPerformance.java

// Demonstrates performance differences in Lists.

// {Args: 100 500} Small to keep build testing short

import java.util.*;

import net.mindview.util.*;

public class ListPerformance {

 static Random rand = new Random();

 static int reps = 1000;

 static List<Test<List<Integer>>> tests =

 new ArrayList<Test<List<Integer>>>();

 static List<Test<LinkedList<Integer>>> qTests =

 new ArrayList<Test<LinkedList<Integer>>>();

 static {

 tests.add(new Test<List<Integer>>("add") {

 int test(List<Integer> list, TestParam tp) {

 int loops = tp.loops;

 int listSize = tp.size;

 for(int i = 0; i < loops; i++) {

 list.clear();

 for(int j = 0; j < listSize; j++)

 list.add(j);

 }

 return loops * listSize;

 }

 });

 tests.add(new Test<List<Integer>>("get") {

 int test(List<Integer> list, TestParam tp) {

 int loops = tp.loops * reps;

 int listSize = list.size();

 for(int i = 0; i < loops; i++)

 list.get(rand.nextInt(listSize));

 return loops;

 }

 });

 tests.add(new Test<List<Integer>>("set") {

 int test(List<Integer> list, TestParam tp) {

 int loops = tp.loops * reps;

 int listSize = list.size();

 for(int i = 0; i < loops; i++)

 list.set(rand.nextInt(listSize), 47);

 return loops;

 }

 });

Containers in Depth 861

 tests.add(new Test<List<Integer>>("iteradd") {

 int test(List<Integer> list, TestParam tp) {

 final int LOOPS = 1000000;

 int half = list.size() / 2;

 ListIterator<Integer> it = list.listIterator(half);

 for(int i = 0; i < LOOPS; i++)

 it.add(47);

 return LOOPS;

 }

 });

 tests.add(new Test<List<Integer>>("insert") {

 int test(List<Integer> list, TestParam tp) {

 int loops = tp.loops;

 for(int i = 0; i < loops; i++)

 list.add(5, 47); // Minimize random-access cost

 return loops;

 }

 });

 tests.add(new Test<List<Integer>>("remove") {

 int test(List<Integer> list, TestParam tp) {

 int loops = tp.loops;

 int size = tp.size;

 for(int i = 0; i < loops; i++) {

 list.clear();

 list.addAll(new CountingIntegerList(size));

 while(list.size() > 5)

 list.remove(5); // Minimize random-access cost

 }

 return loops * size;

 }

 });

 // Tests for queue behavior:

 qTests.add(new Test<LinkedList<Integer>>("addFirst") {

 int test(LinkedList<Integer> list, TestParam tp) {

 int loops = tp.loops;

 int size = tp.size;

 for(int i = 0; i < loops; i++) {

 list.clear();

 for(int j = 0; j < size; j++)

 list.addFirst(47);

 }

 return loops * size;

 }

 });

862 Thinking in Java Bruce Eckel

 qTests.add(new Test<LinkedList<Integer>>("addLast") {

 int test(LinkedList<Integer> list, TestParam tp) {

 int loops = tp.loops;

 int size = tp.size;

 for(int i = 0; i < loops; i++) {

 list.clear();

 for(int j = 0; j < size; j++)

 list.addLast(47);

 }

 return loops * size;

 }

 });

 qTests.add(

 new Test<LinkedList<Integer>>("rmFirst") {

 int test(LinkedList<Integer> list, TestParam tp) {

 int loops = tp.loops;

 int size = tp.size;

 for(int i = 0; i < loops; i++) {

 list.clear();

 list.addAll(new CountingIntegerList(size));

 while(list.size() > 0)

 list.removeFirst();

 }

 return loops * size;

 }

 });

 qTests.add(new Test<LinkedList<Integer>>("rmLast") {

 int test(LinkedList<Integer> list, TestParam tp) {

 int loops = tp.loops;

 int size = tp.size;

 for(int i = 0; i < loops; i++) {

 list.clear();

 list.addAll(new CountingIntegerList(size));

 while(list.size() > 0)

 list.removeLast();

 }

 return loops * size;

 }

 });

 }

 static class ListTester extends Tester<List<Integer>> {

 public ListTester(List<Integer> container,

 List<Test<List<Integer>>> tests) {

 super(container, tests);

Containers in Depth 863

 }

 // Fill to the appropriate size before each test:

 @Override protected List<Integer> initialize(int size){

 container.clear();

 container.addAll(new CountingIntegerList(size));

 return container;

 }

 // Convenience method:

 public static void run(List<Integer> list,

 List<Test<List<Integer>>> tests) {

 new ListTester(list, tests).timedTest();

 }

 }

 public static void main(String[] args) {

 if(args.length > 0)

 Tester.defaultParams = TestParam.array(args);

 // Can only do these two tests on an array:

 Tester<List<Integer>> arrayTest =

 new Tester<List<Integer>>(null, tests.subList(1, 3)){

 // This will be called before each test. It

 // produces a non-resizeable array-backed list:

 @Override protected

 List<Integer> initialize(int size) {

 Integer[] ia = Generated.array(Integer.class,

 new CountingGenerator.Integer(), size);

 return Arrays.asList(ia);

 }

 };

 arrayTest.setHeadline("Array as List");

 arrayTest.timedTest();

 Tester.defaultParams= TestParam.array(

 10, 5000, 100, 5000, 1000, 1000, 10000, 200);

 if(args.length > 0)

 Tester.defaultParams = TestParam.array(args);

 ListTester.run(new ArrayList<Integer>(), tests);

 ListTester.run(new LinkedList<Integer>(), tests);

 ListTester.run(new Vector<Integer>(), tests);

 Tester.fieldWidth = 12;

 Tester<LinkedList<Integer>> qTest =

 new Tester<LinkedList<Integer>>(

 new LinkedList<Integer>(), qTests);

 qTest.setHeadline("Queue tests");

 qTest.timedTest();

 }

864 Thinking in Java Bruce Eckel

} /* Output: (Sample)

--- Array as List ---

 size get set

 10 130 183

 100 130 164

 1000 129 165

10000 129 165

--------------------- ArrayList ---------------------

 size add get set iteradd insert remove

 10 121 139 191 435 3952 446

 100 72 141 191 247 3934 296

 1000 98 141 194 839 2202 923

10000 122 144 190 6880 14042 7333

--------------------- LinkedList ---------------------

 size add get set iteradd insert remove

 10 182 164 198 658 366 262

 100 106 202 230 457 108 201

 1000 133 1289 1353 430 136 239

10000 172 13648 13187 435 255 239

----------------------- Vector -----------------------

 size add get set iteradd insert remove

 10 129 145 187 290 3635 253

 100 72 144 190 263 3691 292

 1000 99 145 193 846 2162 927

10000 108 145 186 6871 14730 7135

-------------------- Queue tests --------------------

 size addFirst addLast rmFirst rmLast

 10 199 163 251 253

 100 98 92 180 179

 1000 99 93 216 212

10000 111 109 262 384

*///:~

Each test requires careful thought to ensure that you are producing

meaningful results. For example, the “add” test clears the List and then

refills it to the specified list size. The call to clear() is thus part of the test,

and may have an impact on the time, especially for small tests. Although the

results here seem fairly reasonable, you could imagine rewriting the test

framework so that there is a call to a preparation method (which would, in

this case, include the clear() call) outside of the timing loop.

Note that for each test, you must accurately calculate the number of

operations that occur and return that value from test(), so the timing is

correct.

Containers in Depth 865

The “get” and “set” tests both use the random number generator to perform

random accesses to the List. In the output, you can see that, for a List

backed by an array and for an ArrayList, these accesses are fast and very

consistent regardless of the list size, whereas for a LinkedList, the access

times grow very significantly for larger lists. Clearly, linked lists are not a

good choice if you will be performing many random accesses.

The “iteradd” test uses an iterator in the middle of the list to insert new

elements. For an ArrayList this gets expensive as the list gets bigger, but for

a LinkedList it is relatively cheap, and constant regardless of size. This

makes sense because an ArrayList must create space and copy all its

references forward during an insertion. This becomes expensive as the

ArrayList gets bigger. A LinkedList only needs to link in a new element,

and doesn’t have to modify the rest of the list, so you expect the cost to be

roughly the same regardless of the list size.

The “insert” and “remove” tests both use location number 5 as the point of

insertion or removal, rather than either end of the List. A LinkedList treats

the endpoints of the List specially—this improves the speed when using a

LinkedList as a Queue. However, if you add or remove elements in the

middle of the list, you include the cost of random access, which we’ve already

seen varies with the different List implementations. By performing the

insertions and removals at location 5, the cost of the random access should be

negligible and we should see only the cost of insertion and removal, but we

will not see any specialized optimization for the end of a LinkedList. You

can see from the output that the cost of insertion and removal in a

LinkedList is quite cheap and doesn’t vary with the list size, but with an

ArrayList, insertions especially are very expensive, and the cost increases

with list size.

From the Queue tests, you can see how quickly a LinkedList can insert and

remove elements from the endpoints of the list, which is optimal for Queue

behavior.

Normally, you can just call Tester.run(), passing the container and the

tests list. Here, however, we must override the initialize() method so that

the List is cleared and refilled before each test—otherwise the List control

over the size of the List would be lost during the various tests. ListTester

inherits from Tester and performs this initialization using

CountingIntegerList. The run() convenience method is also overridden.

866 Thinking in Java Bruce Eckel

We’d also like to compare array access to container access (primarily against

ArrayList). In the first test in main(), a special Test object is created using

an anonymous inner class. The initialize() method is overridden to create a

new object each time it is called (ignoring the stored container object, so

null is the container argument for this Tester constructor). The new object

is created using Generated.array() (which was defined in the Arrays

chapter) and Arrays.asList(). Only two of the tests can be performed in

this case, because you cannot insert or remove elements when using a List

backed by an array, so the List.subList() method is used to select the

desired tests from the tests list.

For random-access get() and set() operations, a List backed by an array is

slightly faster than an ArrayList, but the same operations are dramatically

more expensive for a LinkedList because it is not designed for random-

access operations.

Vector should be avoided; it’s only in the library for legacy code support (the

only reason it works in this program is because it was adapted to be a List for

forward compatibility).

The best approach is probably to choose an ArrayList as your default and to

change to a LinkedList if you need its extra functionality or you discover

performance problems due to many insertions and removals from the middle

of the list. If you are working with a fixed-sized group of elements, either use

a List backed by an array (as produced by Arrays.asList()), or if necessary,

an actual array.

CopyOnWriteArrayList is a special implementation of List used in

concurrent programming, and will be discussed in the Concurrency chapter.

Exercise 29: (2) Modify ListPerformance.java so that the Lists hold
String objects instead of Integers. Use a Generator from the Arrays
chapter to create test values.

Exercise 30: (3) Compare the performance of Collections.sort()
between an ArrayList and a LinkedList.

Exercise 31: (5) Create a container that encapsulates an array of String,
and that only allows adding Strings and getting Strings, so that there are no
casting issues during use. If the internal array isn’t big enough for the next
add, your container should automatically resize it. In main(), compare the
performance of your container with an ArrayList<String>.

Containers in Depth 867

Exercise 32: (2) Repeat the previous exercise for a container of int, and
compare the performance to an ArrayList<Integer>. In your performance
comparison, include the process of incrementing each object in the container.

Exercise 33: (5) Create a FastTraversalLinkedList that internally
uses a LinkedList for rapid insertions and removals, and an ArrayList for
rapid traversals and get() operations. Test it by modifying
ListPerformance.java.

Microbenchmarking dangers
When writing so-called microbenchmarks, you must be careful not to assume

too much, and to narrow your tests so that as much as possible they are only

timing the items of interest. You must also be careful to ensure that your tests

run long enough to produce interesting data, and take into account that some

of the Java HotSpot technologies will only kick in when a program runs for a

certain time (this is important to consider for short-running programs, as

well).

Results will be different according to the computer and JVM you are using, so

you should run these tests yourself to verify that the results are similar to

those shown in this book. You should not be so concerned with absolute

numbers as with the performance comparisons between one type of container

and another.

Also, a profiler may do a better job of performance analysis than you can.

Java comes with a profiler and there are third-party profilers available, both

free/open-source and commercial.

A related example concerns Math.random(). Does it produce a value from

zero to one, inclusive or exclusive of the value “1”? In math lingo, is it (0,1), or

[0,1], or (0,1] or [0,1)? (The square bracket means “includes,” whereas the

parenthesis means “doesn’t include.”) A test program might provide the

answer:

//: containers/RandomBounds.java

// Does Math.random() produce 0.0 and 1.0?

// {RunByHand}

import static net.mindview.util.Print.*;

public class RandomBounds {

 static void usage() {

 print("Usage:");

868 Thinking in Java Bruce Eckel

 print("\tRandomBounds lower");

 print("\tRandomBounds upper");

 System.exit(1);

 }

 public static void main(String[] args) {

 if(args.length != 1) usage();

 if(args[0].equals("lower")) {

 while(Math.random() != 0.0)

 ; // Keep trying

 print("Produced 0.0!");

 }

 else if(args[0].equals("upper")) {

 while(Math.random() != 1.0)

 ; // Keep trying

 print("Produced 1.0!");

 }

 else

 usage();

 }

} ///:~

To run the program, you type a command line of either:

java RandomBounds lower

or

java RandomBounds upper

In both cases, you are forced to break out of the program manually, so it

would appear that Math.random() never produces either 0.0 or 1.0. But

this is where such an experiment can be deceiving. If you consider that there

are about 262 different double fractions between 0 and 1, the likelihood of

reaching any one value experimentally might exceed the lifetime of one

computer, or even one experimenter. It turns out that 0.0 is included in the

output of Math.random(). Or, in math lingo, it is [0,1). Thus, you must be

careful to analyze your experiments and to understand their limitations.

Choosing between Sets
Depending on the behavior you desire, you can choose a TreeSet, a

HashSet, or a LinkedHashSet. The following test program gives an

indication of the performance trade-off between these implementations:

//: containers/SetPerformance.java

Containers in Depth 869

// Demonstrates performance differences in Sets.

// {Args: 100 5000} Small to keep build testing short

import java.util.*;

public class SetPerformance {

 static List<Test<Set<Integer>>> tests =

 new ArrayList<Test<Set<Integer>>>();

 static {

 tests.add(new Test<Set<Integer>>("add") {

 int test(Set<Integer> set, TestParam tp) {

 int loops = tp.loops;

 int size = tp.size;

 for(int i = 0; i < loops; i++) {

 set.clear();

 for(int j = 0; j < size; j++)

 set.add(j);

 }

 return loops * size;

 }

 });

 tests.add(new Test<Set<Integer>>("contains") {

 int test(Set<Integer> set, TestParam tp) {

 int loops = tp.loops;

 int span = tp.size * 2;

 for(int i = 0; i < loops; i++)

 for(int j = 0; j < span; j++)

 set.contains(j);

 return loops * span;

 }

 });

 tests.add(new Test<Set<Integer>>("iterate") {

 int test(Set<Integer> set, TestParam tp) {

 int loops = tp.loops * 10;

 for(int i = 0; i < loops; i++) {

 Iterator<Integer> it = set.iterator();

 while(it.hasNext())

 it.next();

 }

 return loops * set.size();

 }

 });

 }

 public static void main(String[] args) {

 if(args.length > 0)

870 Thinking in Java Bruce Eckel

 Tester.defaultParams = TestParam.array(args);

 Tester.fieldWidth = 10;

 Tester.run(new TreeSet<Integer>(), tests);

 Tester.run(new HashSet<Integer>(), tests);

 Tester.run(new LinkedHashSet<Integer>(), tests);

 }

} /* Output: (Sample)

------------- TreeSet -------------

 size add contains iterate

 10 746 173 89

 100 501 264 68

 1000 714 410 69

10000 1975 552 69

------------- HashSet -------------

 size add contains iterate

 10 308 91 94

 100 178 75 73

 1000 216 110 72

10000 711 215 100

---------- LinkedHashSet ----------

 size add contains iterate

 10 350 65 83

 100 270 74 55

 1000 303 111 54

10000 1615 256 58

*///:~

The performance of HashSet is generally superior to TreeSet, but

especially when adding elements and looking them up, which are the two

most important operations. TreeSet exists because it maintains its elements

in sorted order, so you use it only when you need a sorted Set. Because of the

internal structure necessary to support sorting and because iteration is

something you’re more likely to do, iteration is usually faster with a TreeSet

than a HashSet.

Note that LinkedHashSet is more expensive for insertions than HashSet;

this is because of the extra cost of maintaining the linked list along with the

hashed container.

Exercise 34: (1) Modify SetPerformance.java so that the Sets hold
String objects instead of Integers. Use a Generator from the Arrays
chapter to create test values.

Containers in Depth 871

Choosing between Maps
This program gives an indication of the trade-off between Map

implementations:

//: containers/MapPerformance.java

// Demonstrates performance differences in Maps.

// {Args: 100 5000} Small to keep build testing short

import java.util.*;

public class MapPerformance {

 static List<Test<Map<Integer,Integer>>> tests =

 new ArrayList<Test<Map<Integer,Integer>>>();

 static {

 tests.add(new Test<Map<Integer,Integer>>("put") {

 int test(Map<Integer,Integer> map, TestParam tp) {

 int loops = tp.loops;

 int size = tp.size;

 for(int i = 0; i < loops; i++) {

 map.clear();

 for(int j = 0; j < size; j++)

 map.put(j, j);

 }

 return loops * size;

 }

 });

 tests.add(new Test<Map<Integer,Integer>>("get") {

 int test(Map<Integer,Integer> map, TestParam tp) {

 int loops = tp.loops;

 int span = tp.size * 2;

 for(int i = 0; i < loops; i++)

 for(int j = 0; j < span; j++)

 map.get(j);

 return loops * span;

 }

 });

 tests.add(new Test<Map<Integer,Integer>>("iterate") {

 int test(Map<Integer,Integer> map, TestParam tp) {

 int loops = tp.loops * 10;

 for(int i = 0; i < loops; i ++) {

 Iterator it = map.entrySet().iterator();

 while(it.hasNext())

 it.next();

 }

872 Thinking in Java Bruce Eckel

 return loops * map.size();

 }

 });

 }

 public static void main(String[] args) {

 if(args.length > 0)

 Tester.defaultParams = TestParam.array(args);

 Tester.run(new TreeMap<Integer,Integer>(), tests);

 Tester.run(new HashMap<Integer,Integer>(), tests);

 Tester.run(new LinkedHashMap<Integer,Integer>(),tests);

 Tester.run(

 new IdentityHashMap<Integer,Integer>(), tests);

 Tester.run(new WeakHashMap<Integer,Integer>(), tests);

 Tester.run(new Hashtable<Integer,Integer>(), tests);

 }

} /* Output: (Sample)

---------- TreeMap ----------

 size put get iterate

 10 748 168 100

 100 506 264 76

 1000 771 450 78

10000 2962 561 83

---------- HashMap ----------

 size put get iterate

 10 281 76 93

 100 179 70 73

 1000 267 102 72

10000 1305 265 97

------- LinkedHashMap -------

 size put get iterate

 10 354 100 72

 100 273 89 50

 1000 385 222 56

10000 2787 341 56

------ IdentityHashMap ------

 size put get iterate

 10 290 144 101

 100 204 287 132

 1000 508 336 77

10000 767 266 56

-------- WeakHashMap --------

 size put get iterate

 10 484 146 151

 100 292 126 117

Containers in Depth 873

 1000 411 136 152

10000 2165 138 555

--------- Hashtable ---------

 size put get iterate

 10 264 113 113

 100 181 105 76

 1000 260 201 80

10000 1245 134 77

*///:~

Insertions for all the Map implementations except for IdentityHashMap

get significantly slower as the size of the Map gets large. In general, however,

lookup is much cheaper than insertion, which is good because you’ll typically

be looking items up much more often than you insert them.

Hashtable performance is roughly the same as HashMap. Since

HashMap is intended to replace Hashtable, and thus uses the same

underlying storage and lookup mechanism (which you will learn about later),

this is not too surprising.

A TreeMap is generally slower than a HashMap. As with TreeSet, a

TreeMap is a way to create an ordered list. The behavior of a tree is such

that it’s always in order and doesn’t have to be specially sorted. Once you fill a

TreeMap, you can call keySet() to get a Set view of the keys, then

toArray() to produce an array of those keys. You can then use the static

method Arrays.binarySearch() to rapidly find objects in your sorted

array. Of course, this only makes sense if the behavior of a HashMap is

unacceptable, since HashMap is designed to rapidly find keys. Also, you can

easily create a HashMap from a TreeMap with a single object creation or

call to putAll(). In the end, when you’re using a Map, your first choice

should be HashMap, and only if you need a constantly sorted Map will you

need TreeMap.

LinkedHashMap tends to be slower than HashMap for insertions because

it maintains the linked list (to preserve insertion order) in addition to the

hashed data structure. Because of this list, iteration is faster.

IdentityHashMap has different performance because it uses == rather

than equals() for comparisons. WeakHashMap is described later in this

chapter.

Exercise 35: (1) Modify MapPerformance.java to include tests of
SlowMap.

874 Thinking in Java Bruce Eckel

Exercise 36: (5) Modify SlowMap so that instead of two ArrayLists, it
holds a single ArrayList of MapEntry objects. Verify that the modified
version works correctly. Using MapPerformance.java, test the speed of
your new Map. Now change the put() method so that it performs a sort()
after each pair is entered, and modify get() to use
Collections.binarySearch() to look up the key. Compare the performance
of the new version with the old ones.

Exercise 37: (2) Modify SimpleHashMap to use ArrayLists instead of
LinkedLists. Modify MapPerformance.java to compare the performance
of the two implementations.

HashMap performance factors
It’s possible to hand-tune a HashMap to increase its performance for your

particular application. So that you can understand performance issues when

tuning a HashMap, some terminology is necessary:

Capacity: The number of buckets in the table.

Initial capacity: The number of buckets when the table is created.

HashMap and HashSet have constructors that allow you to specify the

initial capacity.

Size: The number of entries currently in the table.

Load factor: Size/capacity. A load factor of 0 is an empty table, 0.5 is a

half-full table, etc. A lightly loaded table will have few collisions and so is

optimal for insertions and lookups (but will slow down the process of

traversing with an iterator). HashMap and HashSet have constructors

that allow you to specify the load factor, which means that when this load

factor is reached, the container will automatically increase the capacity

(the number of buckets) by roughly doubling it and will redistribute the

existing objects into the new set of buckets (this is called rehashing).

The default load factor used by HashMap is 0.75 (it doesn’t rehash until the

table is three-fourths full). This seems to be a good trade-off between time

and space costs. A higher load factor decreases the space required by the table

but increases the lookup cost, which is important because lookup is what you

do most of the time (including both get() and put()).

Containers in Depth 875

If you know that you’ll be storing many entries in a HashMap, creating it

with an appropriately large initial capacity will prevent the overhead of

automatic rehashing.11

Exercise 38: (3) Look up the HashMap class in the JDK
documentation. Create a HashMap, fill it with elements, and determine the
load factor. Test the lookup speed with this map, then attempt to increase the
speed by making a new HashMap with a larger initial capacity and copying
the old map into the new one, then run your lookup speed test again on the
new map.

Exercise 39: (6) Add a private rehash() method to SimpleHashMap
that is invoked when the load factor exceeds 0.75. During rehashing, double
the number of buckets, then search for the first prime number greater than
that to determine the new number of buckets.

Utilities
There are a number of standalone utilities for containers, expressed as static

methods inside the java.util.Collections class. You’ve already seen some of

these, such as addAll(), reverseOrder() and binarySearch(). Here are

the others (the synchronized and unmodifiable utilities will be covered in

sections that follow). In this table, generics are used when they are relevant:

checkedCollection(
Collection<T>, Class<T> type)

checkedList(
List<T>, Class<T> type)

checkedMap(Map<K,V>,
Class<K> keyType,
Class<V> valueType)

checkedSet(Set<T>,

Produces a dynamically type-safe
view of a Collection, or a specific
subtype of Collection. Use this
when it’s not possible to use the
statically checked version.

These were shown in the Generics
chapter under the heading

11 In a private message, Joshua Bloch wrote: “… I believe that we erred by allowing
implementation details (such as hash table size and load factor) into our APIs. The client
should perhaps tell us the maximum expected size of a collection, and we should take it
from there. Clients can easily do more harm than good by choosing values for these
parameters. As an extreme example, consider Vector’s capacityIncrement. No one
should ever set this, and we shouldn’t have provided it. If you set it to any nonzero value,
the asymptotic cost of a sequence of appends goes from linear to quadratic. In other
words, it destroys your performance. Over time, we’re beginning to wise up about this sort
of thing. If you look at IdentityHashMap, you’ll see that it has no low-level tuning
parameters.”

876 Thinking in Java Bruce Eckel

Class<T> type)

checkedSortedMap(
SortedMap<K,V>,
Class<K> keyType,
Class<V> valueType)

checkedSortedSet(
SortedSet<T>,
Class<T> type)

“Dynamic type safety.”

max(Collection)

min(Collection)

Produces the maximum or
minimum element in the argument
using the natural comparison
method of the objects in the
Collection.

max(Collection, Comparator)

min(Collection, Comparator)

Produces the maximum or
minimum element in the
Collection using the
Comparator.

indexOfSubList(List source,
List target)

Produces starting index of the first
place where target appears inside
source, or -1 if none occurs.

lastIndexOfSubList(List
source, List target)

Produces starting index of the last
place where target appears inside
source, or -1 if none occurs.

replaceAll(List<T>,
T oldVal, T newVal)

Replaces all oldVal with newVal.

reverse(List) Reverses all the elements in place.

reverseOrder()
reverseOrder(
Comparator<T>)

Returns a Comparator that
reverses the natural ordering of a
collection of objects that
implement Comparable<T>. The
second version reverses the order
of the supplied Comparator.

rotate(List, int distance) Moves all elements forward by
distance, taking the ones off the
end and placing them at the
beginning.

shuffle(List)

shuffle(List, Random)

Randomly permutes the specified
list. The first form provides its own
randomization source, or you may
provide your own with the second

Containers in Depth 877

form.

sort(List<T>)

sort(List<T>,
Comparator<? super T> c)

Sorts the List<T> using its natural
ordering. The second form allows
you to provide a Comparator for
sorting.

copy(List<? super T> dest,

List<? extends T> src)

Copies elements from src to dest.

swap(List, int i, int j) Swaps elements at locations i and j
in the List. Probably faster than
what you’d write by hand.

fill(List<? super T>, T x) Replaces all the elements of list
with x.

nCopies(int n, T x) Returns an immutable List<T> of
size n whose references all point to
x.

disjoint(Collection, Collection) Returns true if the two collections
have no elements in common.

frequency(Collection, Object x) Returns the number of elements in
the Collection equal to x.

emptyList()

emptyMap()

emptySet()

Returns an immutable empty List,
Map, or Set. These are generic, so
the resulting Collection will be
parameterized to the desired type.

singleton(T x)

singletonList(T x)

singletonMap(K key, V value)

Produces an immutable Set<T>,
List<T>, or Map<K,V>
containing a single entry based on
the given argument(s).

list(Enumeration<T> e) Produces an ArrayList<T>
containing the elements in the
order in which they are returned by
the (old-style) Enumeration
(predecessor to the Iterator). For
converting from legacy code.

enumeration(Collection<T>) Produces an old-style
Enumeration<T> for the
argument.

Note that min() and max() work with Collection objects, not with Lists,

so you don’t need to worry about whether the Collection should be sorted or

878 Thinking in Java Bruce Eckel

not. (As mentioned earlier, you do need to sort() a List or an array before

performing a binarySearch().)

Here’s an example showing the basic use of most of the utilities in the above

table:

//: containers/Utilities.java

// Simple demonstrations of the Collections utilities.

import java.util.*;

import static net.mindview.util.Print.*;

public class Utilities {

 static List<String> list = Arrays.asList(

 "one Two three Four five six one".split(" "));

 public static void main(String[] args) {

 print(list);

 print("'list' disjoint (Four)?: " +

 Collections.disjoint(list,

 Collections.singletonList("Four")));

 print("max: " + Collections.max(list));

 print("min: " + Collections.min(list));

 print("max w/ comparator: " + Collections.max(list,

 String.CASE_INSENSITIVE_ORDER));

 print("min w/ comparator: " + Collections.min(list,

 String.CASE_INSENSITIVE_ORDER));

 List<String> sublist =

 Arrays.asList("Four five six".split(" "));

 print("indexOfSubList: " +

 Collections.indexOfSubList(list, sublist));

 print("lastIndexOfSubList: " +

 Collections.lastIndexOfSubList(list, sublist));

 Collections.replaceAll(list, "one", "Yo");

 print("replaceAll: " + list);

 Collections.reverse(list);

 print("reverse: " + list);

 Collections.rotate(list, 3);

 print("rotate: " + list);

 List<String> source =

 Arrays.asList("in the matrix".split(" "));

 Collections.copy(list, source);

 print("copy: " + list);

 Collections.swap(list, 0, list.size() - 1);

 print("swap: " + list);

 Collections.shuffle(list, new Random(47));

Containers in Depth 879

 print("shuffled: " + list);

 Collections.fill(list, "pop");

 print("fill: " + list);

 print("frequency of 'pop': " +

 Collections.frequency(list, "pop"));

 List<String> dups = Collections.nCopies(3, "snap");

 print("dups: " + dups);

 print("'list' disjoint 'dups'?: " +

 Collections.disjoint(list, dups));

 // Getting an old-style Enumeration:

 Enumeration<String> e = Collections.enumeration(dups);

 Vector<String> v = new Vector<String>();

 while(e.hasMoreElements())

 v.addElement(e.nextElement());

 // Converting an old-style Vector

 // to a List via an Enumeration:

 ArrayList<String> arrayList =

 Collections.list(v.elements());

 print("arrayList: " + arrayList);

 }

} /* Output:

[one, Two, three, Four, five, six, one]

'list' disjoint (Four)?: false

max: three

min: Four

max w/ comparator: Two

min w/ comparator: five

indexOfSubList: 3

lastIndexOfSubList: 3

replaceAll: [Yo, Two, three, Four, five, six, Yo]

reverse: [Yo, six, five, Four, three, Two, Yo]

rotate: [three, Two, Yo, Yo, six, five, Four]

copy: [in, the, matrix, Yo, six, five, Four]

swap: [Four, the, matrix, Yo, six, five, in]

shuffled: [six, matrix, the, Four, Yo, five, in]

fill: [pop, pop, pop, pop, pop, pop, pop]

frequency of 'pop': 7

dups: [snap, snap, snap]

'list' disjoint 'dups'?: true

arrayList: [snap, snap, snap]

*///:~

880 Thinking in Java Bruce Eckel

The output explains the behavior of each utility method. Note the difference

in min() and max() with the String.CASE_INSENSITIVE_ORDER

Comparator because of capitalization.

Sorting and searching Lists
Utilities to perform sorting and searching for Lists have the same names and

signatures as those for sorting arrays of objects, but are static methods of

Collections instead of Arrays. Here’s an example that uses the list data

from Utilities.java:

//: containers/ListSortSearch.java

// Sorting and searching Lists with Collections utilities.

import java.util.*;

import static net.mindview.util.Print.*;

public class ListSortSearch {

 public static void main(String[] args) {

 List<String> list =

 new ArrayList<String>(Utilities.list);

 list.addAll(Utilities.list);

 print(list);

 Collections.shuffle(list, new Random(47));

 print("Shuffled: " + list);

 // Use a ListIterator to trim off the last elements:

 ListIterator<String> it = list.listIterator(10);

 while(it.hasNext()) {

 it.next();

 it.remove();

 }

 print("Trimmed: " + list);

 Collections.sort(list);

 print("Sorted: " + list);

 String key = list.get(7);

 int index = Collections.binarySearch(list, key);

 print("Location of " + key + " is " + index +

 ", list.get(" + index + ") = " + list.get(index));

 Collections.sort(list, String.CASE_INSENSITIVE_ORDER);

 print("Case-insensitive sorted: " + list);

 key = list.get(7);

 index = Collections.binarySearch(list, key,

 String.CASE_INSENSITIVE_ORDER);

 print("Location of " + key + " is " + index +

 ", list.get(" + index + ") = " + list.get(index));

Containers in Depth 881

 }

} /* Output:

[one, Two, three, Four, five, six, one, one, Two, three,

Four, five, six, one]

Shuffled: [Four, five, one, one, Two, six, six, three,

three, five, Four, Two, one, one]

Trimmed: [Four, five, one, one, Two, six, six, three, three,

five]

Sorted: [Four, Two, five, five, one, one, six, six, three,

three]

Location of six is 7, list.get(7) = six

Case-insensitive sorted: [five, five, Four, one, one, six,

six, three, three, Two]

Location of three is 7, list.get(7) = three

*///:~

Just as when searching and sorting with arrays, if you sort using a

Comparator, you must binarySearch() using the same Comparator.

This program also demonstrates the shuffle() method in Collections,

which randomizes the order of a List. A ListIterator is created at a

particular location in the shuffled list, and used to remove the elements from

that location until the end of the list.

Exercise 40: (5) Create a class containing two String objects and make it
Comparable so that the comparison only cares about the first String. Fill
an array and an ArrayList with objects of your class, using the
RandomGenerator generator. Demonstrate that sorting works properly.
Now make a Comparator that only cares about the second String, and
demonstrate that sorting works properly. Also perform a binary search using
your Comparator.

Exercise 41: (3) Modify the class in the previous exercise so that it will
work with HashSets and as a key in HashMaps.

Exercise 42: (2) Modify Exercise 40 so that an alphabetic sort is used.

Making a Collection or Map

unmodifiable
Often it is convenient to create a read-only version of a Collection or Map.

The Collections class allows you to do this by passing the original container

into a method that hands back a read-only version. There are a number of

variations on this method, for Collections (if you can’t treat a Collection as

882 Thinking in Java Bruce Eckel

a more specific type), Lists, Sets, and Maps. This example shows the proper

way to build read-only versions of each:

//: containers/ReadOnly.java

// Using the Collections.unmodifiable methods.

import java.util.*;

import net.mindview.util.*;

import static net.mindview.util.Print.*;

public class ReadOnly {

 static Collection<String> data =

 new ArrayList<String>(Countries.names(6));

 public static void main(String[] args) {

 Collection<String> c =

 Collections.unmodifiableCollection(

 new ArrayList<String>(data));

 print(c); // Reading is OK

 //! c.add("one"); // Can't change it

 List<String> a = Collections.unmodifiableList(

 new ArrayList<String>(data));

 ListIterator<String> lit = a.listIterator();

 print(lit.next()); // Reading is OK

 //! lit.add("one"); // Can't change it

 Set<String> s = Collections.unmodifiableSet(

 new HashSet<String>(data));

 print(s); // Reading is OK

 //! s.add("one"); // Can't change it

 // For a SortedSet:

 Set<String> ss = Collections.unmodifiableSortedSet(

 new TreeSet<String>(data));

 Map<String,String> m = Collections.unmodifiableMap(

 new HashMap<String,String>(Countries.capitals(6)));

 print(m); // Reading is OK

 //! m.put("Ralph", "Howdy!");

 // For a SortedMap:

 Map<String,String> sm =

 Collections.unmodifiableSortedMap(

 new TreeMap<String,String>(Countries.capitals(6)));

 }

Containers in Depth 883

} /* Output:

[ALGERIA, ANGOLA, BENIN, BOTSWANA, BURKINA FASO, BURUNDI]

ALGERIA

[ANGOLA, ALGERIA, BURKINA FASO, BENIN, BURUNDI, BOTSWANA]

{ANGOLA=Luanda, ALGERIA=Algiers, BURKINA FASO=Ouagadougou,

BENIN=Porto-Novo, BURUNDI=Bujumbura, BOTSWANA=Gaberone}

*///:~

Calling the “unmodifiable” method for a particular type does not cause

compile-time checking, but once the transformation has occurred, any calls to

methods that modify the contents of a particular container will produce an

UnsupportedOperationException.

In each case, you must fill the container with meaningful data before you

make it read-only. Once it is loaded, the best approach is to replace the

existing reference with the reference that is produced by the “unmodifiable”

call. That way, you don’t run the risk of accidentally trying to change the

contents once you’ve made it unmodifiable. On the other hand, this tool also

allows you to keep a modifiable container as private within a class and to

return a read-only reference to that container from a method call. So, you can

change it from within the class, but everyone else can only read it.

Synchronizing a Collection or Map
The synchronized keyword is an important part of the subject of

multithreading, a more complicated topic that will not be introduced until

the Concurrency chapter. Here, I shall note only that the Collections class

contains a way to automatically synchronize an entire container. The syntax

is similar to the “unmodifiable” methods:

//: containers/Synchronization.java

// Using the Collections.synchronized methods.

import java.util.*;

public class Synchronization {

 public static void main(String[] args) {

 Collection<String> c =

 Collections.synchronizedCollection(

 new ArrayList<String>());

 List<String> list = Collections.synchronizedList(

 new ArrayList<String>());

 Set<String> s = Collections.synchronizedSet(

 new HashSet<String>());

884 Thinking in Java Bruce Eckel

 Set<String> ss = Collections.synchronizedSortedSet(

 new TreeSet<String>());

 Map<String,String> m = Collections.synchronizedMap(

 new HashMap<String,String>());

 Map<String,String> sm =

 Collections.synchronizedSortedMap(

 new TreeMap<String,String>());

 }

} ///:~

It is best to immediately pass the new container through the appropriate

“synchronized” method, as shown above. That way, there’s no chance of

accidentally exposing the unsynchronized version.

Fail fast
The Java containers also have a mechanism to prevent more than one process

from modifying the contents of a container. The problem occurs if you’re in

the middle of iterating through a container, and then some other process

steps in and inserts, removes, or changes an object in that container. Maybe

you’ve already passed that element in the container, maybe it’s ahead of you,

maybe the size of the container shrinks after you call size()—there are many

scenarios for disaster. The Java containers library uses a fail-fast mechanism

that looks for any changes to the container other than the ones your process

is personally responsible for. If it detects that someone else is modifying the

container, it immediately produces a ConcurrentModification-

Exception. This is the “fail-fast” aspect—it doesn’t try to detect a problem

later on using a more complex algorithm.

It’s quite easy to see the fail-fast mechanism in operation—all you must do is

create an iterator and then add something to the collection that the iterator is

pointing to, like this:

//: containers/FailFast.java

// Demonstrates the "fail-fast" behavior.

import java.util.*;

public class FailFast {

 public static void main(String[] args) {

 Collection<String> c = new ArrayList<String>();

 Iterator<String> it = c.iterator();

 c.add("An object");

 try {

 String s = it.next();

Containers in Depth 885

 } catch(ConcurrentModificationException e) {

 System.out.println(e);

 }

 }

} /* Output:

java.util.ConcurrentModificationException

*///:~

The exception happens because something is placed in the container after the

iterator is acquired from the container. The possibility that two parts of the

program might modify the same container produces an uncertain state, so the

exception notifies you that you should change your code—in this case, acquire

the iterator after you have added all the elements to the container.

The ConcurrentHashMap, CopyOnWriteArrayList, and

CopyOnWriteArraySet use techniques that avoid

ConcurrentModificationExceptions.

Holding references
The java.lang.ref library contains a set of classes that allow greater

flexibility in garbage collection. These classes are especially useful when you

have large objects that may cause memory exhaustion. There are three classes

inherited from the abstract class Reference: SoftReference,

WeakReference, and PhantomReference. Each of these provides a

different level of indirection for the garbage collector if the object in question

is only reachable through one of these Reference objects.

If an object is reachable, it means that somewhere in your program the object

can be found. This could mean that you have an ordinary reference on the

stack that goes right to the object, but you might also have a reference to an

object that has a reference to the object in question; there can be many

intermediate links. If an object is reachable, the garbage collector cannot

release it because it’s still in use by your program. If an object isn’t reachable,

there’s no way for your program to use it, so it’s safe to garbage collect that

object.

You use Reference objects when you want to continue to hold on to a

reference to that object—you want to reach that object—but you also want to

allow the garbage collector to release that object. Thus, you have a way to use

the object, but if memory exhaustion is imminent, you allow that object to be

released.

886 Thinking in Java Bruce Eckel

You accomplish this by using a Reference object as an intermediary (a

proxy) between you and the ordinary reference. In addition, there must be no

ordinary references to the object (ones that are not wrapped inside

Reference objects). If the garbage collector discovers that an object is

reachable through an ordinary reference, it will not release that object.

In the order of SoftReference, WeakReference, and

PhantomReference, each one is “weaker” than the last and corresponds to

a different level of reachability. Soft references are for implementing

memory-sensitive caches. Weak references are for implementing

“canonicalizing mappings”—where instances of objects can be simultaneously

used in multiple places in a program, to save storage—that do not prevent

their keys (or values) from being reclaimed. Phantom references are for

scheduling pre-mortem cleanup actions in a more flexible way than is

possible with the Java finalization mechanism.

With SoftReferences and WeakReferences, you have a choice about

whether to place them on a ReferenceQueue (the device used for pre-

mortem cleanup actions), but a PhantomReference can only be built on a

ReferenceQueue. Here’s a simple demonstration:

//: containers/References.java

// Demonstrates Reference objects

import java.lang.ref.*;

import java.util.*;

class VeryBig {

 private static final int SIZE = 10000;

 private long[] la = new long[SIZE];

 private String ident;

 public VeryBig(String id) { ident = id; }

 public String toString() { return ident; }

 protected void finalize() {

 System.out.println("Finalizing " + ident);

 }

}

public class References {

 private static ReferenceQueue<VeryBig> rq =

 new ReferenceQueue<VeryBig>();

 public static void checkQueue() {

 Reference<? extends VeryBig> inq = rq.poll();

 if(inq != null)

Containers in Depth 887

 System.out.println("In queue: " + inq.get());

 }

 public static void main(String[] args) {

 int size = 10;

 // Or, choose size via the command line:

 if(args.length > 0)

 size = new Integer(args[0]);

 LinkedList<SoftReference<VeryBig>> sa =

 new LinkedList<SoftReference<VeryBig>>();

 for(int i = 0; i < size; i++) {

 sa.add(new SoftReference<VeryBig>(

 new VeryBig("Soft " + i), rq));

 System.out.println("Just created: " + sa.getLast());

 checkQueue();

 }

 LinkedList<WeakReference<VeryBig>> wa =

 new LinkedList<WeakReference<VeryBig>>();

 for(int i = 0; i < size; i++) {

 wa.add(new WeakReference<VeryBig>(

 new VeryBig("Weak " + i), rq));

 System.out.println("Just created: " + wa.getLast());

 checkQueue();

 }

 SoftReference<VeryBig> s =

 new SoftReference<VeryBig>(new VeryBig("Soft"));

 WeakReference<VeryBig> w =

 new WeakReference<VeryBig>(new VeryBig("Weak"));

 System.gc();

 LinkedList<PhantomReference<VeryBig>> pa =

 new LinkedList<PhantomReference<VeryBig>>();

 for(int i = 0; i < size; i++) {

 pa.add(new PhantomReference<VeryBig>(

 new VeryBig("Phantom " + i), rq));

 System.out.println("Just created: " + pa.getLast());

 checkQueue();

 }

 }

} /* (Execute to see output) *///:~

When you run this program (you’ll want to redirect the output into a text file

so that you can view the output in pages), you’ll see that the objects are

garbage collected, even though you still have access to them through the

Reference object (to get the actual object reference, you use get()). You’ll

also see that the ReferenceQueue always produces a Reference

888 Thinking in Java Bruce Eckel

containing a null object. To use this, inherit from a particular Reference

class and add more useful methods to the new class.

The WeakHashMap
The containers library has a special Map to hold weak references: the

WeakHashMap. This class is designed to make the creation of

canonicalized mappings easier. In such a mapping, you are saving storage by

creating only one instance of a particular value. When the program needs that

value, it looks up the existing object in the mapping and uses that (rather

than creating one from scratch). The mapping may make the values as part of

its initialization, but it’s more likely that the values are made on demand.

Since this is a storage-saving technique, it’s very convenient that the

WeakHashMap allows the garbage collector to automatically clean up the

keys and values. You don’t have to do anything special to the keys and values

you want to place in the WeakHashMap; these are automatically wrapped

in WeakReferences by the map. The trigger to allow cleanup is that the key

is no longer in use, as demonstrated here:

//: containers/CanonicalMapping.java

// Demonstrates WeakHashMap.

import java.util.*;

class Element {

 private String ident;

 public Element(String id) { ident = id; }

 public String toString() { return ident; }

 public int hashCode() { return ident.hashCode(); }

 public boolean equals(Object r) {

 return r instanceof Element &&

 ident.equals(((Element)r).ident);

 }

 protected void finalize() {

 System.out.println("Finalizing " +

 getClass().getSimpleName() + " " + ident);

 }

}

class Key extends Element {

 public Key(String id) { super(id); }

}

Containers in Depth 889

class Value extends Element {

 public Value(String id) { super(id); }

}

public class CanonicalMapping {

 public static void main(String[] args) {

 int size = 1000;

 // Or, choose size via the command line:

 if(args.length > 0)

 size = new Integer(args[0]);

 Key[] keys = new Key[size];

 WeakHashMap<Key,Value> map =

 new WeakHashMap<Key,Value>();

 for(int i = 0; i < size; i++) {

 Key k = new Key(Integer.toString(i));

 Value v = new Value(Integer.toString(i));

 if(i % 3 == 0)

 keys[i] = k; // Save as "real" references

 map.put(k, v);

 }

 System.gc();

 }

} /* (Execute to see output) *///:~

The Key class must have a hashCode() and an equals() since it is being

used as a key in a hashed data structure. The subject of hashCode() was

described earlier in this chapter.

When you run the program, you’ll see that the garbage collector will skip

every third key, because an ordinary reference to that key has also been

placed in the keys array, and thus those objects cannot be garbage collected.

Java 1.0/1.1 containers
Unfortunately, a lot of code was written using the Java 1.0/1.1 containers, and

even new code is sometimes written using these classes. So although you

should never use the old containers when writing new code, you’ll still need

to be aware of them. However, the old containers were quite limited, so

there’s not that much to say about them, and since they are anachronistic, I

will try to refrain from overemphasizing some of their hideous design

decisions.

890 Thinking in Java Bruce Eckel

Vector & Enumeration
The only self-expanding sequence in Java 1.0/1.1 was the Vector, so it saw a

lot of use. Its flaws are too numerous to describe here. Basically, you can

think of it as an ArrayList with long, awkward method names. In the revised

Java container library, Vector was adapted so that it could work as a

Collection and a List. This turns out to be a bit perverse, as it may confuse

some people into thinking that Vector has gotten better, when it is actually

included only to support older Java code.

The Java 1.0/1.1 version of the iterator chose to invent a new name,

“enumeration,” instead of using a term that everyone was already familiar

with (“iterator”). The Enumeration interface is smaller than Iterator, with

only two methods, and it uses longer method names: boolean

hasMoreElements() produces true if this enumeration contains more

elements, and Object nextElement() returns the next element of this

enumeration if there are any more (otherwise it throws an exception).

Enumeration is only an interface, not an implementation, and even new

libraries sometimes still use the old Enumeration, which is unfortunate but

generally harmless. Even though you should always use Iterator when you

can in your own code, you must be prepared for libraries that want to hand

you an Enumeration.

In addition, you can produce an Enumeration for any Collection by using

the Collections.enumeration() method, as seen in this example:

//: containers/Enumerations.java

// Java 1.0/1.1 Vector and Enumeration.

import java.util.*;

import net.mindview.util.*;

public class Enumerations {

 public static void main(String[] args) {

 Vector<String> v =

 new Vector<String>(Countries.names(10));

 Enumeration<String> e = v.elements();

 while(e.hasMoreElements())

 System.out.print(e.nextElement() + ", ");

 // Produce an Enumeration from a Collection:

 e = Collections.enumeration(new ArrayList<String>());

 }

} /* Output:

Containers in Depth 891

ALGERIA, ANGOLA, BENIN, BOTSWANA, BURKINA FASO, BURUNDI,

CAMEROON, CAPE VERDE, CENTRAL AFRICAN REPUBLIC, CHAD,

*///:~

To produce an Enumeration, you call elements(), then you can use it to

perform a forward iteration.

The last line creates an ArrayList and uses enumeration() to adapt an

Enumeration from the ArrayList Iterator. Thus, if you have old code

that wants an Enumeration, you can still use the new containers.

Hashtable
As you’ve seen in the performance comparison in this chapter, the basic

Hashtable is very similar to the HashMap, even down to the method

names. There’s no reason to use Hashtable instead of HashMap in new

code.

Stack
The concept of the stack was introduced earlier, with the LinkedList. What’s

rather odd about the Java 1.0/1.1 Stack is that instead of using a Vector

with composition, Stack is inherited from Vector. So it has all of the

characteristics and behaviors of a Vector plus some extra Stack behaviors.

It’s difficult to know whether the designers consciously thought that this was

an especially useful way of doing things, or whether it was just a naïve design;

in any event it was clearly not reviewed before it was rushed into distribution,

so this bad design is still hanging around (but you shouldn’t use it).

Here’s a simple demonstration of Stack that pushes each String

representation of an enum. It also shows how you can just as easily use a

LinkedList as a stack, or the Stack class created in the Holding Your

Objects chapter:

//: containers/Stacks.java

// Demonstration of Stack Class.

import java.util.*;

import static net.mindview.util.Print.*;

enum Month { JANUARY, FEBRUARY, MARCH, APRIL, MAY, JUNE,

 JULY, AUGUST, SEPTEMBER, OCTOBER, NOVEMBER }

public class Stacks {

892 Thinking in Java Bruce Eckel

 public static void main(String[] args) {

 Stack<String> stack = new Stack<String>();

 for(Month m : Month.values())

 stack.push(m.toString());

 print("stack = " + stack);

 // Treating a stack as a Vector:

 stack.addElement("The last line");

 print("element 5 = " + stack.elementAt(5));

 print("popping elements:");

 while(!stack.empty())

 printnb(stack.pop() + " ");

 // Using a LinkedList as a Stack:

 LinkedList<String> lstack = new LinkedList<String>();

 for(Month m : Month.values())

 lstack.addFirst(m.toString());

 print("lstack = " + lstack);

 while(!lstack.isEmpty())

 printnb(lstack.removeFirst() + " ");

 // Using the Stack class from

 // the Holding Your Objects Chapter:

 net.mindview.util.Stack<String> stack2 =

 new net.mindview.util.Stack<String>();

 for(Month m : Month.values())

 stack2.push(m.toString());

 print("stack2 = " + stack2);

 while(!stack2.empty())

 printnb(stack2.pop() + " ");

 }

} /* Output:

stack = [JANUARY, FEBRUARY, MARCH, APRIL, MAY, JUNE, JULY,

AUGUST, SEPTEMBER, OCTOBER, NOVEMBER]

element 5 = JUNE

popping elements:

The last line NOVEMBER OCTOBER SEPTEMBER AUGUST JULY JUNE

MAY APRIL MARCH FEBRUARY JANUARY lstack = [NOVEMBER,

OCTOBER, SEPTEMBER, AUGUST, JULY, JUNE, MAY, APRIL, MARCH,

FEBRUARY, JANUARY]

NOVEMBER OCTOBER SEPTEMBER AUGUST JULY JUNE MAY APRIL MARCH

FEBRUARY JANUARY stack2 = [NOVEMBER, OCTOBER, SEPTEMBER,

AUGUST, JULY, JUNE, MAY, APRIL, MARCH, FEBRUARY, JANUARY]

Containers in Depth 893

NOVEMBER OCTOBER SEPTEMBER AUGUST JULY JUNE MAY APRIL MARCH

FEBRUARY JANUARY

*///:~

A String representation is generated from the Month enum constants,

inserted into the Stack with push(), and later fetched from the top of the

stack with a pop(). To make a point, Vector operations are also performed

on the Stack object. This is possible because, by virtue of inheritance, a

Stack is a Vector. Thus, all operations that can be performed on a Vector

can also be performed on a Stack, such as elementAt().

As mentioned earlier, you should use a LinkedList when you want stack

behavior, or the net.mindview.util.Stack class created from the

LinkedList class.

BitSet
A BitSet is used if you want to efficiently store a lot of on-off information. It’s

efficient only from the standpoint of size; if you’re looking for efficient access,

it is slightly slower than using a native array.

In addition, the minimum size of the BitSet is that of a long: 64 bits. This

implies that if you’re storing anything smaller, like 8 bits, a BitSet will be

wasteful; you’re better off creating your own class, or just an array, to hold

your flags if size is an issue. (This will only be the case if you’re creating a lot

of objects containing lists of on-off information, and should only be decided

based on profiling and other metrics. If you make this decision because you

just think something is too big, you will end up creating needless complexity

and wasting a lot of time.)

A normal container expands as you add more elements, and the BitSet does

this as well. The following example shows how the BitSet works:

//: containers/Bits.java

// Demonstration of BitSet.

import java.util.*;

import static net.mindview.util.Print.*;

public class Bits {

 public static void printBitSet(BitSet b) {

 print("bits: " + b);

 StringBuilder bbits = new StringBuilder();

 for(int j = 0; j < b.size() ; j++)

894 Thinking in Java Bruce Eckel

 bbits.append(b.get(j) ? "1" : "0");

 print("bit pattern: " + bbits);

 }

 public static void main(String[] args) {

 Random rand = new Random(47);

 // Take the LSB of nextInt():

 byte bt = (byte)rand.nextInt();

 BitSet bb = new BitSet();

 for(int i = 7; i >= 0; i--)

 if(((1 << i) & bt) != 0)

 bb.set(i);

 else

 bb.clear(i);

 print("byte value: " + bt);

 printBitSet(bb);

 short st = (short)rand.nextInt();

 BitSet bs = new BitSet();

 for(int i = 15; i >= 0; i--)

 if(((1 << i) & st) != 0)

 bs.set(i);

 else

 bs.clear(i);

 print("short value: " + st);

 printBitSet(bs);

 int it = rand.nextInt();

 BitSet bi = new BitSet();

 for(int i = 31; i >= 0; i--)

 if(((1 << i) & it) != 0)

 bi.set(i);

 else

 bi.clear(i);

 print("int value: " + it);

 printBitSet(bi);

 // Test bitsets >= 64 bits:

 BitSet b127 = new BitSet();

 b127.set(127);

 print("set bit 127: " + b127);

 BitSet b255 = new BitSet(65);

 b255.set(255);

 print("set bit 255: " + b255);

 BitSet b1023 = new BitSet(512);

Containers in Depth 895

 b1023.set(1023);

 b1023.set(1024);

 print("set bit 1023: " + b1023);

 }

} /* Output:

byte value: -107

bits: {0, 2, 4, 7}

bit pattern:

1010100100

0000

short value: 1302

bits: {1, 2, 4, 8, 10}

bit pattern:

01101000101000

0000

int value: -2014573909

bits: {0, 1, 3, 5, 7, 9, 11, 18, 19, 21, 22, 23, 24, 25, 26,

31}

bit pattern:

110101010101000000110111111000010000000000000000000000000000

0000

set bit 127: {127}

set bit 255: {255}

set bit 1023: {1023, 1024}

*///:~

The random number generator is used to create a random byte, short, and

int, and each one is transformed into a corresponding bit pattern in a BitSet.

This works fine because a BitSet is 64 bits, so none of these cause it to

increase in size. Then larger BitSets are created. You can see that the BitSet

is expanded as necessary.

An EnumSet (see the Enumerated Types chapter) is usually a better choice

than a BitSet if you have a fixed set of flags that you can name, because the

EnumSet allows you to manipulate the names rather than numerical bit

locations, and thus reduces errors. EnumSet also prevents you from

accidentally adding new flag locations, which could cause some serious,

difficult-to-find bugs. The only reasons you should use BitSet instead of

EnumSet is if you don’t know how many flags you will need until run time,

or if it is unreasonable to assign names to the flags, or you need one of the

special operations in BitSet (see the JDK documentation for BitSet and

EnumSet).

896 Thinking in Java Bruce Eckel

Summary
The containers library is arguably the most important library for an object-

oriented language. Most programming will use containers more than any

other library components. Some languages (Python, for example) even

include the fundamental container components (lists, maps and sets) as

built-ins.

As you saw in the Holding Your Objects chapter, it’s possible to do a number

of very interesting things using containers, without much effort. However, at

some point you’re forced to know more about containers in order to use them

properly—in particular, you must know enough about hashing operations to

write your own hashCode() method (and you must know when it is

necessary), and you must know enough about the various container

implementations that you can choose the appropriate one for your needs.

This chapter covered these concepts and discussed additional useful details

about the container library. At this point you should be reasonably well

prepared to use the Java containers in your everyday programming tasks.

The design of a containers library is difficult (this is true of most library

design problems). In C++, the container classes covered the bases with many

different classes. This was better than what was available prior to the C++

container classes (nothing), but it didn’t translate well into Java. At the other

extreme, I’ve seen a containers library that consists of a single class,

“container,” which acts like both a linear sequence and an associative array at

the same time. The Java container library strikes a balance: the full

functionality that you expect from a mature container library, but easier to

learn and use than the C++ container classes and other similar container

libraries. The result can seem a bit odd in places. Unlike some of the decisions

made in the early Java libraries, these oddities were not accidents, but

carefully considered decisions based on trade-offs in complexity.

Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for sale from www.MindViewLLC.com.

 897

I/O
Creating a good input/output (I/O) system is one of the
more difficult tasks for a language designer. This is
evidenced by the number of different approaches.

The challenge seems to be in covering all possibilities. Not only are there

different sources and sinks of I/O that you want to communicate with (files,

the console, network connections, etc.), but you need to talk to them in a wide

variety of ways (sequential, random-access, buffered, binary, character, by

lines, by words, etc.).

The Java library designers attacked this problem by creating lots of classes. In

fact, there are so many classes for Java’s I/O system that it can be

intimidating at first (ironically, the Java I/O design actually prevents an

explosion of classes). There was also a significant change in the I/O library

after Java 1.0, when the original byte-oriented library was supplemented with

char-oriented, Unicode-based I/O classes. The nio classes (for “new I/O,” a

name we’ll still be using years from now even though they were introduced in

JDK 1.4 and so are already “old”) were added for improved performance and

functionality. As a result, there are a fair number of classes to learn before

you understand enough of Java’s I/O picture that you can use it properly. In

addition, it’s rather important to understand the evolution of the I/O library,

even if your first reaction is “Don’t bother me with history, just show me how

to use it!” The problem is that without the historical perspective, you will

rapidly become confused with some of the classes and when you should and

shouldn’t use them.

This chapter will give you an introduction to the variety of I/O classes in the

standard Java library and how to use them.

The File class
Before getting into the classes that actually read and write data to streams,

we’ll look at a library utility that assists you with file directory issues.

The File class has a deceiving name; you might think it refers to a file, but it

doesn’t. In fact, “FilePath” would have been a better name for the class. It can

898 Thinking in Java Bruce Eckel

represent either the name of a particular file or the names of a set of files in a

directory. If it’s a set of files, you can ask for that set using the list() method,

which returns an array of String. It makes sense to return an array rather

than one of the flexible container classes, because the number of elements is

fixed, and if you want a different directory listing, you just create a different

File object. This section shows an example of the use of this class, including

the associated FilenameFilter interface.

A directory lister
Suppose you’d like to see a directory listing. The File object can be used in

two ways. If you call list() with no arguments, you’ll get the full list that the

File object contains. However, if you want a restricted list—for example, if

you want all of the files with an extension of .java—then you use a “directory

filter,” which is a class that tells how to select the File objects for display.

Here’s the example. Note that the result has been effortlessly sorted

(alphabetically) using the java.util.Arrays.sort() method and the

String.CASE_INSENSITIVE_ORDER Comparator:

//: io/DirList.java

// Display a directory listing using regular expressions.

// {Args: "D.*\.java"}

import java.util.regex.*;

import java.io.*;

import java.util.*;

public class DirList {

 public static void main(String[] args) {

 File path = new File(".");

 String[] list;

 if(args.length == 0)

 list = path.list();

 else

 list = path.list(new DirFilter(args[0]));

 Arrays.sort(list, String.CASE_INSENSITIVE_ORDER);

 for(String dirItem : list)

 System.out.println(dirItem);

 }

}

class DirFilter implements FilenameFilter {

 private Pattern pattern;

I/O 899

 public DirFilter(String regex) {

 pattern = Pattern.compile(regex);

 }

 public boolean accept(File dir, String name) {

 return pattern.matcher(name).matches();

 }

} /* Output:

DirectoryDemo.java

DirList.java

DirList2.java

DirList3.java

*///:~

The DirFilter class implements the interface FilenameFilter. Notice how

simple the FilenameFilter interface is:

public interface FilenameFilter {

 boolean accept(File dir, String name);

}

DirFilter’s sole reason for existence is to provide the accept() method to

the list() method so that list() can “call back” accept() to determine

which file names should be included in the list. Thus, this structure is often

referred to as a callback. More specifically, this is an example of the Strategy

design pattern, because list() implements basic functionality, and you

provide the Strategy in the form of a FilenameFilter in order to complete

the algorithm necessary for list() to provide its service. Because list() takes

a FilenameFilter object as its argument, it means that you can pass an

object of any class that implements FilenameFilter to choose (even at run

time) how the list() method will behave. The purpose of a Strategy is to

provide flexibility in the behavior of code.

The accept() method must accept a File object representing the directory

that a particular file is found in, and a String containing the name of that

file. Remember that the list() method is calling accept() for each of the file

names in the directory object to see which one should be included; this is

indicated by the boolean result returned by accept().

accept() uses a regular expression matcher object to see if the regular

expression regex matches the name of the file. Using accept(), the list()

method returns an array.

900 Thinking in Java Bruce Eckel

Anonymous inner classes
This example is ideal for rewriting using an anonymous inner class (described

in Inner Classes). As a first cut, a method filter() is created that returns a

reference to a FilenameFilter:

//: io/DirList2.java

// Uses anonymous inner classes.

// {Args: "D.*\.java"}

import java.util.regex.*;

import java.io.*;

import java.util.*;

public class DirList2 {

 public static FilenameFilter filter(final String regex) {

 // Creation of anonymous inner class:

 return new FilenameFilter() {

 private Pattern pattern = Pattern.compile(regex);

 public boolean accept(File dir, String name) {

 return pattern.matcher(name).matches();

 }

 }; // End of anonymous inner class

 }

 public static void main(String[] args) {

 File path = new File(".");

 String[] list;

 if(args.length == 0)

 list = path.list();

 else

 list = path.list(filter(args[0]));

 Arrays.sort(list, String.CASE_INSENSITIVE_ORDER);

 for(String dirItem : list)

 System.out.println(dirItem);

 }

} /* Output:

DirectoryDemo.java

DirList.java

DirList2.java

DirList3.java

*///:~

Note that the argument to filter() must be final. This is required by the

anonymous inner class so that it can use an object from outside its scope.

I/O 901

This design is an improvement because the FilenameFilter class is now

tightly bound to DirList2. However, you can take this approach one step

further and define the anonymous inner class as an argument to list(), in

which case it’s even smaller:

//: io/DirList3.java

// Building the anonymous inner class "in-place."

// {Args: "D.*\.java"}

import java.util.regex.*;

import java.io.*;

import java.util.*;

public class DirList3 {

 public static void main(final String[] args) {

 File path = new File(".");

 String[] list;

 if(args.length == 0)

 list = path.list();

 else

 list = path.list(new FilenameFilter() {

 private Pattern pattern = Pattern.compile(args[0]);

 public boolean accept(File dir, String name) {

 return pattern.matcher(name).matches();

 }

 });

 Arrays.sort(list, String.CASE_INSENSITIVE_ORDER);

 for(String dirItem : list)

 System.out.println(dirItem);

 }

} /* Output:

DirectoryDemo.java

DirList.java

DirList2.java

DirList3.java

*///:~

The argument to main() is now final, since the anonymous inner class uses

args[0] directly.

This shows you how anonymous inner classes allow the creation of specific,

one-off classes to solve problems. One benefit of this approach is that it keeps

the code that solves a particular problem isolated in one spot. On the other

hand, it is not always as easy to read, so you must use it judiciously.

902 Thinking in Java Bruce Eckel

Exercise 1: (3) Modify DirList.java (or one of its variants) so that the
FilenameFilter opens and reads each file (using the
net.mindview.util.TextFile utility) and accepts the file based on whether
any of the trailing arguments on the command line exist in that file.

Exercise 2: (2) Create a class called SortedDirList with a constructor
that takes a File object and builds a sorted directory list from the files at that
File. Add to this class two overloaded list() methods: the first produces the
whole list, and the second produces the subset of the list that matches its
argument (which is a regular expression).

Exercise 3: (3) Modify DirList.java (or one of its variants) so that it
sums up the file sizes of the selected files.

Directory utilities
A common task in programming is to perform operations on sets of files,

either in the local directory or by walking the entire directory tree. It is useful

to have a tool that will produce the set of files for you. The following utility

class produces either an array of File objects in the local directory using the

local() method, or a List<File> of the entire directory tree starting at the

given directory using walk() (File objects are more useful than file names

because File objects contain more information). The files are chosen based

on the regular expression that you provide:

//: net/mindview/util/Directory.java

// Produce a sequence of File objects that match a

// regular expression in either a local directory,

// or by walking a directory tree.

package net.mindview.util;

import java.util.regex.*;

import java.io.*;

import java.util.*;

public final class Directory {

 public static File[]

 local(File dir, final String regex) {

 return dir.listFiles(new FilenameFilter() {

 private Pattern pattern = Pattern.compile(regex);

 public boolean accept(File dir, String name) {

 return pattern.matcher(

 new File(name).getName()).matches();

 }

 });

I/O 903

 }

 public static File[]

 local(String path, final String regex) { // Overloaded

 return local(new File(path), regex);

 }

 // A two-tuple for returning a pair of objects:

 public static class TreeInfo implements Iterable<File> {

 public List<File> files = new ArrayList<File>();

 public List<File> dirs = new ArrayList<File>();

 // The default iterable element is the file list:

 public Iterator<File> iterator() {

 return files.iterator();

 }

 void addAll(TreeInfo other) {

 files.addAll(other.files);

 dirs.addAll(other.dirs);

 }

 public String toString() {

 return "dirs: " + PPrint.pformat(dirs) +

 "\n\nfiles: " + PPrint.pformat(files);

 }

 }

 public static TreeInfo

 walk(String start, String regex) { // Begin recursion

 return recurseDirs(new File(start), regex);

 }

 public static TreeInfo

 walk(File start, String regex) { // Overloaded

 return recurseDirs(start, regex);

 }

 public static TreeInfo walk(File start) { // Everything

 return recurseDirs(start, ".*");

 }

 public static TreeInfo walk(String start) {

 return recurseDirs(new File(start), ".*");

 }

 static TreeInfo recurseDirs(File startDir, String regex){

 TreeInfo result = new TreeInfo();

 for(File item : startDir.listFiles()) {

 if(item.isDirectory()) {

 result.dirs.add(item);

 result.addAll(recurseDirs(item, regex));

 } else // Regular file

 if(item.getName().matches(regex))

904 Thinking in Java Bruce Eckel

 result.files.add(item);

 }

 return result;

 }

 // Simple validation test:

 public static void main(String[] args) {

 if(args.length == 0)

 System.out.println(walk("."));

 else

 for(String arg : args)

 System.out.println(walk(arg));

 }

} ///:~

The local() method uses a variant of File.list() called listFiles() that

produces an array of File. You can see that it also uses a FilenameFilter. If

you need a List instead of an array, you can convert the result yourself using

Arrays.asList().

The walk() method converts the name of the starting directory into a File

object and calls recurseDirs(), which performs a recursive directory walk,

collecting more information with each recursion. To distinguish ordinary files

from directories, the return value is effectively a “tuple” of objects—a List

holding ordinary files, and another holding directories. The fields are

intentionally made public here, because the point of TreeInfo is simply to

collect the objects together—if you were just returning a List, you wouldn’t

make it private, so just because you are returning a pair of objects, it doesn’t

mean you need to make them private. Note that TreeInfo implements

Iterable<File>, which produces the files, so that you have a “default

iteration” over the file list, whereas you can specify directories by saying

“.dirs”.

The TreeInfo.toString() method uses a “pretty printer” class so that the

output is easer to view. The default toString() methods for containers print

all the elements for a container on a single line. For large collections this can

become difficult to read, so you may want to use an alternate formatting.

Here’s a tool that adds newlines and indents each element:

//: net/mindview/util/PPrint.java

// Pretty-printer for collections

package net.mindview.util;

import java.util.*;

I/O 905

public class PPrint {

 public static String pformat(Collection<?> c) {

 if(c.size() == 0) return "[]";

 StringBuilder result = new StringBuilder("[");

 for(Object elem : c) {

 if(c.size() != 1)

 result.append("\n ");

 result.append(elem);

 }

 if(c.size() != 1)

 result.append("\n");

 result.append("]");

 return result.toString();

 }

 public static void pprint(Collection<?> c) {

 System.out.println(pformat(c));

 }

 public static void pprint(Object[] c) {

 System.out.println(pformat(Arrays.asList(c)));

 }

} ///:~

The pformat() method produces a formatted String from a Collection,

and the pprint() method uses pformat() to do its job. Note that the

special cases of no elements and a single element are handled differently.

There’s also a version of pprint() for arrays.

The Directory utility is placed in the net.mindview.util package so that it

is easily available. Here’s a sample of how you can use it:

//: io/DirectoryDemo.java

// Sample use of Directory utilities.

import java.io.*;

import net.mindview.util.*;

import static net.mindview.util.Print.*;

public class DirectoryDemo {

 public static void main(String[] args) {

 // All directories:

 PPrint.pprint(Directory.walk(".").dirs);

 // All files beginning with 'T'

 for(File file : Directory.local(".", "T.*"))

 print(file);

 print("----------------------");

 // All Java files beginning with 'T':

906 Thinking in Java Bruce Eckel

 for(File file : Directory.walk(".", "T.*\\.java"))

 print(file);

 print("======================");

 // Class files containing "Z" or "z":

 for(File file : Directory.walk(".",".*[Zz].*\\.class"))

 print(file);

 }

} /* Output: (Sample)

[.\xfiles]

.\TestEOF.class

.\TestEOF.java

.\TransferTo.class

.\TransferTo.java

.\TestEOF.java

.\TransferTo.java

.\xfiles\ThawAlien.java

======================

.\FreezeAlien.class

.\GZIPcompress.class

.\ZipCompress.class

*///:~

You may need to refresh your knowledge of regular expressions from the

Strings chapter in order to understand the second arguments in local() and

walk().

We can take this a step further and create a tool that will walk directories and

process the files within them according to a Strategy object (this is another

example of the Strategy design pattern):

//: net/mindview/util/ProcessFiles.java

package net.mindview.util;

import java.io.*;

public class ProcessFiles {

 public interface Strategy {

 void process(File file);

 }

 private Strategy strategy;

 private String ext;

 public ProcessFiles(Strategy strategy, String ext) {

 this.strategy = strategy;

 this.ext = ext;

 }

I/O 907

 public void start(String[] args) {

 try {

 if(args.length == 0)

 processDirectoryTree(new File("."));

 else

 for(String arg : args) {

 File fileArg = new File(arg);

 if(fileArg.isDirectory())

 processDirectoryTree(fileArg);

 else {

 // Allow user to leave off extension:

 if(!arg.endsWith("." + ext))

 arg += "." + ext;

 strategy.process(

 new File(arg).getCanonicalFile());

 }

 }

 } catch(IOException e) {

 throw new RuntimeException(e);

 }

 }

 public void

 processDirectoryTree(File root) throws IOException {

 for(File file : Directory.walk(

 root.getAbsolutePath(), ".*\\." + ext))

 strategy.process(file.getCanonicalFile());

 }

 // Demonstration of how to use it:

 public static void main(String[] args) {

 new ProcessFiles(new ProcessFiles.Strategy() {

 public void process(File file) {

 System.out.println(file);

 }

 }, "java").start(args);

 }

} /* (Execute to see output) *///:~

The Strategy interface is nested within ProcessFiles, so that if you want to

implement it you must implement ProcessFiles.Strategy, which

provides more context for the reader. ProcessFiles does all the work of

finding the files that have a particular extension (the ext argument to the

constructor), and when it finds a matching file, it simply hands it to the

Strategy object (which is also an argument to the constructor).

908 Thinking in Java Bruce Eckel

If you don’t give it any arguments, ProcessFiles assumes that you want to

traverse all the directories off of the current directory. You can also specify a

particular file, with or without the extension (it will add the extension if

necessary), or one or more directories.

In main() you see a basic example of how to use the tool; it prints the names

of all the Java source files according to the command line that you provide.

Exercise 4: (2) Use Directory.walk() to sum the sizes of all files in a
directory tree whose names match a particular regular expression.

Exercise 5: (1) Modify ProcessFiles.java so that it matches a regular
expression rather than a fixed extension.

Checking for and creating directories
The File class is more than just a representation for an existing file or

directory. You can also use a File object to create a new directory or an entire

directory path if it doesn’t exist. You can also look at the characteristics of

files (size, last modification date, read/write), see whether a File object

represents a file or a directory, and delete a file. The following example shows

some of the other methods available with the File class (see the JDK

documentation from http://java.oracle.com for the full set):

//: io/MakeDirectories.java

// Demonstrates the use of the File class to

// create directories and manipulate files.

// {Args: MakeDirectoriesTest}

import java.io.*;

public class MakeDirectories {

 private static void usage() {

 System.err.println(

 "Usage:MakeDirectories path1 ...\n" +

 "Creates each path\n" +

 "Usage:MakeDirectories -d path1 ...\n" +

 "Deletes each path\n" +

 "Usage:MakeDirectories -r path1 path2\n" +

 "Renames from path1 to path2");

 System.exit(1);

 }

 private static void fileData(File f) {

 System.out.println(

 "Absolute path: " + f.getAbsolutePath() +

I/O 909

 "\n Can read: " + f.canRead() +

 "\n Can write: " + f.canWrite() +

 "\n getName: " + f.getName() +

 "\n getParent: " + f.getParent() +

 "\n getPath: " + f.getPath() +

 "\n length: " + f.length() +

 "\n lastModified: " + f.lastModified());

 if(f.isFile())

 System.out.println("It's a file");

 else if(f.isDirectory())

 System.out.println("It's a directory");

 }

 public static void main(String[] args) {

 if(args.length < 1) usage();

 if(args[0].equals("-r")) {

 if(args.length != 3) usage();

 File

 old = new File(args[1]),

 rname = new File(args[2]);

 old.renameTo(rname);

 fileData(old);

 fileData(rname);

 return; // Exit main

 }

 int count = 0;

 boolean del = false;

 if(args[0].equals("-d")) {

 count++;

 del = true;

 }

 count--;

 while(++count < args.length) {

 File f = new File(args[count]);

 if(f.exists()) {

 System.out.println(f + " exists");

 if(del) {

 System.out.println("deleting..." + f);

 f.delete();

 }

 }

 else { // Doesn't exist

 if(!del) {

 f.mkdirs();

 System.out.println("created " + f);

910 Thinking in Java Bruce Eckel

 }

 }

 fileData(f);

 }

 }

} /* Output: (80% match)

created MakeDirectoriesTest

Absolute path: d:\aaa-TIJ4\code\io\MakeDirectoriesTest

 Can read: true

 Can write: true

 getName: MakeDirectoriesTest

 getParent: null

 getPath: MakeDirectoriesTest

 length: 0

 lastModified: 1101690308831

It's a directory

*///:~

In fileData() you can see various file investigation methods used to display

information about the file or directory path.

The first method that’s exercised by main() is renameTo(), which allows

you to rename (or move) a file to an entirely new path represented by the

argument, which is another File object. This also works with directories of

any length.

If you experiment with the preceding program, you’ll find that you can make

a directory path of any complexity, because mkdirs() will do all the work for

you.

Exercise 6: (5) Use ProcessFiles to find all the Java source-code files in
a particular directory subtree that have been modified after a particular date.

Input and output
Programming language I/O libraries often use the abstraction of a stream,

which represents any data source or sink as an object capable of producing or

receiving pieces of data. The stream hides the details of what happens to the

data inside the actual I/O device.

The Java library classes for I/O are divided by input and output, as you can

see by looking at the class hierarchy in the JDK documentation. Through

inheritance, everything derived from the InputStream or Reader classes

I/O 911

has basic methods called read() for reading a single byte or an array of

bytes. Likewise, everything derived from OutputStream or Writer classes

has basic methods called write() for writing a single byte or an array of

bytes. However, you won’t generally use these methods; they exist so that

other classes can use them—these other classes provide a more useful

interface. Thus, you’ll rarely create your stream object by using a single class,

but instead will layer multiple objects together to provide your desired

functionality (this is the Decorator design pattern, as you shall see in this

section). The fact that you create more than one object to produce a single

stream is the primary reason that Java’s I/O library is confusing.

It’s helpful to categorize the classes by their functionality. In Java 1.0, the

library designers started by deciding that all classes that had anything to do

with input would be inherited from InputStream, and all classes that were

associated with output would be inherited from OutputStream.

As is the practice in this book, I will attempt to provide an overview of the

classes, but assume that you will use the JDK documentation to determine all

the details, such as the exhaustive list of methods of a particular class.

Types of InputStream
InputStream’s job is to represent classes that produce input from different

sources. These sources can be:

1. An array of bytes.

2. A String object.

3. A file.

4. A “pipe,” which works like a physical pipe: You put things in at one

end and they come out the other.

5. A sequence of other streams, so you can collect them together into

a single stream.

6. Other sources, such as an Internet connection.

Each of these has an associated subclass of InputStream. In addition, the

FilterInputStream is also a type of InputStream, to provide a base class

for “decorator” classes that attach attributes or useful interfaces to input

streams. This is discussed later.

912 Thinking in Java Bruce Eckel

Table I/O-1. Types of InputStream

Class Function Constructor arguments

How to use it

ByteArray-
InputStream

Allows a buffer in
memory to be used
as an
InputStream.

The buffer from which to
extract the bytes.

As a source of data: Connect
it to a FilterInputStream
object to provide a useful
interface.

StringBuffer-
InputStream

Converts a String
into an
InputStream.

A String. The underlying
implementation actually uses
a StringBuffer.

As a source of data: Connect
it to a FilterInputStream
object to provide a useful
interface.

File-
InputStream

For reading
information from a
file.

A String representing the
file name, or a File or
FileDescriptor object.

As a source of data: Connect
it to a FilterInputStream
object to provide a useful
interface.

Piped-
InputStream

Produces the data
that’s being written
to the associated
PipedOutput-
Stream.
Implements the
“piping” concept.

PipedOutputStream

As a source of data in
multithreading: Connect it to
a FilterInputStream
object to provide a useful
interface.

Sequence-
InputStream

Converts two or
more
InputStream
objects into a single

Two InputStream objects
or an Enumeration for a
container of InputStream
objects.

I/O 913

Class Function Constructor arguments

How to use it

InputStream. As a source of data: Connect
it to a FilterInputStream
object to provide a useful
interface.

Filter-
InputStream

Abstract class that
is an interface for
decorators that
provide useful
functionality to the
other
InputStream
classes. See Table
I/O-3.

See Table I/O-3.

See Table I/O-3.

Types of OutputStream
This category includes the classes that decide where your output will go: an

array of bytes (but not a String—presumably, you can create one using the

array of bytes), a file, or a “pipe.”

In addition, the FilterOutputStream provides a base class for “decorator”

classes that attach attributes or useful interfaces to output streams. This is

discussed later.

Table I/O-2. Types of OutputStream

Class Function Constructor arguments

How to use it

ByteArray-
OutputStream

Creates a buffer in
memory. All the data
that you send to the
stream is placed in
this buffer.

Optional initial size of the
buffer.

To designate the destination
of your data: Connect it to a
FilterOutputStream
object to provide a useful
interface.

914 Thinking in Java Bruce Eckel

Class Function Constructor arguments

How to use it

File-
OutputStream

For sending
information to a file.

A String representing the
file name, or a File or
FileDescriptor object.

To designate the destination
of your data: Connect it to a
FilterOutputStream
object to provide a useful
interface.

Piped-
OutputStream

Any information you
write to this
automatically ends
up as input for the
associated
PipedInput-
Stream. Implements
the “piping” concept.

PipedInputStream

To designate the destination
of your data for
multithreading: Connect it to
a FilterOutputStream
object to provide a useful
interface.

Filter-
OutputStream

Abstract class that is
an interface for
decorators that
provide useful
functionality to the
other
OutputStream
classes. See Table
I/O-4.

See Table I/O-4.

See Table I/O-4.

Adding attributes
and useful interfaces

Decorators were introduced in the Generics chapter, on page 713. The Java

I/O library requires many different combinations of features, and this is the

justification for using the Decorator design pattern.1 The reason for the

1 It’s not clear that this was a good design decision, especially compared to the simplicity
of I/O libraries in other languages. But it’s the justification for the decision.

I/O 915

existence of the “filter” classes in the Java I/O library is that the abstract

“filter” class is the base class for all the decorators. A decorator must have the

same interface as the object it decorates, but the decorator can also extend

the interface, which occurs in several of the “filter” classes.

There is a drawback to Decorator, however. Decorators give you much more

flexibility while you’re writing a program (since you can easily mix and match

attributes), but they add complexity to your code. The reason that the Java

I/O library is awkward to use is that you must create many classes—the “core”

I/O type plus all the decorators—in order to get the single I/O object that you

want.

The classes that provide the decorator interface to control a particular

InputStream or OutputStream are the FilterInputStream and

FilterOutputStream, which don’t have very intuitive names.

FilterInputStream and FilterOutputStream are derived from the base

classes of the I/O library, InputStream and OutputStream, which is a key

requirement of the decorator (so that it provides the common interface to all

the objects that are being decorated).

Reading from an InputStream

with FilterInputStream
The FilterInputStream classes accomplish two significantly different

things. DataInputStream allows you to read different types of primitive

data as well as String objects. (All the methods start with “read,” such as

readByte(), readFloat(), etc.) This, along with its companion

DataOutputStream, allows you to move primitive data from one place to

another via a stream. These “places” are determined by the classes in Table

I/O-1.

The remaining FilterInputStream classes modify the way an

InputStream behaves internally: whether it’s buffered or unbuffered,

whether it keeps track of the lines it’s reading (allowing you to ask for line

numbers or set the line number), and whether you can push back a single

character. The last two classes look a lot like support for building a compiler

(they were probably added to support the experiment of “building a Java

compiler in Java”), so you probably won’t use them in general programming.

You’ll need to buffer your input almost every time, regardless of the I/O

device you’re connecting to, so it would have made more sense for the I/O

916 Thinking in Java Bruce Eckel

library to have a special case (or simply a method call) for unbuffered input

rather than buffered input.

Table I/O-3. Types of FilterInputStream

Class Function Constructor
arguments

How to use it

Data-
InputStream

Used in concert with
DataOutputStream, so
you can read primitives
(int, char, long, etc.)
from a stream in a
portable fashion.

InputStream

Contains a full interface
to allow you to read
primitive types.

Buffered-
InputStream

Use this to prevent a
physical read every time
you want more data.
You’re saying, “Use a
buffer.”

InputStream, with
optional buffer size.

This doesn’t provide an
interface per se. It just
adds buffering to the
process. Attach an
interface object.

LineNumber-
InputStream

Keeps track of line
numbers in the input
stream; you can call
getLineNumber() and
setLineNumber(int).

InputStream

This just adds line
numbering, so you’ll
probably attach an
interface object.

Pushback-
InputStream

Has a one-byte push-
back buffer so that you
can push back the last
character read.

InputStream

Generally used in the
scanner for a compiler.
You probably won’t use
this.

I/O 917

Writing to an OutputStream

with FilterOutputStream
The complement to DataInputStream is DataOutputStream, which

formats each of the primitive types and String objects onto a stream in such

a way that any DataInputStream, on any machine, can read them. All the

methods start with “write,” such as writeByte(), writeFloat(), etc.

The original intent of PrintStream was to print all of the primitive data

types and String objects in a viewable format. This is different from

DataOutputStream, whose goal is to put data elements on a stream in a

way that DataInputStream can portably reconstruct them.

The two important methods in PrintStream are print() and println(),

which are overloaded to print all the various types. The difference between

print() and println() is that the latter adds a newline when it’s done.

PrintStream can be problematic because it traps all IOExceptions (you

must explicitly test the error status with checkError(), which returns true

if an error has occurred). Also, PrintStream doesn’t internationalize

properly. These problems are solved with PrintWriter, described later.

BufferedOutputStream is a modifier and tells the stream to use buffering

so you don’t get a physical write every time you write to the stream. You’ll

probably always want to use this when doing output.

Table I/O-4. Types of FilterOutputStream

Class Function Constructor
arguments

How to use it

Data-
OutputStream

Used in concert with
DataInputStream so
you can write primitives
(int, char, long, etc.) to
a stream in a portable
fashion.

OutputStream

Contains a full
interface to allow you
to write primitive
types.

918 Thinking in Java Bruce Eckel

Class Function Constructor
arguments

How to use it

PrintStream For producing formatted
output. While
DataOutputStream
handles the storage of
data, PrintStream
handles display.

OutputStream, with
optional boolean
indicating that the
buffer is flushed with
every newline.

Should be the “final”
wrapping for your
OutputStream
object. You’ll probably
use this a lot.

Buffered-
OutputStream

Use this to prevent a
physical write every time
you send a piece of data.
You’re saying, “Use a
buffer.” You can call
flush() to flush the
buffer.

OutputStream, with
optional buffer size.

This doesn’t provide
an interface per se. It
just adds buffering to
the process. Attach an
interface object.

Readers & Writers
Java 1.1 made significant modifications to the fundamental I/O stream

library. When you see the Reader and Writer classes, your first thought

(like mine) might be that these were meant to replace the InputStream and

OutputStream classes. But that’s not the case. Although some aspects of the

original streams library are deprecated (if you use them you will receive a

warning from the compiler), the InputStream and OutputStream classes

still provide valuable functionality in the form of byte-oriented I/O, whereas

the Reader and Writer classes provide Unicode-compliant, character-based

I/O. In addition:

1. Java 1.1 added new classes into the InputStream and

OutputStream hierarchy, so it’s obvious those hierarchies

weren’t being replaced.

I/O 919

2. There are times when you must use classes from the “byte”

hierarchy in combination with classes in the “character” hierarchy.

To accomplish this, there are “adapter” classes:

InputStreamReader converts an InputStream to a Reader,

and OutputStreamWriter converts an OutputStream to a

Writer.

The most important reason for the Reader and Writer hierarchies is for

internationalization. The old I/O stream hierarchy supports only 8-bit byte

streams and doesn’t handle the 16-bit Unicode characters well. Since Unicode

is used for internationalization (and Java’s native char is 16-bit Unicode),

the Reader and Writer hierarchies were added to support Unicode in all

I/O operations. In addition, the new libraries are designed for faster

operations than the old.

Sources and sinks of data
Almost all of the original Java I/O stream classes have corresponding

Reader and Writer classes to provide native Unicode manipulation.

However, there are some places where the byte-oriented InputStreams and

OutputStreams are the correct solution; in particular, the java.util.zip

libraries are byte-oriented rather than char-oriented. So the most sensible

approach to take is to try to use the Reader and Writer classes whenever

you can. You’ll discover the situations when you have to use the byte-oriented

libraries because your code won’t compile.

Here is a table that shows the correspondence between the sources and sinks

of information (that is, where the data physically comes from or goes to) in

the two hierarchies.

Sources & sinks:
Java 1.0 class

Corresponding Java 1.1 class

InputStream Reader
adapter:
InputStreamReader

OutputStream Writer
adapter:
OutputStreamWriter

FileInputStream FileReader

FileOutputStream FileWriter

920 Thinking in Java Bruce Eckel

Sources & sinks:
Java 1.0 class

Corresponding Java 1.1 class

StringBufferInputStream
(deprecated)

StringReader

(no corresponding class) StringWriter

ByteArrayInputStream CharArrayReader

ByteArrayOutputStream CharArrayWriter

PipedInputStream PipedReader

PipedOutputStream PipedWriter

In general, you’ll find that the interfaces for the two different hierarchies are

similar, if not identical.

Modifying stream behavior
For InputStreams and OutputStreams, streams were adapted for

particular needs using “decorator” subclasses of FilterInputStream and

FilterOutputStream. The Reader and Writer class hierarchies continue

the use of this idea—but not exactly.

In the following table, the correspondence is a rougher approximation than in

the previous table. The difference is because of the class organization;

although BufferedOutputStream is a subclass of FilterOutputStream,

BufferedWriter is not a subclass of FilterWriter (which, even though it is

abstract, has no subclasses and so appears to have been put in either as a

placeholder or simply so you don’t wonder where it is). However, the

interfaces to the classes are quite a close match.

Filters:
Java 1.0 class

Corresponding Java 1.1 class

FilterInputStream FilterReader

FilterOutputStream FilterWriter (abstract class with no
subclasses)

BufferedInputStream BufferedReader
(also has readLine())

BufferedOutputStream BufferedWriter

DataInputStream Use DataInputStream
(except when you need to use

I/O 921

Filters:
Java 1.0 class

Corresponding Java 1.1 class

readLine(), when you should use a
BufferedReader)

PrintStream PrintWriter

LineNumberInputStream
(deprecated)

LineNumberReader

StreamTokenizer StreamTokenizer
(Use the constructor that takes a
Reader instead)

PushbackInputStream PushbackReader

There’s one direction that’s quite clear: Whenever you want to use

readLine(), you shouldn’t do it with a DataInputStream (this is met with

a deprecation message at compile time), but instead use a BufferedReader.

Other than this, DataInputStream is still a “preferred” member of the I/O

library.

To make the transition to using a PrintWriter easier, it has constructors

that take any OutputStream object as well as Writer objects.

PrintWriter’s formatting interface is virtually the same as PrintStream.

In Java SE5, PrintWriter constructors were added to simplify the creation

of files when writing output, as you shall see shortly.

One PrintWriter constructor also has an option to perform automatic

flushing, which happens after every println() if the constructor flag is set.

Unchanged classes
Some classes were left unchanged between Java 1.0 and Java 1.1:

Java 1.0 classes without
corresponding Java 1.1
classes

DataOutputStream

File

RandomAccessFile

SequenceInputStream

922 Thinking in Java Bruce Eckel

DataOutputStream, in particular, is used without change, so for storing

and retrieving data in a transportable format, you use the InputStream and

OutputStream hierarchies.

Off by itself:
RandomAccessFile

RandomAccessFile is used for files containing records of known size so

that you can move from one record to another using seek(), then read or

change the records. The records don’t have to be the same size; you just have

to determine how big they are and where they are placed in the file.

At first it’s a little bit hard to believe that RandomAccessFile is not part of

the InputStream or OutputStream hierarchy. However, it has no

association with those hierarchies other than that it happens to implement

the DataInput and DataOutput interfaces (which are also implemented by

DataInputStream and DataOutputStream). It doesn’t even use any of

the functionality of the existing InputStream or OutputStream classes;

it’s a completely separate class, written from scratch, with all of its own

(mostly native) methods. The reason for this may be that

RandomAccessFile has essentially different behavior than the other I/O

types, since you can move forward and backward within a file. In any event, it

stands alone, as a direct descendant of Object.

Essentially, a RandomAccessFile works like a DataInputStream pasted

together with a DataOutputStream, along with the methods

getFilePointer() to find out where you are in the file, seek() to move to a

new point in the file, and length() to determine the maximum size of the

file. In addition, the constructors require a second argument (identical to

fopen() in C) indicating whether you are just randomly reading (“r”) or

reading and writing (“rw”). There’s no support for write-only files, which

could suggest that RandomAccessFile might have worked well if it were

inherited from DataInputStream.

The seeking methods are available only in RandomAccessFile, which

works for files only. BufferedInputStream does allow you to mark() a

position (whose value is held in a single internal variable) and reset() to

that position, but this is limited and not very useful.

I/O 923

Most, if not all, of the RandomAccessFile functionality is superseded as of

JDK 1.4 with the nio memory-mapped files, which will be described later in

this chapter.

Typical uses of I/O streams
Although you can combine the I/O stream classes in many different ways,

you’ll probably just use a few combinations. The following examples can be

used as a basic reference for typical I/O usage.

In these examples, exception handing will be simplified by passing exceptions

out to the console, but this is appropriate only in small examples and utilities.

In your code you’ll want to consider more sophisticated error-handling

approaches.

Buffered input file
To open a file for character input, you use a FileReader with a String or a

File object as the file name. For speed, you’ll want that file to be buffered so

you give the resulting reference to the constructor for a BufferedReader.

Since BufferedReader also provides the readLine() method, this is your

final object and the interface you read from. When readLine() returns

null, you’re at the end of the file.

//: io/BufferedInputFile.java

import java.io.*;

public class BufferedInputFile {

 // Throw exceptions to console:

 public static String

 read(String filename) throws IOException {

 // Reading input by lines:

 BufferedReader in = new BufferedReader(

 new FileReader(filename));

 String s;

 StringBuilder sb = new StringBuilder();

 while((s = in.readLine())!= null)

 sb.append(s + "\n");

 in.close();

 return sb.toString();

 }

 public static void main(String[] args)

 throws IOException {

924 Thinking in Java Bruce Eckel

 System.out.print(read("BufferedInputFile.java"));

 }

} /* (Execute to see output) *///:~

The StringBuilder sb is used to accumulate the entire contents of the file

(including newlines that must be added since readLine() strips them off).

Finally, close() is called to close the file.2

Exercise 7: (2) Open a text file so that you can read the file one line at a
time. Read each line as a String and place that String object into a
LinkedList. Print all of the lines in the LinkedList in reverse order.

Exercise 8: (1) Modify Exercise 7 so that the name of the file you read is
provided as a command-line argument.

Exercise 9: (1) Modify Exercise 8 to force all the lines in the LinkedList
to uppercase and send the results to System.out.

Exercise 10: (2) Modify Exercise 8 to take additional command-line
arguments of words to find in the file. Print all lines in which any of the words
match.

Exercise 11: (2) In the innerclasses/GreenhouseController.java
example, GreenhouseController contains a hard-coded set of events.
Change the program so that it reads the events and their relative times from a
text file. ((difficulty level 8): Use a Factory Method design pattern to build
the events—see On Java 8 at www.MindViewLLC.com.)

Input from memory
Here, the String result from BufferedInputFile.read() is used to create a

StringReader. Then read() is used to read each character one at a time

and send it out to the console:

//: io/MemoryInput.java

import java.io.*;

public class MemoryInput {

2 In the original design, close() was supposed to be called when finalize() ran, and you
will see finalize() defined this way for I/O classes. However, as is discussed elsewhere in
this book, the finalize() feature didn’t work out the way the Java designers originally
envisioned it (that is to say, it’s irreparably broken), so the only safe approach is to
explicitly call close() for files.

I/O 925

 public static void main(String[] args)

 throws IOException {

 StringReader in = new StringReader(

 BufferedInputFile.read("MemoryInput.java"));

 int c;

 while((c = in.read()) != -1)

 System.out.print((char)c);

 }

} /* (Execute to see output) *///:~

Note that read() returns the next character as an int and thus it must be

cast to a char to print properly.

Formatted memory input
To read “formatted” data, you use a DataInputStream, which is a byte-

oriented I/O class (rather than char-oriented). Thus you must use all

InputStream classes rather than Reader classes. Of course, you can read

anything (such as a file) as bytes using InputStream classes, but here a

String is used:

//: io/FormattedMemoryInput.java

import java.io.*;

public class FormattedMemoryInput {

 public static void main(String[] args)

 throws IOException {

 try {

 DataInputStream in = new DataInputStream(

 new ByteArrayInputStream(

 BufferedInputFile.read(

 "FormattedMemoryInput.java").getBytes()));

 while(true)

 System.out.write((char)in.readByte());

 } catch(EOFException e) {

 System.err.println("End of stream");

 }

 }

} /* (Execute to see output) *///:~

A ByteArrayInputStream must be given an array of bytes. To produce

this, String has a getBytes() method. The resulting

ByteArrayInputStream is an appropriate InputStream to hand to

DataInputStream.

926 Thinking in Java Bruce Eckel

If you read the characters from a DataInputStream one byte at a time

using readByte(), any byte value is a legitimate result, so the return value

cannot be used to detect the end of input. Instead, you can use the

available() method to find out how many more characters are available.

Here’s an example that shows how to read a file one byte at a time:

//: io/TestEOF.java

// Testing for end of file while reading a byte at a time.

import java.io.*;

public class TestEOF {

 public static void main(String[] args)

 throws IOException {

 DataInputStream in = new DataInputStream(

 new BufferedInputStream(

 new FileInputStream("TestEOF.java")));

 while(in.available() != 0)

 System.out.write(in.readByte());

 }

} /* (Execute to see output) *///:~

Note that available() works differently depending on what sort of medium

you’re reading from; it’s literally “the number of bytes that can be read

without blocking.” With a file, this means the whole file, but with a different

kind of stream this might not be true, so use it thoughtfully.

You could also detect the end of input in cases like these by catching an

exception. However, the use of exceptions for control flow is considered a

misuse of that feature.

Basic file output
A FileWriter object writes data to a file. You’ll virtually always want to

buffer the output by wrapping it in a BufferedWriter (try removing this

wrapping to see the impact on the performance—buffering tends to

dramatically increase performance of I/O operations). In this example, it’s

decorated as a PrintWriter to provide formatting. The data file created this

way is readable as an ordinary text file:

//: io/BasicFileOutput.java

import java.io.*;

public class BasicFileOutput {

I/O 927

 static String file = "BasicFileOutput.out";

 public static void main(String[] args)

 throws IOException {

 BufferedReader in = new BufferedReader(

 new StringReader(

 BufferedInputFile.read("BasicFileOutput.java")));

 PrintWriter out = new PrintWriter(

 new BufferedWriter(new FileWriter(file)));

 int lineCount = 1;

 String s;

 while((s = in.readLine()) != null)

 out.println(lineCount++ + ": " + s);

 out.close();

 // Show the stored file:

 System.out.println(BufferedInputFile.read(file));

 }

} /* (Execute to see output) *///:~

As the lines are written to the file, line numbers are added. Note that

LineNumberReader is not used, because it’s a silly class and you don’t

need it. You can see from this example that it’s trivial to keep track of your

own line numbers.

When the input stream is exhausted, readLine() returns null. You’ll see an

explicit close() for out, because if you don’t call close() for all your output

files, you might discover that the buffers don’t get flushed, so the file will be

incomplete.

Text file output shortcut
Java SE5 added a helper constructor to PrintWriter so that you don’t have

to do all the decoration by hand every time you want to create a text file and

write to it. Here’s BasicFileOutput.java rewritten to use this shortcut:

//: io/FileOutputShortcut.java

import java.io.*;

public class FileOutputShortcut {

 static String file = "FileOutputShortcut.out";

 public static void main(String[] args)

 throws IOException {

 BufferedReader in = new BufferedReader(

 new StringReader(

 BufferedInputFile.read("FileOutputShortcut.java")));

 // Here's the shortcut:

928 Thinking in Java Bruce Eckel

 PrintWriter out = new PrintWriter(file);

 int lineCount = 1;

 String s;

 while((s = in.readLine()) != null)

 out.println(lineCount++ + ": " + s);

 out.close();

 // Show the stored file:

 System.out.println(BufferedInputFile.read(file));

 }

} /* (Execute to see output) *///:~

You still get buffering, you just don’t have to do it yourself. Unfortunately,

other commonly written tasks were not given shortcuts, so typical I/O will

still involve a lot of redundant text. However, the TextFile utility that is used

in this book, and which will be defined a little later in this chapter, does

simplify these common tasks.

Exercise 12: (3) Modify Exercise 8 to also open a text file so you can
write text into it. Write the lines in the LinkedList, along with line numbers
(do not attempt to use the “LineNumber” classes), out to the file.

Exercise 13: (3) Modify BasicFileOutput.java so that it uses
LineNumberReader to keep track of the line count. Note that it’s much
easier to just keep track programmatically.

Exercise 14: (2) Starting with BasicFileOutput.java, write a program
that compares the performance of writing to a file when using buffered and
unbuffered I/O.

Storing and recovering data
A PrintWriter formats data so that it’s readable by a human. However, to

output data for recovery by another stream, you use a DataOutputStream

to write the data and a DataInputStream to recover the data. Of course,

these streams can be anything, but the following example uses a file, buffered

for both reading and writing. DataOutputStream and DataInputStream

are byte-oriented and thus require InputStreams and OutputStreams:

//: io/StoringAndRecoveringData.java

import java.io.*;

public class StoringAndRecoveringData {

 public static void main(String[] args)

 throws IOException {

I/O 929

 DataOutputStream out = new DataOutputStream(

 new BufferedOutputStream(

 new FileOutputStream("Data.txt")));

 out.writeDouble(3.14159);

 out.writeUTF("That was pi");

 out.writeDouble(1.41413);

 out.writeUTF("Square root of 2");

 out.close();

 DataInputStream in = new DataInputStream(

 new BufferedInputStream(

 new FileInputStream("Data.txt")));

 System.out.println(in.readDouble());

 // Only readUTF() will recover the

 // Java-UTF String properly:

 System.out.println(in.readUTF());

 System.out.println(in.readDouble());

 System.out.println(in.readUTF());

 }

} /* Output:

3.14159

That was pi

1.41413

Square root of 2

*///:~

If you use a DataOutputStream to write the data, then Java guarantees

that you can accurately recover the data using a DataInputStream—

regardless of what different platforms write and read the data. This is

incredibly valuable, as anyone knows who has spent time worrying about

platform-specific data issues. That problem vanishes if you have Java on both

platforms.3

When you are using a DataOutputStream, the only reliable way to write a

String so that it can be recovered by a DataInputStream is to use UTF-8

encoding, accomplished in this example using writeUTF() and

readUTF(). UTF-8 is a multi-byte format, and the length of encoding varies

according to the actual character set in use. If you’re working with ASCII or

mostly ASCII characters (which occupy only seven bits), Unicode is a

3 XML is another way to solve the problem of moving data across different computing
platforms, and does not depend on having Java on all platforms. XML is introduced later
in this chapter.

930 Thinking in Java Bruce Eckel

tremendous waste of space and/or bandwidth, so UTF-8 encodes ASCII

characters in a single byte, and non-ASCII characters in two or three bytes. In

addition, the length of the string is stored in the first two bytes of the UTF-8

string. However, writeUTF() and readUTF() use a special variation of

UTF-8 for Java (which is completely described in the JDK documentation for

those methods), so if you read a string written with writeUTF() using a

non-Java program, you must write special code in order to read the string

properly.

With writeUTF() and readUTF(), you can intermingle Strings and other

types of data using a DataOutputStream, with the knowledge that the

Strings will be properly stored as Unicode and will be easily recoverable with

a DataInputStream.

The writeDouble() method stores the double number to the stream, and

the complementary readDouble() method recovers it (there are similar

methods for reading and writing the other types). But for any of the reading

methods to work correctly, you must know the exact placement of the data

item in the stream, since it would be equally possible to read the stored

double as a simple sequence of bytes, or as a char, etc. So you must either

have a fixed format for the data in the file, or extra information must be

stored in the file that you parse to determine where the data is located. Note

that object serialization or XML (both described later in this chapter) may be

easier ways to store and retrieve complex data structures.

Exercise 15: (4) Look up DataOutputStream and DataInputStream
in the JDK documentation. Starting with
StoringAndRecoveringData.java, create a program that stores and then
retrieves all the different possible types provided by the
DataOutputStream and DataInputStream classes. Verify that the values
are stored and retrieved accurately.

Reading and writing

random-access files
Using a RandomAccessFile is like using a combined DataInputStream

and DataOutputStream (because it implements the same interfaces:

DataInput and DataOutput). In addition, you can use seek() to move

about in the file and change the values.

I/O 931

When using RandomAccessFile, you must know the layout of the file so

that you can manipulate it properly. RandomAccessFile has specific

methods to read and write primitives and UTF-8 strings. Here’s an example:

//: io/UsingRandomAccessFile.java

import java.io.*;

public class UsingRandomAccessFile {

 static String file = "rtest.dat";

 static void display() throws IOException {

 RandomAccessFile rf = new RandomAccessFile(file, "r");

 for(int i = 0; i < 7; i++)

 System.out.println(

 "Value " + i + ": " + rf.readDouble());

 System.out.println(rf.readUTF());

 rf.close();

 }

 public static void main(String[] args)

 throws IOException {

 RandomAccessFile rf = new RandomAccessFile(file, "rw");

 for(int i = 0; i < 7; i++)

 rf.writeDouble(i*1.414);

 rf.writeUTF("The end of the file");

 rf.close();

 display();

 rf = new RandomAccessFile(file, "rw");

 rf.seek(5*8);

 rf.writeDouble(47.0001);

 rf.close();

 display();

 }

} /* Output:

Value 0: 0.0

Value 1: 1.414

Value 2: 2.828

Value 3: 4.242

Value 4: 5.656

Value 5: 7.069999999999999

Value 6: 8.484

The end of the file

Value 0: 0.0

Value 1: 1.414

Value 2: 2.828

Value 3: 4.242

932 Thinking in Java Bruce Eckel

Value 4: 5.656

Value 5: 47.0001

Value 6: 8.484

The end of the file

*///:~

The display() method opens a file and displays seven elements within as

double values. In main(), the file is created, then opened and modified.

Since a double is always eight bytes long, to seek() to double number 5 you

just multiply 5*8 to produce the seek value.

As previously noted, RandomAccessFile is effectively separate from the

rest of the I/O hierarchy, save for the fact that it implements the DataInput

and DataOutput interfaces. It doesn’t support decoration, so you cannot

combine it with any of the aspects of the InputStream and OutputStream

subclasses. You must assume that a RandomAccessFile is properly

buffered since you cannot add that.

The one option you have is in the second constructor argument: You can open

a RandomAccessFile to read (“r”) or read and write (“rw”).

You may want to consider using nio memory-mapped files instead of

RandomAccessFile.

Exercise 16: (2) Look up RandomAccessFile in the JDK
documentation. Starting with UsingRandomAccessFile.java, create a
program that stores and then retrieves all the different possible types
provided by the RandomAccessFile class. Verify that the values are stored
and retrieved accurately.

Piped streams
The PipedInputStream, PipedOutputStream, PipedReader and

PipedWriter have been mentioned only briefly in this chapter. This is not to

suggest that they aren’t useful, but their value is not apparent until you begin

to understand concurrency, since the piped streams are used to communicate

between tasks. This is covered along with an example in the Concurrency

chapter.

File reading & writing utilities
A very common programming task is to read a file into memory, modify it,

and then write it out again. One of the problems with the Java I/O library is

I/O 933

that it requires you to write quite a bit of code in order to perform these

common operations—there are no basic helper functions to do them for you.

What’s worse, the decorators make it rather hard to remember how to open

files. Thus, it makes sense to add helper classes to your library that will easily

perform these basic tasks for you. Java SE5 has added a convenience

constructor to PrintWriter so you can easily open a text file for writing.

However, there are many other common tasks that you will want to do over

and over, and it makes sense to eliminate the redundant code associated with

those tasks.

Here’s the TextFile class that has been used in previous examples in this

book to simplify reading and writing files. It contains static methods to read

and write text files as a single string, and you can create a TextFile object

that holds the lines of the file in an ArrayList (so you have all the ArrayList

functionality while manipulating the file contents):

//: net/mindview/util/TextFile.java

// Static functions for reading and writing text files as

// a single string, and treating a file as an ArrayList.

package net.mindview.util;

import java.io.*;

import java.util.*;

public class TextFile extends ArrayList<String> {

 // Read a file as a single string:

 public static String read(String fileName) {

 StringBuilder sb = new StringBuilder();

 try {

 BufferedReader in= new BufferedReader(new FileReader(

 new File(fileName).getAbsoluteFile()));

 try {

 String s;

 while((s = in.readLine()) != null) {

 sb.append(s);

 sb.append("\n");

 }

 } finally {

 in.close();

 }

 } catch(IOException e) {

 throw new RuntimeException(e);

 }

 return sb.toString();

934 Thinking in Java Bruce Eckel

 }

 // Write a single file in one method call:

 public static void write(String fileName, String text) {

 try {

 PrintWriter out = new PrintWriter(

 new File(fileName).getAbsoluteFile());

 try {

 out.print(text);

 } finally {

 out.close();

 }

 } catch(IOException e) {

 throw new RuntimeException(e);

 }

 }

 // Read a file, split by any regular expression:

 public TextFile(String fileName, String splitter) {

 super(Arrays.asList(read(fileName).split(splitter)));

 // Regular expression split() often leaves an empty

 // String at the first position:

 if(get(0).equals("")) remove(0);

 }

 // Normally read by lines:

 public TextFile(String fileName) {

 this(fileName, "\n");

 }

 public void write(String fileName) {

 try {

 PrintWriter out = new PrintWriter(

 new File(fileName).getAbsoluteFile());

 try {

 for(String item : this)

 out.println(item);

 } finally {

 out.close();

 }

 } catch(IOException e) {

 throw new RuntimeException(e);

 }

 }

 // Simple test:

 public static void main(String[] args) {

 String file = read("TextFile.java");

 write("test.txt", file);

I/O 935

 TextFile text = new TextFile("test.txt");

 text.write("test2.txt");

 // Break into unique sorted list of words:

 TreeSet<String> words = new TreeSet<String>(

 new TextFile("TextFile.java", "\\W+"));

 // Display the capitalized words:

 System.out.println(words.headSet("a"));

 }

} /* Output:

[0, ArrayList, Arrays, Break, BufferedReader,

BufferedWriter, Clean, Display, File, FileReader,

FileWriter, IOException, Normally, Output, PrintWriter,

Read, Regular, RuntimeException, Simple, Static, String,

StringBuilder, System, TextFile, Tools, TreeSet, W, Write]

*///:~

read() appends each line to a StringBuilder, followed by a newline,

because that is stripped out during reading. Then it returns a String

containing the whole file. write() opens and writes the text String to the

file.

Notice that any code that opens a file guards the file’s close() call in a

finally clause to guarantee that the file will be properly closed.

The constructor uses the read() method to turn the file into a String, then

uses String.split() to divide the result into lines along newline boundaries

(if you use this class a lot, you may want to rewrite this constructor to

improve efficiency). Alas, there is no corresponding “join” method, so the

non-static write() method must write the lines out by hand.

Because this class is intended to trivialize the process of reading and writing

files, all IOExceptions are converted to RuntimeExceptions, so the user

doesn’t have to use try-catch blocks. However, you may need to create

another version that passes IOExceptions out to the caller.

In main(), a basic test is performed to ensure that the methods work.

Although this utility did not require much code to create, using it can save a

lot of time and make your life easier, as you’ll see in some of the examples

later in this chapter.

Another way to solve the problem of reading text files is to use the

java.util.Scanner class introduced in Java SE5. However, this is only for

reading files, not writing them, and that tool (which you’ll notice is not in

936 Thinking in Java Bruce Eckel

java.io) is primarily designed for creating programming-language scanners

or “little languages.”

Exercise 17: (4) Using TextFile and a Map<Character,Integer>,
create a program that counts the occurrence of all the different characters in a
file. (So if there are 12 occurrences of the letter ‘a’ in the file, the Integer
associated with the Character containing ‘a’ in the Map contains ‘12’).

Exercise 18: (1) Modify TextFile.java so that it passes IOExceptions
out to the caller.

Reading binary files
This utility is similar to TextFile.java in that it simplifies the process of

reading binary files:

//: net/mindview/util/BinaryFile.java

// Utility for reading files in binary form.

package net.mindview.util;

import java.io.*;

public class BinaryFile {

 public static byte[] read(File bFile) throws IOException{

 BufferedInputStream bf = new BufferedInputStream(

 new FileInputStream(bFile));

 try {

 byte[] data = new byte[bf.available()];

 bf.read(data);

 return data;

 } finally {

 bf.close();

 }

 }

 public static byte[]

 read(String bFile) throws IOException {

 return read(new File(bFile).getAbsoluteFile());

 }

} ///:~

One overloaded method takes a File argument; the second takes a String

argument, which is the file name. Both return the resulting byte array.

The available() method is used to produce the appropriate array size, and

this particular version of the overloaded read() method fills the array.

I/O 937

Exercise 19: (2) Using BinaryFile and a Map<Byte,Integer>, create
a program that counts the occurrence of all the different bytes in a file.

Exercise 20: (4) Using Directory.walk() and BinaryFile, verify that
all .class files in a directory tree begin with the hex characters ‘CAFEBABE’.

Standard I/O
The term standard I/O refers to the Unix concept of a single stream of

information that is used by a program (this idea is reproduced in some form

in Windows and many other operating systems). All of the program’s input

can come from standard input, all of its output can go to standard output,

and all of its error messages can be sent to standard error. The value of

standard I/O is that programs can easily be chained together, and one

program’s standard output can become the standard input for another

program. This is a powerful tool.

Reading from standard input
Following the standard I/O model, Java has System.in, System.out, and

System.err. Throughout this book, you’ve seen how to write to standard

output using System.out, which is already pre-wrapped as a PrintStream

object. System.err is likewise a PrintStream, but System.in is a raw

InputStream with no wrapping. This means that although you can use

System.out and System.err right away, System.in must be wrapped

before you can read from it.

You’ll typically read input a line at a time using readLine(). To do this,

wrap System.in in a BufferedReader, which requires you to convert

System.in to a Reader using InputStreamReader. Here’s an example

that simply echoes each line that you type in:

//: io/Echo.java

// How to read from standard input.

// {RunByHand}

import java.io.*;

public class Echo {

 public static void main(String[] args)

 throws IOException {

 BufferedReader stdin = new BufferedReader(

 new InputStreamReader(System.in));

 String s;

938 Thinking in Java Bruce Eckel

 while((s = stdin.readLine()) != null && s.length()!= 0)

 System.out.println(s);

 // An empty line or Ctrl-Z terminates the program

 }

} ///:~

The reason for the exception specification is that readLine() can throw an

IOException. Note that System.in should usually be buffered, as with

most streams.

Exercise 21: (1) Write a program that takes standard input and
capitalizes all characters, then puts the results on standard output. Redirect
the contents of a file into this program (the process of redirection will vary
depending on your operating system).

Changing System.out to a

PrintWriter
System.out is a PrintStream, which is an OutputStream. PrintWriter

has a constructor that takes an OutputStream as an argument. Thus, if you

want, you can convert System.out into a PrintWriter using that

constructor:

//: io/ChangeSystemOut.java

// Turn System.out into a PrintWriter.

import java.io.*;

public class ChangeSystemOut {

 public static void main(String[] args) {

 PrintWriter out = new PrintWriter(System.out, true);

 out.println("Hello, world");

 }

} /* Output:

Hello, world

*///:~

It’s important to use the two-argument version of the PrintWriter

constructor and to set the second argument to true in order to enable

automatic flushing; otherwise, you may not see the output.

Redirecting standard I/O
The Java System class allows you to redirect the standard input, output, and

error I/O streams using simple static method calls:

I/O 939

setIn(InputStream)

setOut(PrintStream)

setErr(PrintStream)

Redirecting output is especially useful if you suddenly start creating a large

amount of output on your screen, and it’s scrolling past faster than you can

read it.4 Redirecting input is valuable for a command-line program in which

you want to test a particular user-input sequence repeatedly. Here’s a simple

example that shows the use of these methods:

//: io/Redirecting.java

// Demonstrates standard I/O redirection.

import java.io.*;

public class Redirecting {

 public static void main(String[] args)

 throws IOException {

 PrintStream console = System.out;

 BufferedInputStream in = new BufferedInputStream(

 new FileInputStream("Redirecting.java"));

 PrintStream out = new PrintStream(

 new BufferedOutputStream(

 new FileOutputStream("test.out")));

 System.setIn(in);

 System.setOut(out);

 System.setErr(out);

 BufferedReader br = new BufferedReader(

 new InputStreamReader(System.in));

 String s;

 while((s = br.readLine()) != null)

 System.out.println(s);

 out.close(); // Remember this!

 System.setOut(console);

 }

} ///:~

This program attaches standard input to a file and redirects standard output

and standard error to another file. Notice that it stores a reference to the

4 The Graphical User Interfaces chapter shows an even more convenient solution for this:
a GUI program with a scrolling text area.

940 Thinking in Java Bruce Eckel

original System.out object at the beginning of the program, and restores the

system output to that object at the end.

I/O redirection manipulates streams of bytes, not streams of characters; thus,

InputStreams and OutputStreams are used rather than Readers and

Writers.

Process control
You will often need to execute other operating system programs from inside

Java, and to control the input and output from such programs. The Java

library provides classes to perform such operations.

A common task is to run a program and send the resulting output to the

console. This section contains a utility to simplify this task.

Two types of errors can occur with this utility: the normal errors that result in

exceptions—for these we will just rethrow a runtime exception—and errors

from the execution of the process itself. We want to report these errors with a

separate exception:

//: net/mindview/util/OSExecuteException.java

package net.mindview.util;

public class OSExecuteException extends RuntimeException {

 public OSExecuteException(String why) { super(why); }

} ///:~

To run a program, you pass OSExecute.command() a command string,

which is the same command that you would type to run the program on the

console. This command is passed to the java.lang.ProcessBuilder

constructor (which requires it as a sequence of String objects), and the

resulting ProcessBuilder object is started:

//: net/mindview/util/OSExecute.java

// Run an operating system command

// and send the output to the console.

package net.mindview.util;

import java.io.*;

public class OSExecute {

 public static void command(String command) {

 boolean err = false;

 try {

I/O 941

 Process process =

 new ProcessBuilder(command.split(" ")).start();

 BufferedReader results = new BufferedReader(

 new InputStreamReader(process.getInputStream()));

 String s;

 while((s = results.readLine())!= null)

 System.out.println(s);

 BufferedReader errors = new BufferedReader(

 new InputStreamReader(process.getErrorStream()));

 // Report errors and return nonzero value

 // to calling process if there are problems:

 while((s = errors.readLine())!= null) {

 System.err.println(s);

 err = true;

 }

 } catch(Exception e) {

 // Compensate for Windows 2000, which throws an

 // exception for the default command line:

 if(!command.startsWith("CMD /C"))

 command("CMD /C " + command);

 else

 throw new RuntimeException(e);

 }

 if(err)

 throw new OSExecuteException("Errors executing " +

 command);

 }

} ///:~

To capture the standard output stream from the program as it executes, you

call getInputStream(). This is because an InputStream is something we

can read from.

The results from the program arrive a line at a time, so they are read using

readLine(). Here the lines are simply printed, but you may also want to

capture and return them from command().

The program’s errors are sent to the standard error stream, and are captured

by calling getErrorStream(). If there are any errors, they are printed and

an OSExecuteException is thrown so the calling program will handle the

problem.

Here’s an example that shows how to use OSExecute:

942 Thinking in Java Bruce Eckel

//: io/OSExecuteDemo.java

// Demonstrates standard I/O redirection.

import net.mindview.util.*;

public class OSExecuteDemo {

 public static void main(String[] args) {

 OSExecute.command("javap OSExecuteDemo");

 }

} /* Output:

Compiled from "OSExecuteDemo.java"

public class OSExecuteDemo extends java.lang.Object{

 public OSExecuteDemo();

 public static void main(java.lang.String[]);

}

*///:~

This uses the javap decompiler (that comes with the JDK) to decompile the

program.

Exercise 22: (5) Modify OSExecute.java so that, instead of printing the
standard output stream, it returns the results of executing the program as a
List of Strings. Demonstrate the use of this new version of the utility.

New I/O
The Java “new” I/O library, introduced in JDK 1.4 in the java.nio.*

packages, has one goal: speed. In fact, the “old” I/O packages have been

reimplemented using nio in order to take advantage of this speed increase, so

you will benefit even if you don’t explicitly write code with nio. The speed

increase occurs both in file I/O, which is explored here, and in network I/O.

The speed comes from using structures that are closer to the operating

system’s way of performing I/O: channels and buffers. You could think of it

as a coal mine; the channel is the mine containing the seam of coal (the data),

and the buffer is the cart that you send into the mine. The cart comes back

full of coal, and you get the coal from the cart. That is, you don’t interact

directly with the channel; you interact with the buffer and send the buffer

into the channel. The channel either pulls data from the buffer, or puts data

into the buffer.

The only kind of buffer that communicates directly with a channel is a

ByteBuffer—that is, a buffer that holds raw bytes. If you look at the JDK

documentation for java.nio.ByteBuffer, you’ll see that it’s fairly basic: You

I/O 943

create one by telling it how much storage to allocate, and there are methods

to put and get data, in either raw byte form or as primitive data types. But

there’s no way to put or get an object, or even a String. It’s fairly low-level,

precisely because this makes a more efficient mapping with most operating

systems.

Three of the classes in the “old” I/O have been modified so that they produce

a FileChannel: FileInputStream, FileOutputStream, and, for both

reading and writing, RandomAccessFile. Notice that these are the byte

manipulation streams, in keeping with the low-level nature of nio. The

Reader and Writer character-mode classes do not produce channels, but

the java.nio.channels.Channels class has utility methods to produce

Readers and Writers from channels.

Here’s a simple example that exercises all three types of stream to produce

channels that are writeable, read/writeable, and readable:

//: io/GetChannel.java

// Getting channels from streams

import java.nio.*;

import java.nio.channels.*;

import java.io.*;

public class GetChannel {

 private static final int BSIZE = 1024;

 public static void main(String[] args) throws Exception {

 // Write a file:

 FileChannel fc =

 new FileOutputStream("data.txt").getChannel();

 fc.write(ByteBuffer.wrap("Some text ".getBytes()));

 fc.close();

 // Add to the end of the file:

 fc =

 new RandomAccessFile("data.txt", "rw").getChannel();

 fc.position(fc.size()); // Move to the end

 fc.write(ByteBuffer.wrap("Some more".getBytes()));

 fc.close();

 // Read the file:

 fc = new FileInputStream("data.txt").getChannel();

 ByteBuffer buff = ByteBuffer.allocate(BSIZE);

 fc.read(buff);

 buff.flip();

 while(buff.hasRemaining())

 System.out.write(buff.get());

944 Thinking in Java Bruce Eckel

 System.out.flush();

 }

} /* Output:

Some text Some more

*///:~

For any of the stream classes shown here, getChannel() will produce a

FileChannel. A channel is fairly basic: You can hand it a ByteBuffer for

reading or writing, and you can lock regions of the file for exclusive access

(this will be described later).

One way to put bytes into a ByteBuffer is to stuff them in directly using one

of the “put” methods, to put one or more bytes, or values of primitive types.

However, as seen here, you can also “wrap” an existing byte array in a

ByteBuffer using the wrap() method. When you do this, the underlying

array is not copied, but instead is used as the storage for the generated

ByteBuffer. We say that the ByteBuffer is “backed by” the array.

The data.txt file is reopened using a RandomAccessFile. Notice that you

can move the FileChannel around in the file; here, it is moved to the end so

that additional writes will be appended.

For read-only access, you must explicitly allocate a ByteBuffer using the

static allocate() method. The goal of nio is to rapidly move large amounts

of data, so the size of the ByteBuffer should be significant—in fact, the 1K

used here is probably quite a bit smaller than you’d normally want to use

(you’ll have to experiment with your working application to find the best

size).

It’s also possible to go for even more speed by using allocateDirect()

instead of allocate() to produce a “direct” buffer that may have an even

higher coupling with the operating system. However, the overhead in such an

allocation is greater, and the actual implementation varies from one

operating system to another, so again, you must experiment with your

working application to discover whether direct buffers will buy you any

advantage in speed.

Once you call read() to tell the FileChannel to store bytes into the

ByteBuffer, you must call flip() on the buffer to tell it to get ready to have

its bytes extracted (yes, this seems a bit crude, but remember that it’s very

low-level and is done for maximum speed). And if we were to use the buffer

I/O 945

for further read() operations, we’d also have to call clear() to prepare it for

each read(). You can see this in a simple file-copying program:

//: io/ChannelCopy.java

// Copying a file using channels and buffers

// {Args: ChannelCopy.java test.txt}

import java.nio.*;

import java.nio.channels.*;

import java.io.*;

public class ChannelCopy {

 private static final int BSIZE = 1024;

 public static void main(String[] args) throws Exception {

 if(args.length != 2) {

 System.out.println("arguments: sourcefile destfile");

 System.exit(1);

 }

 FileChannel

 in = new FileInputStream(args[0]).getChannel(),

 out = new FileOutputStream(args[1]).getChannel();

 ByteBuffer buffer = ByteBuffer.allocate(BSIZE);

 while(in.read(buffer) != -1) {

 buffer.flip(); // Prepare for writing

 out.write(buffer);

 buffer.clear(); // Prepare for reading

 }

 }

} ///:~

You can see that one FileChannel is opened for reading, and one for

writing. A ByteBuffer is allocated, and when FileChannel.read() returns

-1 (a holdover, no doubt, from Unix and C), it means that you’ve reached the

end of the input. After each read(), which puts data into the buffer, flip()

prepares the buffer so that its information can be extracted by the write().

After the write(), the information is still in the buffer, and clear() resets all

the internal pointers so that it’s ready to accept data during another read().

The preceding program is not the ideal way to handle this kind of operation,

however. Special methods transferTo() and transferFrom() allow you

to connect one channel directly to another:

//: io/TransferTo.java

// Using transferTo() between channels

// {Args: TransferTo.java TransferTo.txt}

946 Thinking in Java Bruce Eckel

import java.nio.channels.*;

import java.io.*;

public class TransferTo {

 public static void main(String[] args) throws Exception {

 if(args.length != 2) {

 System.out.println("arguments: sourcefile destfile");

 System.exit(1);

 }

 FileChannel

 in = new FileInputStream(args[0]).getChannel(),

 out = new FileOutputStream(args[1]).getChannel();

 in.transferTo(0, in.size(), out);

 // Or:

 // out.transferFrom(in, 0, in.size());

 }

} ///:~

You won’t do this kind of thing very often, but it’s good to know about.

Converting data
If you look back at GetChannel.java, you’ll notice that, to print the

information in the file, we are pulling the data out one byte at a time and

casting each byte to a char. This seems a bit primitive—if you look at the

java.nio.CharBuffer class, you’ll see that it has a toString() method that

says, “Returns a string containing the characters in this buffer.” Since a

ByteBuffer can be viewed as a CharBuffer with the asCharBuffer()

method, why not use that? As you can see from the first line in the output

statement below, this doesn’t work out:

//: io/BufferToText.java

// Converting text to and from ByteBuffers

import java.nio.*;

import java.nio.channels.*;

import java.nio.charset.*;

import java.io.*;

public class BufferToText {

 private static final int BSIZE = 1024;

 public static void main(String[] args) throws Exception {

 FileChannel fc =

 new FileOutputStream("data2.txt").getChannel();

 fc.write(ByteBuffer.wrap("Some text".getBytes()));

I/O 947

 fc.close();

 fc = new FileInputStream("data2.txt").getChannel();

 ByteBuffer buff = ByteBuffer.allocate(BSIZE);

 fc.read(buff);

 buff.flip();

 // Doesn't work:

 System.out.println(buff.asCharBuffer());

 // Decode using this system's default Charset:

 buff.rewind();

 String encoding = System.getProperty("file.encoding");

 System.out.println("Decoded using " + encoding + ": "

 + Charset.forName(encoding).decode(buff));

 // Or, we could encode with something that will print:

 fc = new FileOutputStream("data2.txt").getChannel();

 fc.write(ByteBuffer.wrap(

 "Some text".getBytes("UTF-16BE")));

 fc.close();

 // Now try reading again:

 fc = new FileInputStream("data2.txt").getChannel();

 buff.clear();

 fc.read(buff);

 buff.flip();

 System.out.println(buff.asCharBuffer());

 // Use a CharBuffer to write through:

 fc = new FileOutputStream("data2.txt").getChannel();

 buff = ByteBuffer.allocate(24); // More than needed

 buff.asCharBuffer().put("Some text");

 fc.write(buff);

 fc.close();

 // Read and display:

 fc = new FileInputStream("data2.txt").getChannel();

 buff.clear();

 fc.read(buff);

 buff.flip();

 System.out.println(buff.asCharBuffer());

 }

} /* Output:

????

Decoded using Cp1252: Some text

Some text

Some text

*///:~

The buffer contains plain bytes, and to turn these into characters, we must

either encode them as we put them in (so that they will be meaningful when

948 Thinking in Java Bruce Eckel

they come out) or decode them as they come out of the buffer. This can be

accomplished using the java.nio.charset.Charset class, which provides

tools for encoding into many different types of character sets:

//: io/AvailableCharSets.java

// Displays Charsets and aliases

import java.nio.charset.*;

import java.util.*;

import static net.mindview.util.Print.*;

public class AvailableCharSets {

 public static void main(String[] args) {

 SortedMap<String,Charset> charSets =

 Charset.availableCharsets();

 Iterator<String> it = charSets.keySet().iterator();

 while(it.hasNext()) {

 String csName = it.next();

 printnb(csName);

 Iterator aliases =

 charSets.get(csName).aliases().iterator();

 if(aliases.hasNext())

 printnb(": ");

 while(aliases.hasNext()) {

 printnb(aliases.next());

 if(aliases.hasNext())

 printnb(", ");

 }

 print();

 }

 }

} /* Output:

Big5: csBig5

Big5-HKSCS: big5-hkscs:unicode3.0, Big5_HKSCS, big5-hkscs,

big5hkscs, big5hk

EUC-JP: eucjis,

Extended_UNIX_Code_Packed_Format_for_Japanese, x-eucjp,

eucjp, csEUCPkdFmtjapanese, euc_jp, x-euc-jp

EUC-KR: 5601, ksc5601-1987, ksc5601_1987, euckr, ksc5601,

ksc_5601, ks_c_5601-1987, euc_kr, csEUCKR

GB18030: gb18030-2000

GB2312: euc-cn, x-EUC-CN, gb2312-1980, gb2312, gb2312-80,

euccn, EUC_CN

GBK: CP936, windows-936

...

I/O 949

*///:~

So, returning to BufferToText.java, if you rewind() the buffer (to go back

to the beginning of the data) and then use that platform’s default character

set to decode() the data, the resulting CharBuffer will print to the console

just fine. To discover the default character set, use

System.getProperty("file.encoding"), which produces the string that

names the character set. Passing this to Charset.forName() produces the

Charset object that can be used to decode the string.

Another alternative is to encode() using a character set that will result in

something printable when the file is read, as you see in the third part of

BufferToText.java. Here, UTF-16BE is used to write the text into the file,

and when it is read, all you must do is convert it to a CharBuffer, and it

produces the expected text.

Finally, you see what happens if you write to the ByteBuffer through a

CharBuffer (you’ll learn more about this later). Note that 24 bytes are

allocated for the ByteBuffer. Since each char requires two bytes, this is

enough for 12 chars, but “Some text” only has 9. The remaining zero bytes

still appear in the representation of the CharBuffer produced by its

toString(), as you can see in the output.

Exercise 23: (6) Create and test a utility method to print the contents of a
CharBuffer up to the point where the characters are no longer printable.

Fetching primitives
Although a ByteBuffer only holds bytes, it contains methods to produce

each of the different types of primitive values from the bytes it contains. This

example shows the insertion and extraction of various values using these

methods:

//: io/GetData.java

// Getting different representations from a ByteBuffer

import java.nio.*;

import static net.mindview.util.Print.*;

public class GetData {

 private static final int BSIZE = 1024;

 public static void main(String[] args) {

 ByteBuffer bb = ByteBuffer.allocate(BSIZE);

 // Allocation automatically zeroes the ByteBuffer:

950 Thinking in Java Bruce Eckel

 int i = 0;

 while(i++ < bb.limit())

 if(bb.get() != 0)

 print("nonzero");

 print("i = " + i);

 bb.rewind();

 // Store and read a char array:

 bb.asCharBuffer().put("Howdy!");

 char c;

 while((c = bb.getChar()) != 0)

 printnb(c + " ");

 print();

 bb.rewind();

 // Store and read a short:

 bb.asShortBuffer().put((short)471142);

 print(bb.getShort());

 bb.rewind();

 // Store and read an int:

 bb.asIntBuffer().put(99471142);

 print(bb.getInt());

 bb.rewind();

 // Store and read a long:

 bb.asLongBuffer().put(99471142);

 print(bb.getLong());

 bb.rewind();

 // Store and read a float:

 bb.asFloatBuffer().put(99471142);

 print(bb.getFloat());

 bb.rewind();

 // Store and read a double:

 bb.asDoubleBuffer().put(99471142);

 print(bb.getDouble());

 bb.rewind();

 }

} /* Output:

i = 1025

H o w d y !

12390

99471142

99471142

9.9471144E7

9.9471142E7

*///:~

I/O 951

After a ByteBuffer is allocated, its values are checked to see whether buffer

allocation automatically zeroes the contents—and it does. All 1,024 values are

checked (up to the limit() of the buffer), and all are zero.

The easiest way to insert primitive values into a ByteBuffer is to get the

appropriate “view” on that buffer using asCharBuffer(),

asShortBuffer(), etc., and then to use that view’s put() method. You can

see this is the process used for each of the primitive data types. The only one

of these that is a little odd is the put() for the ShortBuffer, which requires

a cast (note that the cast truncates and changes the resulting value). All the

other view buffers do not require casting in their put() methods.

View buffers
A “view buffer” allows you to look at an underlying ByteBuffer through the

window of a particular primitive type. The ByteBuffer is still the actual

storage that’s “backing” the view, so any changes you make to the view are

reflected in modifications to the data in the ByteBuffer. As seen in the

previous example, this allows you to conveniently insert primitive types into a

ByteBuffer. A view also allows you to read primitive values from a

ByteBuffer, either one at a time (as ByteBuffer allows) or in batches (into

arrays). Here’s an example that manipulates ints in a ByteBuffer via an

IntBuffer:

//: io/IntBufferDemo.java

// Manipulating ints in a ByteBuffer with an IntBuffer

import java.nio.*;

public class IntBufferDemo {

 private static final int BSIZE = 1024;

 public static void main(String[] args) {

 ByteBuffer bb = ByteBuffer.allocate(BSIZE);

 IntBuffer ib = bb.asIntBuffer();

 // Store an array of int:

 ib.put(new int[]{ 11, 42, 47, 99, 143, 811, 1016 });

 // Absolute location read and write:

 System.out.println(ib.get(3));

 ib.put(3, 1811);

 // Setting a new limit before rewinding the buffer.

 ib.flip();

 while(ib.hasRemaining()) {

 int i = ib.get();

 System.out.println(i);

952 Thinking in Java Bruce Eckel

 }

 }

} /* Output:

99

11

42

47

1811

143

811

1016

*///:~

The overloaded put() method is first used to store an array of int. The

following get() and put() method calls directly access an int location in the

underlying ByteBuffer. Note that these absolute location accesses are

available for primitive types by talking directly to a ByteBuffer, as well.

Once the underlying ByteBuffer is filled with ints or some other primitive

type via a view buffer, then that ByteBuffer can be written directly to a

channel. You can just as easily read from a channel and use a view buffer to

convert everything to a particular type of primitive. Here’s an example that

interprets the same sequence of bytes as short, int, float, long, and double

by producing different view buffers on the same ByteBuffer:

//: io/ViewBuffers.java

import java.nio.*;

import static net.mindview.util.Print.*;

public class ViewBuffers {

 public static void main(String[] args) {

 ByteBuffer bb = ByteBuffer.wrap(

 new byte[]{ 0, 0, 0, 0, 0, 0, 0, 'a' });

 bb.rewind();

 printnb("Byte Buffer ");

 while(bb.hasRemaining())

 printnb(bb.position()+ " -> " + bb.get() + ", ");

 print();

 CharBuffer cb =

 ((ByteBuffer)bb.rewind()).asCharBuffer();

 printnb("Char Buffer ");

 while(cb.hasRemaining())

 printnb(cb.position() + " -> " + cb.get() + ", ");

 print();

I/O 953

 FloatBuffer fb =

 ((ByteBuffer)bb.rewind()).asFloatBuffer();

 printnb("Float Buffer ");

 while(fb.hasRemaining())

 printnb(fb.position()+ " -> " + fb.get() + ", ");

 print();

 IntBuffer ib =

 ((ByteBuffer)bb.rewind()).asIntBuffer();

 printnb("Int Buffer ");

 while(ib.hasRemaining())

 printnb(ib.position()+ " -> " + ib.get() + ", ");

 print();

 LongBuffer lb =

 ((ByteBuffer)bb.rewind()).asLongBuffer();

 printnb("Long Buffer ");

 while(lb.hasRemaining())

 printnb(lb.position()+ " -> " + lb.get() + ", ");

 print();

 ShortBuffer sb =

 ((ByteBuffer)bb.rewind()).asShortBuffer();

 printnb("Short Buffer ");

 while(sb.hasRemaining())

 printnb(sb.position()+ " -> " + sb.get() + ", ");

 print();

 DoubleBuffer db =

 ((ByteBuffer)bb.rewind()).asDoubleBuffer();

 printnb("Double Buffer ");

 while(db.hasRemaining())

 printnb(db.position()+ " -> " + db.get() + ", ");

 }

} /* Output:

Byte Buffer 0 -> 0, 1 -> 0, 2 -> 0, 3 -> 0, 4 -> 0, 5 -> 0,

6 -> 0, 7 -> 97,

Char Buffer 0 -> , 1 -> , 2 -> , 3 -> a,

Float Buffer 0 -> 0.0, 1 -> 1.36E-43,

Int Buffer 0 -> 0, 1 -> 97,

Long Buffer 0 -> 97,

Short Buffer 0 -> 0, 1 -> 0, 2 -> 0, 3 -> 97,

Double Buffer 0 -> 4.8E-322,

*///:~

The ByteBuffer is produced by “wrapping” an eight-byte array, which is

then displayed via view buffers of all the different primitive types. You can see

954 Thinking in Java Bruce Eckel

in the following diagram the way the data appears differently when read from

the different types of buffers:

bytes

chars

shorts

ints

floats

longs

doubles

0 0 0 0 0 0 0 97

a

97000

0 97

0.0 1.36E-43

97

4.8E-322

This corresponds to the output from the program.

Exercise 24: (1) Modify IntBufferDemo.java to use doubles.

Endians

Different machines may use different byte-ordering approaches to store data.

“Big endian” places the most significant byte in the lowest memory address,

and “little endian” places the most significant byte in the highest memory

address. When storing a quantity that is greater than one byte, like int,

float, etc., you may need to consider the byte ordering. A ByteBuffer stores

data in big endian form, and data sent over a network always uses big endian

order. You can change the endian-ness of a ByteBuffer using order() with

an argument of ByteOrder.BIG_ENDIAN or

ByteOrder.LITTLE_ENDIAN.

Consider a ByteBuffer containing the following two bytes:

0 0 0 0 0 0 0 0 1 1 0 0 0 0 10

b1 b2

I/O 955

If you read the data as a short (ByteBuffer.asShortBuffer()), you will

get the number 97 (00000000 01100001), but if you change to little endian,

you will get the number 24832 (01100001 00000000).

Here’s an example that shows how byte ordering is changed in characters

depending on the endian setting:

//: io/Endians.java

// Endian differences and data storage.

import java.nio.*;

import java.util.*;

import static net.mindview.util.Print.*;

public class Endians {

 public static void main(String[] args) {

 ByteBuffer bb = ByteBuffer.wrap(new byte[12]);

 bb.asCharBuffer().put("abcdef");

 print(Arrays.toString(bb.array()));

 bb.rewind();

 bb.order(ByteOrder.BIG_ENDIAN);

 bb.asCharBuffer().put("abcdef");

 print(Arrays.toString(bb.array()));

 bb.rewind();

 bb.order(ByteOrder.LITTLE_ENDIAN);

 bb.asCharBuffer().put("abcdef");

 print(Arrays.toString(bb.array()));

 }

} /* Output:

[0, 97, 0, 98, 0, 99, 0, 100, 0, 101, 0, 102]

[0, 97, 0, 98, 0, 99, 0, 100, 0, 101, 0, 102]

[97, 0, 98, 0, 99, 0, 100, 0, 101, 0, 102, 0]

*///:~

The ByteBuffer is given enough space to hold all the bytes in charArray as

an external buffer so that the array() method can be called to display the

underlying bytes. The array() method is “optional,” and you can only call it

on a buffer that is backed by an array; otherwise, you’ll get an

UnsupportedOperationException.

charArray is inserted into the ByteBuffer via a CharBuffer view. When

the underlying bytes are displayed, you can see that the default ordering is

the same as the subsequent big endian order, whereas the little endian order

swaps the bytes.

956 Thinking in Java Bruce Eckel

Data manipulation with buffers
The following diagram illustrates the relationships between the nio classes,

so that you can see how to move and convert data. For example, if you wish to

write a byte array to a file, then you wrap the byte array using the

ByteBuffer.wrap() method, open a channel on the FileOutputStream

using the getChannel() method, and then write data into FileChannel

from this ByteBuffer.

I/O 957

Underlying File System or Network

FileInputStream
FileOutputStream
RandomAccessFile

FileChannel

getChannel()

ByteBuffer

MappedByteBuffer

map(FileChannel.MapMode,position,size)

read(ByteBuffer)

write(ByteBuffer)

CharBuffer

DoubleBuffer

FloatBuffer

IntBuffer

LongBuffer

asCharBuffer()

asDoubleBuffer()

asFloatBuffer()

asIntBuffer()

asLongBuffer()

ShortBuffer
asShortBuffer()

char[]

double[]

float[]

int[]

long[]

short[]

byte[]

wrap(char[])

appears in process address space

array()/get(byte[])

wrap(byte[])

Channels

Utilities

array()/get(char[])

wrap(double[])

array()/get(double[])

wrap(float[])

array()/get(float[])

wrap(int[])

array()/get(int[])

wrap(long[])

array()/get(long[])

wrap(short[])

array()/get(short[])

Charset

Load character set using

Charset.forName("8859_1")

from an encoded byte stream

newEncoder()

newDecoder()

CharsetEncoder

CharsetDecoder

encode(CharBuffer)

decode(ByteBuffer)

to an encoded byte stream

Encoding/Decoding using ByteBuffer

Socket
DatagramSocket

ServerSocket

Note that ByteBuffer is the only way to move data into and out of channels,

and that you can only create a standalone primitive-typed buffer, or get one

958 Thinking in Java Bruce Eckel

from a ByteBuffer using an “as” method. That is, you cannot convert a

primitive-typed buffer to a ByteBuffer. However, since you are able to move

primitive data into and out of a ByteBuffer via a view buffer, this is not

really a restriction.

Buffer details
A Buffer consists of data and four indexes to access and manipulate this data

efficiently: mark, position, limit and capacity. There are methods to set and

reset these indexes and to query their value.

capacity() Returns the buffer’s capacity.

clear() Clears the buffer, sets the position to zero, and limit

to capacity. You call this method to overwrite an

existing buffer.

flip() Sets limit to position and position to zero. This

method is used to prepare the buffer for a read after

data has been written into it.

limit() Returns the value of limit.

limit(int lim) Sets the value of limit.

mark() Sets mark at position.

position() Returns the value of position.

position(int pos) Sets the value of position.

remaining() Returns (limit - position).

hasRemaining() Returns true if there are any elements between

position and limit.

Methods that insert and extract data from the buffer update these indexes to

reflect the changes.

This example uses a very simple algorithm (swapping adjacent characters) to

scramble and unscramble characters in a CharBuffer:

//: io/UsingBuffers.java

I/O 959

import java.nio.*;

import static net.mindview.util.Print.*;

public class UsingBuffers {

 private static void symmetricScramble(CharBuffer buffer){

 while(buffer.hasRemaining()) {

 buffer.mark();

 char c1 = buffer.get();

 char c2 = buffer.get();

 buffer.reset();

 buffer.put(c2).put(c1);

 }

 }

 public static void main(String[] args) {

 char[] data = "UsingBuffers".toCharArray();

 ByteBuffer bb = ByteBuffer.allocate(data.length * 2);

 CharBuffer cb = bb.asCharBuffer();

 cb.put(data);

 print(cb.rewind());

 symmetricScramble(cb);

 print(cb.rewind());

 symmetricScramble(cb);

 print(cb.rewind());

 }

} /* Output:

UsingBuffers

sUniBgfuefsr

UsingBuffers

*///:~

Although you could produce a CharBuffer directly by calling wrap() with

a char array, an underlying ByteBuffer is allocated instead, and a

CharBuffer is produced as a view on the ByteBuffer. This emphasizes that

the goal is always to manipulate a ByteBuffer, since that is what interacts

with a channel.

Here's what the buffer looks like at the entrance of the

symmetricScramble() method:

960 Thinking in Java Bruce Eckel

U s i n g B u f f e r s

pos lim

cap

The position points to the first element in the buffer, and the capacity and

limit point immediately after the last element.

In symmetricScramble(), the while loop iterates until position is

equivalent to limit. The position of the buffer changes when a relative get()

or put() function is called on it. You can also call absolute get() and put()

methods that include an index argument, which is the location where the

get() or put() takes place. These methods do not modify the value of the

buffer’s position.

When the control enters the while loop, the value of mark is set using a

mark() call. The state of the buffer is then:

U s i n g B u f f e r s

pos lim

capmar

The two relative get() calls save the value of the first two characters in

variables c1 and c2. After these two calls, the buffer looks like this:

U s i n g B u f f e r s

pos lim

capmar

To perform the swap, we need to write c2 at position = 0 and c1 at position =

1. We can either use the absolute put method to achieve this, or set the value

of position to mark, which is what reset() does:

I/O 961

U s i n g B u f f e r s

pos lim

capmar

The two put() methods write c2 and then c1:

Us i n g B u f f e r s

pos lim

capmar

During the next iteration of the loop, mark is set to the current value of

position:

Us i n g B u f f e r s

pos lim

capmar

The process continues until the entire buffer is traversed. At the end of the

while loop, position is at the end of the buffer. If you print the buffer, only

the characters between the position and limit are printed. Thus, if you want

to show the entire contents of the buffer, you must set position to the start of

the buffer using rewind(). Here is the state of buffer after the rewind()

call (the value of mark becomes undefined):

Us in gB uf fe rs

pos lim

cap

When the function symmetricScramble() is called again, the

CharBuffer undergoes the same process and is restored to its original state.

962 Thinking in Java Bruce Eckel

Memory-mapped files
Memory-mapped files allow you to create and modify files that are too big to

bring into memory. With a memory-mapped file, you can pretend that the

entire file is in memory and that you can access it by simply treating it as a

very large array. This approach greatly simplifies the code you write in order

to modify the file. Here’s a small example:

//: io/LargeMappedFiles.java

// Creating a very large file using mapping.

// {RunByHand}

import java.nio.*;

import java.nio.channels.*;

import java.io.*;

import static net.mindview.util.Print.*;

public class LargeMappedFiles {

 static int length = 0x8000000; // 128 MB

 public static void main(String[] args) throws Exception {

 MappedByteBuffer out =

 new RandomAccessFile("test.dat", "rw").getChannel()

 .map(FileChannel.MapMode.READ_WRITE, 0, length);

 for(int i = 0; i < length; i++)

 out.put((byte)'x');

 print("Finished writing");

 for(int i = length/2; i < length/2 + 6; i++)

 printnb((char)out.get(i));

 }

} ///:~

To do both writing and reading, we start with a RandomAccessFile, get a

channel for that file, and then call map() to produce a

MappedByteBuffer, which is a particular kind of direct buffer. Note that

you must specify the starting point and the length of the region that you want

to map in the file; this means that you have the option to map smaller regions

of a large file.

MappedByteBuffer is inherited from ByteBuffer, so it has all of

ByteBuffer’s methods. Only the very simple uses of put() and get() are

shown here, but you can also use methods like asCharBuffer(), etc.

The file created with the preceding program is 128 MB long, which is

probably larger than your OS will allow in memory at one time. The file

I/O 963

appears to be accessible all at once because only portions of it are brought

into memory, and other parts are swapped out. This way a very large file (up

to 2 GB) can easily be modified. Note that the file-mapping facilities of the

underlying operating system are used to maximize performance.

Performance
Although the performance of “old” stream I/O has been improved by

implementing it with nio, mapped file access tends to be dramatically faster.

This program does a simple performance comparison:

//: io/MappedIO.java

import java.nio.*;

import java.nio.channels.*;

import java.io.*;

public class MappedIO {

 private static int numOfInts = 4000000;

 private static int numOfUbuffInts = 200000;

 private abstract static class Tester {

 private String name;

 public Tester(String name) { this.name = name; }

 public void runTest() {

 System.out.print(name + ": ");

 try {

 long start = System.nanoTime();

 test();

 double duration = System.nanoTime() - start;

 System.out.format("%.2f\n", duration/1.0e9);

 } catch(IOException e) {

 throw new RuntimeException(e);

 }

 }

 public abstract void test() throws IOException;

 }

 private static Tester[] tests = {

 new Tester("Stream Write") {

 public void test() throws IOException {

 DataOutputStream dos = new DataOutputStream(

 new BufferedOutputStream(

 new FileOutputStream(new File("temp.tmp"))));

 for(int i = 0; i < numOfInts; i++)

 dos.writeInt(i);

 dos.close();

964 Thinking in Java Bruce Eckel

 }

 },

 new Tester("Mapped Write") {

 public void test() throws IOException {

 FileChannel fc =

 new RandomAccessFile("temp.tmp", "rw")

 .getChannel();

 IntBuffer ib = fc.map(

 FileChannel.MapMode.READ_WRITE, 0, fc.size())

 .asIntBuffer();

 for(int i = 0; i < numOfInts; i++)

 ib.put(i);

 fc.close();

 }

 },

 new Tester("Stream Read") {

 public void test() throws IOException {

 DataInputStream dis = new DataInputStream(

 new BufferedInputStream(

 new FileInputStream("temp.tmp")));

 for(int i = 0; i < numOfInts; i++)

 dis.readInt();

 dis.close();

 }

 },

 new Tester("Mapped Read") {

 public void test() throws IOException {

 FileChannel fc = new FileInputStream(

 new File("temp.tmp")).getChannel();

 IntBuffer ib = fc.map(

 FileChannel.MapMode.READ_ONLY, 0, fc.size())

 .asIntBuffer();

 while(ib.hasRemaining())

 ib.get();

 fc.close();

 }

 },

 new Tester("Stream Read/Write") {

 public void test() throws IOException {

 RandomAccessFile raf = new RandomAccessFile(

 new File("temp.tmp"), "rw");

 raf.writeInt(1);

 for(int i = 0; i < numOfUbuffInts; i++) {

 raf.seek(raf.length() - 4);

I/O 965

 raf.writeInt(raf.readInt());

 }

 raf.close();

 }

 },

 new Tester("Mapped Read/Write") {

 public void test() throws IOException {

 FileChannel fc = new RandomAccessFile(

 new File("temp.tmp"), "rw").getChannel();

 IntBuffer ib = fc.map(

 FileChannel.MapMode.READ_WRITE, 0, fc.size())

 .asIntBuffer();

 ib.put(0);

 for(int i = 1; i < numOfUbuffInts; i++)

 ib.put(ib.get(i - 1));

 fc.close();

 }

 }

 };

 public static void main(String[] args) {

 for(Tester test : tests)

 test.runTest();

 }

} /* Output: (90% match)

Stream Write: 0.56

Mapped Write: 0.12

Stream Read: 0.80

Mapped Read: 0.07

Stream Read/Write: 5.32

Mapped Read/Write: 0.02

*///:~

As seen in earlier examples in this book, runTest() is used by the Template

Method to create a testing framework for various implementations of test()

defined in anonymous inner subclasses. Each of these subclasses performs

one kind of test, so the test() methods also give you a prototype for

performing the various I/O activities.

Although a mapped write would seem to use a FileOutputStream, all

output in file mapping must use a RandomAccessFile, just as read/write

does in the preceding code.

966 Thinking in Java Bruce Eckel

Note that the test() methods include the time for initialization of the various

I/O objects, so even though the setup for mapped files can be expensive, the

overall gain compared to stream I/O is significant.

Exercise 25: (6) Experiment with changing the ByteBuffer.allocate()
statements in the examples in this chapter to
ByteBuffer.allocateDirect(). Demonstrate performance differences, but
also notice whether the startup time of the programs noticeably changes.

Exercise 26: (3) Modify strings/JGrep.java to use Java nio memory-
mapped files.

File locking
File locking allows you to synchronize access to a file as a shared resource.

However, two threads that contend for the same file may be in different

JVMs, or one may be a Java thread and the other some native thread in the

operating system. The file locks are visible to other operating system

processes because Java file locking maps directly to the native operating

system locking facility.

Here is a simple example of file locking.

//: io/FileLocking.java

import java.nio.channels.*;

import java.util.concurrent.*;

import java.io.*;

public class FileLocking {

 public static void main(String[] args) throws Exception {

 FileOutputStream fos= new FileOutputStream("file.txt");

 FileLock fl = fos.getChannel().tryLock();

 if(fl != null) {

 System.out.println("Locked File");

 TimeUnit.MILLISECONDS.sleep(100);

 fl.release();

 System.out.println("Released Lock");

 }

 fos.close();

 }

} /* Output:

Locked File

Released Lock

*///:~

I/O 967

You get a FileLock on the entire file by calling either tryLock() or lock()

on a FileChannel. (SocketChannel, DatagramChannel, and

ServerSocketChannel do not need locking since they are inherently single-

process entities; you don’t generally share a network socket between two

processes.) tryLock() is non-blocking. It tries to grab the lock, but if it

cannot (when some other process already holds the same lock and it is not

shared), it simply returns from the method call. lock() blocks until the lock

is acquired, or the thread that invoked lock() is interrupted, or the channel

on which the lock() method is called is closed. A lock is released using

FileLock.release().

It is also possible to lock a part of the file by using

tryLock(long position, long size, boolean shared)

or

lock(long position, long size, boolean shared)

which locks the region (size - position). The third argument specifies

whether this lock is shared.

Although the zero-argument locking methods adapt to changes in the size of a

file, locks with a fixed size do not change if the file size changes. If a lock is

acquired for a region from position to position+size and the file increases

beyond position+size, then the section beyond position+size is not

locked. The zero-argument locking methods lock the entire file, even if it

grows.

Support for exclusive or shared locks must be provided by the underlying

operating system. If the operating system does not support shared locks and a

request is made for one, an exclusive lock is used instead. The type of lock

(shared or exclusive) can be queried using FileLock.isShared().

Locking portions of a mapped file

As mentioned earlier, file mapping is typically used for very large files. You

may need to lock portions of such a large file so that other processes may

modify unlocked parts of the file. This is something that happens, for

example, with a database, so that it can be available to many users at once.

Here’s an example that has two threads, each of which locks a distinct portion

of a file:

968 Thinking in Java Bruce Eckel

//: io/LockingMappedFiles.java

// Locking portions of a mapped file.

// {RunByHand}

import java.nio.*;

import java.nio.channels.*;

import java.io.*;

public class LockingMappedFiles {

 static final int LENGTH = 0x8FFFFFF; // 128 MB

 static FileChannel fc;

 public static void main(String[] args) throws Exception {

 fc =

 new RandomAccessFile("test.dat", "rw").getChannel();

 MappedByteBuffer out =

 fc.map(FileChannel.MapMode.READ_WRITE, 0, LENGTH);

 for(int i = 0; i < LENGTH; i++)

 out.put((byte)'x');

 new LockAndModify(out, 0, 0 + LENGTH/3);

 new LockAndModify(out, LENGTH/2, LENGTH/2 + LENGTH/4);

 }

 private static class LockAndModify extends Thread {

 private ByteBuffer buff;

 private int start, end;

 LockAndModify(ByteBuffer mbb, int start, int end) {

 this.start = start;

 this.end = end;

 mbb.limit(end);

 mbb.position(start);

 buff = mbb.slice();

 start();

 }

 public void run() {

 try {

 // Exclusive lock with no overlap:

 FileLock fl = fc.lock(start, end, false);

 System.out.println("Locked: "+ start +" to "+ end);

 // Perform modification:

 while(buff.position() < buff.limit() - 1)

 buff.put((byte)(buff.get() + 1));

 fl.release();

 System.out.println("Released: "+start+" to "+ end);

 } catch(IOException e) {

 throw new RuntimeException(e);

 }

I/O 969

 }

 }

} ///:~

The LockAndModify thread class sets up the buffer region and creates a

slice() to be modified, and in run(), the lock is acquired on the file channel

(you can’t acquire a lock on the buffer—only the channel). The call to lock()

is very similar to acquiring a threading lock on an object—you now have a

“critical section” with exclusive access to that portion of the file.5

The locks are automatically released when the JVM exits, or the channel on

which it was acquired is closed, but you can also explicitly call release() on

the FileLock object, as shown here.

Compression
The Java I/O library contains classes to support reading and writing streams

in a compressed format. You wrap these around other I/O classes to provide

compression functionality.

These classes are not derived from the Reader and Writer classes, but

instead are part of the InputStream and OutputStream hierarchies. This

is because the compression library works with bytes, not characters.

However, you might sometimes be forced to mix the two types of streams.

(Remember that you can use InputStreamReader and

OutputStreamWriter to provide easy conversion between one type and

another.)

Compression class Function

CheckedInputStream GetCheckSum() produces checksum
for any InputStream (not just
decompression).

CheckedOutputStream GetCheckSum() produces checksum
for any OutputStream (not just
compression).

DeflaterOutputStream Base class for compression classes.

ZipOutputStream A DeflaterOutputStream that

5 More details about threads will be found in the Concurrency chapter.

970 Thinking in Java Bruce Eckel

Compression class Function

compresses data into the Zip file format.

GZIPOutputStream A DeflaterOutputStream that
compresses data into the GZIP file format.

InflaterInputStream Base class for decompression classes.

ZipInputStream An InflaterInputStream that
decompresses data that has been stored in
the Zip file format.

GZIPInputStream An InflaterInputStream that
decompresses data that has been stored in
the GZIP file format.

Although there are many compression algorithms, Zip and GZIP are possibly

the most commonly used. Thus you can easily manipulate your compressed

data with the many tools available for reading and writing these formats.

Simple compression with GZIP
The GZIP interface is simple and thus is probably more appropriate when you

have a single stream of data that you want to compress (rather than a

container of dissimilar pieces of data). Here’s an example that compresses a

single file:

//: io/GZIPcompress.java

// {Args: GZIPcompress.java}

import java.util.zip.*;

import java.io.*;

public class GZIPcompress {

 public static void main(String[] args)

 throws IOException {

 if(args.length == 0) {

 System.out.println(

 "Usage: \nGZIPcompress file\n" +

 "\tUses GZIP compression to compress " +

 "the file to test.gz");

 System.exit(1);

 }

 InputStream in = new BufferedInputStream(

 new FileInputStream(args[0]));

 BufferedOutputStream out = new BufferedOutputStream(

 new GZIPOutputStream(

I/O 971

 new FileOutputStream("test.gz")));

 System.out.println("Writing file");

 int c;

 while((c = in.read()) != -1)

 out.write(c);

 in.close();

 out.close();

 System.out.println("Reading file");

 BufferedReader in2 = new BufferedReader(

 new InputStreamReader(new GZIPInputStream(

 new FileInputStream("test.gz"))));

 String s;

 while((s = in2.readLine()) != null)

 System.out.println(s);

 }

} /* (Execute to see output) *///:~

The use of the compression classes is straightforward; you simply wrap your

output stream in a GZIPOutputStream or ZipOutputStream, and your

input stream in a GZIPInputStream or ZipInputStream. All else is

ordinary I/O reading and writing. This is an example of mixing the char-

oriented streams with the byte-oriented streams; in uses the Reader classes,

whereas GZIPOutputStream’s constructor can accept only an

OutputStream object, not a Writer object. When the file is opened, the

GZIPInputStream is converted to a Reader.

Multifile storage with Zip
The library that supports the Zip format is more extensive. With it you can

easily store multiple files, and there’s even a separate class to make the

process of reading a Zip file easy. The library uses the standard Zip format so

that it works seamlessly with all the Zip tools currently downloadable on the

Internet. The following example has the same form as the previous example,

but it handles as many command-line arguments as you want. In addition, it

shows the use of the Checksum classes to calculate and verify the checksum

for the file. There are two Checksum types: Adler32 (which is faster) and

CRC32 (which is slower but slightly more accurate).

//: io/ZipCompress.java

// Uses Zip compression to compress any

// number of files given on the command line.

// {Args: ZipCompress.java}

import java.util.zip.*;

972 Thinking in Java Bruce Eckel

import java.io.*;

import java.util.*;

import static net.mindview.util.Print.*;

public class ZipCompress {

 public static void main(String[] args)

 throws IOException {

 FileOutputStream f = new FileOutputStream("test.zip");

 CheckedOutputStream csum =

 new CheckedOutputStream(f, new Adler32());

 ZipOutputStream zos = new ZipOutputStream(csum);

 BufferedOutputStream out =

 new BufferedOutputStream(zos);

 zos.setComment("A test of Java Zipping");

 // No corresponding getComment(), though.

 for(String arg : args) {

 print("Writing file " + arg);

 InputStream in = new BufferedInputStream(

 new FileInputStream(arg));

 zos.putNextEntry(new ZipEntry(arg));

 int c;

 while((c = in.read()) != -1)

 out.write(c);

 in.close();

 out.flush();

 }

 out.close();

 // Checksum valid only after the file has been closed!

 print("Checksum: " + csum.getChecksum().getValue());

 // Now extract the files:

 print("Reading file");

 FileInputStream fi = new FileInputStream("test.zip");

 CheckedInputStream csumi =

 new CheckedInputStream(fi, new Adler32());

 ZipInputStream in2 = new ZipInputStream(csumi);

 BufferedInputStream bis = new BufferedInputStream(in2);

 ZipEntry ze;

 while((ze = in2.getNextEntry()) != null) {

 print("Reading file " + ze);

 int x;

 while((x = bis.read()) != -1)

 System.out.write(x);

 }

 if(args.length == 1)

I/O 973

 print("Checksum: " + csumi.getChecksum().getValue());

 bis.close();

 // Alternative way to open and read Zip files:

 ZipFile zf = new ZipFile("test.zip");

 Enumeration e = zf.entries();

 while(e.hasMoreElements()) {

 ZipEntry ze2 = (ZipEntry)e.nextElement();

 print("File: " + ze2);

 // ... and extract the data as before

 }

 /* if(args.length == 1) */

 }

} /* (Execute to see output) *///:~

For each file to add to the archive, you must call putNextEntry() and pass

it a ZipEntry object. The ZipEntry object contains an extensive interface

that allows you to get and set all the data available on that particular entry in

your Zip file: name, compressed and uncompressed sizes, date, CRC

checksum, extra field data, comment, compression method, and whether it’s

a directory entry. However, even though the Zip format has a way to set a

password, this is not supported in Java’s Zip library. And although

CheckedInputStream and CheckedOutputStream support both

Adler32 and CRC32 checksums, the ZipEntry class supports only an

interface for CRC. This is a restriction of the underlying Zip format, but it

might limit you from using the faster Adler32.

To extract files, ZipInputStream has a getNextEntry() method that

returns the next ZipEntry if there is one. As a more succinct alternative, you

can read the file using a ZipFile object, which has a method entries() to

return an Enumeration to the ZipEntries.

In order to read the checksum, you must somehow have access to the

associated Checksum object. Here, a reference to the

CheckedOutputStream and CheckedInputStream objects is retained,

but you could also just hold on to a reference to the Checksum object.

A baffling method in Zip streams is setComment(). As shown in

ZipCompress.java, you can set a comment when you’re writing a file, but

there’s no way to recover the comment in the ZipInputStream. Comments

appear to be supported fully on an entry-by-entry basis only via ZipEntry.

974 Thinking in Java Bruce Eckel

Of course, you are not limited to files when using the GZIP or Zip libraries—

you can compress anything, including data to be sent through a network

connection.

Java ARchives (JARs)
The Zip format is also used in the JAR (Java ARchive) file format, which is a

way to collect a group of files into a single compressed file, just like Zip.

However, like everything else in Java, JAR files are cross-platform, so you

don’t need to worry about platform issues. You can also include audio and

image files as well as class files.

JAR files are particularly helpful when you deal with the Internet. Before JAR

files, your Web browser would have to make repeated requests of a Web

server in order to download all the files that made up an applet. In addition,

each of these files was uncompressed. By combining all of the files for a

particular applet into a single JAR file, only one server request is necessary

and the transfer is faster because of compression. And each entry in a JAR file

can be digitally signed for security.

A JAR file consists of a single file containing a collection of zipped files along

with a “manifest” that describes them. (You can create your own manifest file;

otherwise, the jar program will do it for you.) You can find out more about

JAR manifests in the JDK documentation.

The jar utility that comes with the JDK automatically compresses the files of

your choice. You invoke it on the command line:

jar [options] destination [manifest] inputfile(s)

The options are simply a collection of letters (no hyphen or any other

indicator is necessary). Unix/Linux users will note the similarity to the tar

options. These are:

c Creates a new or empty archive.

t Lists the table of contents.

x Extracts all files.

x file Extracts the named file.

f Says, “I’m going to give you the name of the file.” If you
don’t use this, jar assumes that its input will come from
standard input, or, if it is creating a file, its output will go to

I/O 975

standard output.

m Says that the first argument will be the name of the user-
created manifest file.

v Generates verbose output describing what jar is doing.

0 Only stores the files; doesn’t compress the files (use to
create a JAR file that you can put in your classpath).

M Doesn’t automatically create a manifest file.

If a subdirectory is included in the files to be put into the JAR file, that

subdirectory is automatically added, including all of its subdirectories, etc.

Path information is also preserved.

Here are some typical ways to invoke jar. The following command creates a

JAR file called myJarFile.jar that contains all of the class files in the

current directory, along with an automatically generated manifest file:

jar cf myJarFile.jar *.class

The next command is like the previous example, but it adds a user-created

manifest file called myManifestFile.mf:

jar cmf myJarFile.jar myManifestFile.mf *.class

This produces a table of contents of the files in myJarFile.jar:

jar tf myJarFile.jar

This adds the “verbose” flag to give more detailed information about the files

in myJarFile.jar:

jar tvf myJarFile.jar

Assuming audio, classes, and image are subdirectories, this combines all

of the subdirectories into the file myApp.jar. The “verbose” flag is also

included to give extra feedback while the jar program is working:

jar cvf myApp.jar audio classes image

If you create a JAR file using the 0 (zero) option, that file can be placed in

your CLASSPATH:

CLASSPATH="lib1.jar;lib2.jar;"

Then Java can search lib1.jar and lib2.jar for class files.

976 Thinking in Java Bruce Eckel

The jar tool isn’t as general-purpose as a Zip utility. For example, you can’t

add or update files to an existing JAR file; you can create JAR files only from

scratch. Also, you can’t move files into a JAR file, erasing them as they are

moved. However, a JAR file created on one platform will be transparently

readable by the jar tool on any other platform (a problem that sometimes

plagues Zip utilities).

As you will see in the Graphical User Interfaces chapter, JAR files are also

used to package JavaBeans.

Object serialization
When you create an object, it exists for as long as you need it, but under no

circumstances does it exist when the program terminates. While this makes

sense at first, there are situations in which it would be incredibly useful if an

object could exist and hold its information even while the program wasn’t

running. Then, the next time you started the program, the object would be

there and it would have the same information it had the previous time the

program was running. Of course, you can get a similar effect by writing the

information to a file or to a database, but in the spirit of making everything

an object, it would be quite convenient to declare an object to be “persistent,”

and have all the details taken care of for you.

Java’s object serialization allows you to take any object that implements the

Serializable interface and turn it into a sequence of bytes that can later be

fully restored to regenerate the original object. This is even true across a

network, which means that the serialization mechanism automatically

compensates for differences in operating systems. That is, you can create an

object on a Windows machine, serialize it, and send it across the network to a

Unix machine, where it will be correctly reconstructed. You don’t have to

worry about the data representations on the different machines, the byte

ordering, or any other details.

By itself, object serialization is interesting because it allows you to implement

lightweight persistence. Persistence means that an object’s lifetime is not

determined by whether a program is executing; the object lives in between

invocations of the program. By taking a serializable object and writing it to

disk, then restoring that object when the program is reinvoked, you’re able to

produce the effect of persistence. The reason it’s called “lightweight” is that

you can’t simply define an object using some kind of “persistent” keyword

and let the system take care of the details (perhaps this will happen in the

I/O 977

future). Instead, you must explicitly serialize and deserialize the objects in

your program. If you need a more serious persistence mechanism, consider a

tool like Hibernate (http://hibernate.sourceforge.net).

Object serialization was added to the language to support two major features.

Java’s Remote Method Invocation (RMI) allows objects that live on other

machines to behave as if they live on your machine. When messages are sent

to remote objects, object serialization is necessary to transport the arguments

and return values.

Object serialization is also necessary for JavaBeans, described in the

Graphical User Interfaces chapter. When a Bean is used, its state

information is generally configured at design time. This state information

must be stored and later recovered when the program is started; object

serialization performs this task.

Serializing an object is quite simple as long as the object implements the

Serializable interface (this is a tagging interface and has no methods).

When serialization was added to the language, many standard library classes

were changed to make them serializable, including all of the wrappers for the

primitive types, all of the container classes, and many others. Even Class

objects can be serialized.

To serialize an object, you create some sort of OutputStream object and

then wrap it inside an ObjectOutputStream object. At this point you need

only call writeObject(), and your object is serialized and sent to the

OutputStream (object serialization is byte-oriented, and thus uses the

InputStream and OutputStream hierarchies). To reverse the process, you

wrap an InputStream inside an ObjectInputStream and call

readObject(). What comes back is, as usual, a reference to an upcast

Object, so you must downcast to set things straight.

A particularly clever aspect of object serialization is that it not only saves an

image of your object, but it also follows all the references contained in your

object and saves those objects, and follows all the references in each of those

objects, etc. This is sometimes referred to as the “web of objects” that a single

object can be connected to, and it includes arrays of references to objects as

well as member objects. If you had to maintain your own object serialization

scheme, maintaining the code to follow all these links could be mind-

boggling. However, Java object serialization seems to pull it off flawlessly, no

doubt using an optimized algorithm that traverses the web of objects. The

978 Thinking in Java Bruce Eckel

following example tests the serialization mechanism by making a “worm” of

linked objects, each of which has a link to the next segment in the worm as

well as an array of references to objects of a different class, Data:

//: io/Worm.java

// Demonstrates object serialization.

import java.io.*;

import java.util.*;

import static net.mindview.util.Print.*;

class Data implements Serializable {

 private int n;

 public Data(int n) { this.n = n; }

 public String toString() { return Integer.toString(n); }

}

public class Worm implements Serializable {

 private static Random rand = new Random(47);

 private Data[] d = {

 new Data(rand.nextInt(10)),

 new Data(rand.nextInt(10)),

 new Data(rand.nextInt(10))

 };

 private Worm next;

 private char c;

 // Value of i == number of segments

 public Worm(int i, char x) {

 print("Worm constructor: " + i);

 c = x;

 if(--i > 0)

 next = new Worm(i, (char)(x + 1));

 }

 public Worm() {

 print("Default constructor");

 }

 public String toString() {

 StringBuilder result = new StringBuilder(":");

 result.append(c);

 result.append("(");

 for(Data dat : d)

 result.append(dat);

 result.append(")");

 if(next != null)

 result.append(next);

I/O 979

 return result.toString();

 }

 public static void main(String[] args)

 throws ClassNotFoundException, IOException {

 Worm w = new Worm(6, 'a');

 print("w = " + w);

 ObjectOutputStream out = new ObjectOutputStream(

 new FileOutputStream("worm.out"));

 out.writeObject("Worm storage\n");

 out.writeObject(w);

 out.close(); // Also flushes output

 ObjectInputStream in = new ObjectInputStream(

 new FileInputStream("worm.out"));

 String s = (String)in.readObject();

 Worm w2 = (Worm)in.readObject();

 print(s + "w2 = " + w2);

 ByteArrayOutputStream bout =

 new ByteArrayOutputStream();

 ObjectOutputStream out2 = new ObjectOutputStream(bout);

 out2.writeObject("Worm storage\n");

 out2.writeObject(w);

 out2.flush();

 ObjectInputStream in2 = new ObjectInputStream(

 new ByteArrayInputStream(bout.toByteArray()));

 s = (String)in2.readObject();

 Worm w3 = (Worm)in2.readObject();

 print(s + "w3 = " + w3);

 }

} /* Output:

Worm constructor: 6

Worm constructor: 5

Worm constructor: 4

Worm constructor: 3

Worm constructor: 2

Worm constructor: 1

w = :a(853):b(119):c(802):d(788):e(199):f(881)

Worm storage

w2 = :a(853):b(119):c(802):d(788):e(199):f(881)

Worm storage

w3 = :a(853):b(119):c(802):d(788):e(199):f(881)

*///:~

To make things interesting, the array of Data objects inside Worm are

initialized with random numbers. (This way, you don’t suspect the compiler

980 Thinking in Java Bruce Eckel

of keeping some kind of meta-information.) Each Worm segment is labeled

with a char that’s automatically generated in the process of recursively

generating the linked list of Worms. When you create a Worm, you tell the

constructor how long you want it to be. To make the next reference, it calls

the Worm constructor with a length of one less, etc. The final next reference

is left as null, indicating the end of the Worm.

The point of all this was to make something reasonably complex that couldn’t

easily be serialized. The act of serializing, however, is quite simple. Once the

ObjectOutputStream is created from some other stream, writeObject()

serializes the object. Notice the call to writeObject() for a String, as well.

You can also write all the primitive data types using the same methods as

DataOutputStream (they share the same interface).

There are two separate code sections that look similar. The first writes and

reads a file, and the second, for variety, writes and reads a ByteArray. You

can read and write an object using serialization to any DataInputStream or

DataOutputStream, including a network.

You can see from the output that the deserialized object really does contain

all of the links that were in the original object.

Note that no constructor, not even the default constructor, is called in the

process of deserializing a Serializable object. The entire object is restored

by recovering data from the InputStream.

Exercise 27: (1) Create a Serializable class containing a reference to an
object of a second Serializable class. Create an instance of your class,
serialize it to disk, then restore it and verify that the process worked correctly.

Finding the class
You might wonder what’s necessary for an object to be recovered from its

serialized state. For example, suppose you serialize an object and send it as a

file or through a network to another machine. Could a program on the other

machine reconstruct the object using only the contents of the file?

The best way to answer this question is (as usual) by performing an

experiment. The following file goes in the subdirectory for this chapter:

//: io/Alien.java

// A serializable class.

import java.io.*;

I/O 981

public class Alien implements Serializable {} ///:~

The file that creates and serializes an Alien object goes in the same directory:

//: io/FreezeAlien.java

// Create a serialized output file.

import java.io.*;

public class FreezeAlien {

 public static void main(String[] args) throws Exception {

 ObjectOutput out = new ObjectOutputStream(

 new FileOutputStream("X.file"));

 Alien quellek = new Alien();

 out.writeObject(quellek);

 }

} ///:~

Rather than catching and handling exceptions, this program takes the quick-

and-dirty approach of passing the exceptions out of main(), so they’ll be

reported on the console.

Once the program is compiled and run, it produces a file called X.file in the

io directory. The following code is in a subdirectory called xfiles:

//: io/xfiles/ThawAlien.java

// Try to recover a serialized file without the

// class of object that's stored in that file.

// {RunByHand}

import java.io.*;

public class ThawAlien {

 public static void main(String[] args) throws Exception {

 ObjectInputStream in = new ObjectInputStream(

 new FileInputStream(new File("..", "X.file")));

 Object mystery = in.readObject();

 System.out.println(mystery.getClass());

 }

} /* Output:

class Alien

*///:~

Even opening the file and reading in the object mystery requires the Class

object for Alien; the JVM cannot find Alien.class (unless it happens to be

in the classpath, which it shouldn’t be in this example). You’ll get a

ClassNotFoundException. (Once again, all evidence of alien life vanishes

982 Thinking in Java Bruce Eckel

before proof of its existence can be verified!) The JVM must be able to find

the associated .class file.

Controlling serialization
As you can see, the default serialization mechanism is trivial to use. But what

if you have special needs? Perhaps you have special security issues and you

don’t want to serialize portions of your object, or perhaps it just doesn’t make

sense for one subobject to be serialized if that part needs to be created anew

when the object is recovered.

You can control the process of serialization by implementing the

Externalizable interface instead of the Serializable interface. The

Externalizable interface extends the Serializable interface and adds two

methods, writeExternal() and readExternal(), that are automatically

called for your object during serialization and deserialization so that you can

perform your special operations.

The following example shows simple implementations of the

Externalizable interface methods. Note that Blip1 and Blip2 are nearly

identical except for a subtle difference (see if you can discover it by looking at

the code):

//: io/Blips.java

// Simple use of Externalizable & a pitfall.

import java.io.*;

import static net.mindview.util.Print.*;

class Blip1 implements Externalizable {

 public Blip1() {

 print("Blip1 Constructor");

 }

 public void writeExternal(ObjectOutput out)

 throws IOException {

 print("Blip1.writeExternal");

 }

 public void readExternal(ObjectInput in)

 throws IOException, ClassNotFoundException {

 print("Blip1.readExternal");

 }

}

class Blip2 implements Externalizable {

I/O 983

 Blip2() {

 print("Blip2 Constructor");

 }

 public void writeExternal(ObjectOutput out)

 throws IOException {

 print("Blip2.writeExternal");

 }

 public void readExternal(ObjectInput in)

 throws IOException, ClassNotFoundException {

 print("Blip2.readExternal");

 }

}

public class Blips {

 public static void main(String[] args)

 throws IOException, ClassNotFoundException {

 print("Constructing objects:");

 Blip1 b1 = new Blip1();

 Blip2 b2 = new Blip2();

 ObjectOutputStream o = new ObjectOutputStream(

 new FileOutputStream("Blips.out"));

 print("Saving objects:");

 o.writeObject(b1);

 o.writeObject(b2);

 o.close();

 // Now get them back:

 ObjectInputStream in = new ObjectInputStream(

 new FileInputStream("Blips.out"));

 print("Recovering b1:");

 b1 = (Blip1)in.readObject();

 // OOPS! Throws an exception:

//! print("Recovering b2:");

//! b2 = (Blip2)in.readObject();

 }

} /* Output:

Constructing objects:

Blip1 Constructor

Blip2 Constructor

Saving objects:

Blip1.writeExternal

Blip2.writeExternal

Recovering b1:

Blip1 Constructor

Blip1.readExternal

984 Thinking in Java Bruce Eckel

*///:~

The reason that the Blip2 object is not recovered is that trying to do so

causes an exception. Can you see the difference between Blip1 and Blip2?

The constructor for Blip1 is public, while the constructor for Blip2 is not,

and that causes the exception upon recovery. Try making Blip2’s constructor

public and removing the //! comments to see the correct results.

When b1 is recovered, the Blip1 default constructor is called. This is different

from recovering a Serializable object, in which the object is constructed

entirely from its stored bits, with no constructor calls. With an

Externalizable object, all the normal default construction behavior occurs

(including the initializations at the point of field definition), and then

readExternal() is called. You need to be aware of this—in particular, the

fact that all the default construction always takes place—to produce the

correct behavior in your Externalizable objects.

Here’s an example that shows what you must do to fully store and retrieve an

Externalizable object:

//: io/Blip3.java

// Reconstructing an externalizable object.

import java.io.*;

import static net.mindview.util.Print.*;

public class Blip3 implements Externalizable {

 private int i;

 private String s; // No initialization

 public Blip3() {

 print("Blip3 Constructor");

 // s, i not initialized

 }

 public Blip3(String x, int a) {

 print("Blip3(String x, int a)");

 s = x;

 i = a;

 // s & i initialized only in non-default constructor.

 }

 public String toString() { return s + i; }

 public void writeExternal(ObjectOutput out)

 throws IOException {

 print("Blip3.writeExternal");

 // You must do this:

 out.writeObject(s);

I/O 985

 out.writeInt(i);

 }

 public void readExternal(ObjectInput in)

 throws IOException, ClassNotFoundException {

 print("Blip3.readExternal");

 // You must do this:

 s = (String)in.readObject();

 i = in.readInt();

 }

 public static void main(String[] args)

 throws IOException, ClassNotFoundException {

 print("Constructing objects:");

 Blip3 b3 = new Blip3("A String ", 47);

 print(b3);

 ObjectOutputStream o = new ObjectOutputStream(

 new FileOutputStream("Blip3.out"));

 print("Saving object:");

 o.writeObject(b3);

 o.close();

 // Now get it back:

 ObjectInputStream in = new ObjectInputStream(

 new FileInputStream("Blip3.out"));

 print("Recovering b3:");

 b3 = (Blip3)in.readObject();

 print(b3);

 }

} /* Output:

Constructing objects:

Blip3(String x, int a)

A String 47

Saving object:

Blip3.writeExternal

Recovering b3:

Blip3 Constructor

Blip3.readExternal

A String 47

*///:~

The fields s and i are initialized only in the second constructor, but not in the

default constructor. This means that if you don’t initialize s and i in

readExternal(), s will be null and i will be zero (since the storage for the

object gets wiped to zero in the first step of object creation). If you comment

out the two lines of code following the phrases “You must do this:” and run

986 Thinking in Java Bruce Eckel

the program, you’ll see that when the object is recovered, s is null and i is

zero.

If you are inheriting from an Externalizable object, you’ll typically call the

base-class versions of writeExternal() and readExternal() to provide

proper storage and retrieval of the base-class components.

So to make things work correctly, you must not only write the important data

from the object during the writeExternal() method (there is no default

behavior that writes any of the member objects for an Externalizable

object), but you must also recover that data in the readExternal() method.

This can be a bit confusing at first because the default construction behavior

for an Externalizable object can make it seem like some kind of storage and

retrieval takes place automatically. It does not.

Exercise 28: (2) In Blips.java, copy the file and rename it to
BlipCheck.java and rename the class Blip2 to BlipCheck (making it
public and removing the public scope from the class Blips in the process).
Remove the //! marks in the file and execute the program, including the
offending lines. Next, comment out the default constructor for BlipCheck.
Run it and explain why it works. Note that after compiling, you must execute
the program with “java Blips” because the main() method is still in the
class Blips.

Exercise 29: (2) In Blip3.java, comment out the two lines after the
phrases “You must do this:” and run the program. Explain the result and why
it differs from when the two lines are in the program.

The transient keyword

When you’re controlling serialization, there might be a particular subobject

that you don’t want Java’s serialization mechanism to automatically save and

restore. This is commonly the case if that subobject represents sensitive

information that you don’t want to serialize, such as a password. Even if that

information is private in the object, once it has been serialized, it’s possible

for someone to access it by reading a file or intercepting a network

transmission.

One way to prevent sensitive parts of your object from being serialized is to

implement your class as Externalizable, as shown previously. Then nothing

is automatically serialized, and you can explicitly serialize only the necessary

parts inside writeExternal().

I/O 987

If you’re working with a Serializable object, however, all serialization

happens automatically. To control this, you can turn off serialization on a

field-by-field basis using the transient keyword, which says, “Don’t bother

saving or restoring this—I’ll take care of it.”

For example, consider a Logon object that keeps information about a

particular login session. Suppose that, once you verify the login, you want to

store the data, but without the password. The easiest way to do this is by

implementing Serializable and marking the password field as transient.

Here’s what it looks like:

//: io/Logon.java

// Demonstrates the "transient" keyword.

import java.util.concurrent.*;

import java.io.*;

import java.util.*;

import static net.mindview.util.Print.*;

public class Logon implements Serializable {

 private Date date = new Date();

 private String username;

 private transient String password;

 public Logon(String name, String pwd) {

 username = name;

 password = pwd;

 }

 public String toString() {

 return "logon info: \n username: " + username +

 "\n date: " + date + "\n password: " + password;

 }

 public static void main(String[] args) throws Exception {

 Logon a = new Logon("Hulk", "myLittlePony");

 print("logon a = " + a);

 ObjectOutputStream o = new ObjectOutputStream(

 new FileOutputStream("Logon.out"));

 o.writeObject(a);

 o.close();

 TimeUnit.SECONDS.sleep(1); // Delay

 // Now get them back:

 ObjectInputStream in = new ObjectInputStream(

 new FileInputStream("Logon.out"));

 print("Recovering object at " + new Date());

 a = (Logon)in.readObject();

 print("logon a = " + a);

988 Thinking in Java Bruce Eckel

 }

} /* Output: (Sample)

logon a = logon info:

 username: Hulk

 date: Sat Nov 19 15:03:26 MST 2005

 password: myLittlePony

Recovering object at Sat Nov 19 15:03:28 MST 2005

logon a = logon info:

 username: Hulk

 date: Sat Nov 19 15:03:26 MST 2005

 password: null

*///:~

You can see that the date and username fields are ordinary (not

transient), and thus are automatically serialized. However, the password

is transient, so it is not stored to disk; also, the serialization mechanism

makes no attempt to recover it. When the object is recovered, the password

field is null. Note that while toString() assembles a String object using the

overloaded ‘+’ operator, a null reference is automatically converted to the

string “null.”

You can also see that the date field is stored to and recovered from disk and

not generated anew.

Since Externalizable objects do not store any of their fields by default, the

transient keyword is for use with Serializable objects only.

An alternative to Externalizable
If you’re not keen on implementing the Externalizable interface, there’s

another approach. You can implement the Serializable interface and add

(notice I say “add” and not “override” or “implement”) methods called

writeObject() and readObject() that will automatically be called when

the object is serialized and deserialized, respectively. That is, if you provide

these two methods, they will be used instead of the default serialization.

The methods must have these exact signatures:

private void writeObject(ObjectOutputStream stream)

throws IOException;

private void readObject(ObjectInputStream stream)

throws IOException, ClassNotFoundException

I/O 989

From a design standpoint, things get really weird here. First of all, you might

think that because these methods are not part of a base class or the

Serializable interface, they ought to be defined in their own interface(s).

But notice that they are defined as private, which means they are to be called

only by other members of this class. However, you don’t actually call them

from other members of this class, but instead the writeObject() and

readObject() methods of the ObjectOutputStream and

ObjectInputStream objects call your object’s writeObject() and

readObject() methods. (Notice my tremendous restraint in not launching

into a long diatribe about using the same method names here. In a word:

confusing.) You might wonder how the ObjectOutputStream and

ObjectInputStream objects have access to private methods of your class.

We can only assume that this is part of the serialization magic.6

Anything defined in an interface is automatically public, so if

writeObject() and readObject() must be private, then they can’t be part

of an interface. Since you must follow the signatures exactly, the effect is the

same as if you’re implementing an interface.

It would appear that when you call ObjectOutputStream.writeObject(),

the Serializable object that you pass it to is interrogated (using reflection,

no doubt) to see if it implements its own writeObject(). If so, the normal

serialization process is skipped and the custom writeObject() is called. The

same situation exists for readObject().

There’s one other twist. Inside your writeObject(), you can choose to

perform the default writeObject() action by calling

defaultWriteObject(). Likewise, inside readObject() you can call

defaultReadObject(). Here is a simple example that demonstrates how

you can control the storage and retrieval of a Serializable object:

//: io/SerialCtl.java

// Controlling serialization by adding your own

// writeObject() and readObject() methods.

import java.io.*;

public class SerialCtl implements Serializable {

 private String a;

6 The section “Interfaces and type information” at the end of the Type Information
chapter shows how it’s possible to access private methods from outside of the class.

990 Thinking in Java Bruce Eckel

 private transient String b;

 public SerialCtl(String aa, String bb) {

 a = "Not Transient: " + aa;

 b = "Transient: " + bb;

 }

 public String toString() { return a + "\n" + b; }

 private void writeObject(ObjectOutputStream stream)

 throws IOException {

 stream.defaultWriteObject();

 stream.writeObject(b);

 }

 private void readObject(ObjectInputStream stream)

 throws IOException, ClassNotFoundException {

 stream.defaultReadObject();

 b = (String)stream.readObject();

 }

 public static void main(String[] args)

 throws IOException, ClassNotFoundException {

 SerialCtl sc = new SerialCtl("Test1", "Test2");

 System.out.println("Before:\n" + sc);

 ByteArrayOutputStream buf= new ByteArrayOutputStream();

 ObjectOutputStream o = new ObjectOutputStream(buf);

 o.writeObject(sc);

 // Now get it back:

 ObjectInputStream in = new ObjectInputStream(

 new ByteArrayInputStream(buf.toByteArray()));

 SerialCtl sc2 = (SerialCtl)in.readObject();

 System.out.println("After:\n" + sc2);

 }

} /* Output:

Before:

Not Transient: Test1

Transient: Test2

After:

Not Transient: Test1

Transient: Test2

*///:~

In this example, one String field is ordinary and the other is transient, to

prove that the non-transient field is saved by the defaultWriteObject()

method and the transient field is saved and restored explicitly. The fields

are initialized inside the constructor rather than at the point of definition to

prove that they are not being initialized by some automatic mechanism

during deserialization.

I/O 991

If you use the default mechanism to write the non-transient parts of your

object, you must call defaultWriteObject() as the first operation in

writeObject(), and defaultReadObject() as the first operation in

readObject(). These are strange method calls. It would appear, for

example, that you are calling defaultWriteObject() for an

ObjectOutputStream and passing it no arguments, and yet it somehow

turns around and knows the reference to your object and how to write all the

non-transient parts. Spooky.

The storage and retrieval of the transient objects uses more familiar code.

And yet, think about what happens here. In main(), a SerialCtl object is

created, and then it’s serialized to an ObjectOutputStream. (Notice in this

case that a buffer is used instead of a file—it’s all the same to the

ObjectOutputStream.) The serialization occurs in the line:

o.writeObject(sc);

The writeObject() method must be examining sc to see if it has its own

writeObject() method. (Not by checking the interface—there isn’t one—or

the class type, but by actually hunting for the method using reflection.) If it

does, it uses that. A similar approach holds true for readObject(). Perhaps

this was the only practical way that they could solve the problem, but it’s

certainly strange.

Versioning
It’s possible that you might want to change the version of a serializable class

(objects of the original class might be stored in a database, for example). This

is supported, but you’ll probably do it only in special cases, and it requires an

extra depth of understanding that we will not attempt to achieve here. The

JDK documents downloadable from http://java.oracle.com cover this topic

quite thoroughly.

You will also notice in the JDK documentation many comments that begin

with:

Warning: Serialized objects of this class will not be compatible with

future Swing releases. The current serialization support is appropriate

for short term storage or RMI between applications …

This is because the versioning mechanism is too simple to work reliably in all

situations, especially with JavaBeans. They’re working on a correction for the

design, and that’s what the warning is about.

992 Thinking in Java Bruce Eckel

Using persistence
It’s quite appealing to use serialization technology to store some of the state

of your program so that you can easily restore the program to the current

state later. But before you can do this, some questions must be answered.

What happens if you serialize two objects that both have a reference to a third

object? When you restore those two objects from their serialized state, do you

get only one occurrence of the third object? What if you serialize your two

objects to separate files and deserialize them in different parts of your code?

Here’s an example that shows the problem:

//: io/MyWorld.java

import java.io.*;

import java.util.*;

import static net.mindview.util.Print.*;

class House implements Serializable {}

class Animal implements Serializable {

 private String name;

 private House preferredHouse;

 Animal(String nm, House h) {

 name = nm;

 preferredHouse = h;

 }

 public String toString() {

 return name + "[" + super.toString() +

 "], " + preferredHouse + "\n";

 }

}

public class MyWorld {

 public static void main(String[] args)

 throws IOException, ClassNotFoundException {

 House house = new House();

 List<Animal> animals = new ArrayList<Animal>();

 animals.add(new Animal("Bosco the dog", house));

 animals.add(new Animal("Ralph the hamster", house));

 animals.add(new Animal("Molly the cat", house));

 print("animals: " + animals);

 ByteArrayOutputStream buf1 =

 new ByteArrayOutputStream();

 ObjectOutputStream o1 = new ObjectOutputStream(buf1);

I/O 993

 o1.writeObject(animals);

 o1.writeObject(animals); // Write a 2nd set

 // Write to a different stream:

 ByteArrayOutputStream buf2 =

 new ByteArrayOutputStream();

 ObjectOutputStream o2 = new ObjectOutputStream(buf2);

 o2.writeObject(animals);

 // Now get them back:

 ObjectInputStream in1 = new ObjectInputStream(

 new ByteArrayInputStream(buf1.toByteArray()));

 ObjectInputStream in2 = new ObjectInputStream(

 new ByteArrayInputStream(buf2.toByteArray()));

 List

 animals1 = (List)in1.readObject(),

 animals2 = (List)in1.readObject(),

 animals3 = (List)in2.readObject();

 print("animals1: " + animals1);

 print("animals2: " + animals2);

 print("animals3: " + animals3);

 }

} /* Output: (Sample)

animals: [Bosco the dog[Animal@addbf1], House@42e816

, Ralph the hamster[Animal@9304b1], House@42e816

, Molly the cat[Animal@190d11], House@42e816

]

animals1: [Bosco the dog[Animal@de6f34], House@156ee8e

, Ralph the hamster[Animal@47b480], House@156ee8e

, Molly the cat[Animal@19b49e6], House@156ee8e

]

animals2: [Bosco the dog[Animal@de6f34], House@156ee8e

, Ralph the hamster[Animal@47b480], House@156ee8e

, Molly the cat[Animal@19b49e6], House@156ee8e

]

animals3: [Bosco the dog[Animal@10d448], House@e0e1c6

, Ralph the hamster[Animal@6ca1c], House@e0e1c6

, Molly the cat[Animal@1bf216a], House@e0e1c6

]

*///:~

One thing that’s interesting here is that it’s possible to use object serialization

to and from a byte array as a way of doing a “deep copy” of any object that’s

Serializable. (A deep copy means that you’re duplicating the entire web of

objects, rather than just the basic object and its references.) Object copying is

covered in depth in the online supplements for this book.

994 Thinking in Java Bruce Eckel

Animal objects contain fields of type House. In main(), a List of these

Animals is created and it is serialized twice to one stream and then again to

a separate stream. When these are deserialized and printed, you see the

output shown for one run (the objects will be in different memory locations

each run).

Of course, you expect that the deserialized objects have different addresses

from their originals. But notice that in animals1 and animals2, the same

addresses appear, including the references to the House object that both

share. On the other hand, when animals3 is recovered, the system has no

way of knowing that the objects in this other stream are aliases of the objects

in the first stream, so it makes a completely different web of objects.

As long as you’re serializing everything to a single stream, you’ll recover the

same web of objects that you wrote, with no accidental duplication of objects.

Of course, you can change the state of your objects in between the time you

write the first and the last, but that’s your responsibility; the objects will be

written in whatever state they are in (and with whatever connections they

have to other objects) at the time you serialize them.

The safest thing to do if you want to save the state of a system is to serialize as

an “atomic” operation. If you serialize some things, do some other work, and

serialize some more, etc., then you will not be storing the system safely.

Instead, put all the objects that comprise the state of your system in a single

container and simply write that container out in one operation. Then you can

restore it with a single method call as well.

The following example is an imaginary computer-aided design (CAD) system

that demonstrates the approach. In addition, it throws in the issue of static

fields; if you look at the JDK documentation, you’ll see that Class is

Serializable, so it should be easy to store the static fields by simply

serializing the Class object. That seems like a sensible approach, anyway.

//: io/StoreCADState.java

// Saving the state of a pretend CAD system.

import java.io.*;

import java.util.*;

abstract class Shape implements Serializable {

 public static final int RED = 1, BLUE = 2, GREEN = 3;

 private int xPos, yPos, dimension;

 private static Random rand = new Random(47);

I/O 995

 private static int counter = 0;

 public abstract void setColor(int newColor);

 public abstract int getColor();

 public Shape(int xVal, int yVal, int dim) {

 xPos = xVal;

 yPos = yVal;

 dimension = dim;

 }

 public String toString() {

 return getClass() +

 "color[" + getColor() + "] xPos[" + xPos +

 "] yPos[" + yPos + "] dim[" + dimension + "]\n";

 }

 public static Shape randomFactory() {

 int xVal = rand.nextInt(100);

 int yVal = rand.nextInt(100);

 int dim = rand.nextInt(100);

 switch(counter++ % 3) {

 default:

 case 0: return new Circle(xVal, yVal, dim);

 case 1: return new Square(xVal, yVal, dim);

 case 2: return new Line(xVal, yVal, dim);

 }

 }

}

class Circle extends Shape {

 private static int color = RED;

 public Circle(int xVal, int yVal, int dim) {

 super(xVal, yVal, dim);

 }

 public void setColor(int newColor) { color = newColor; }

 public int getColor() { return color; }

}

class Square extends Shape {

 private static int color;

 public Square(int xVal, int yVal, int dim) {

 super(xVal, yVal, dim);

 color = RED;

 }

 public void setColor(int newColor) { color = newColor; }

 public int getColor() { return color; }

}

996 Thinking in Java Bruce Eckel

class Line extends Shape {

 private static int color = RED;

 public static void

 serializeStaticState(ObjectOutputStream os)

 throws IOException { os.writeInt(color); }

 public static void

 deserializeStaticState(ObjectInputStream os)

 throws IOException { color = os.readInt(); }

 public Line(int xVal, int yVal, int dim) {

 super(xVal, yVal, dim);

 }

 public void setColor(int newColor) { color = newColor; }

 public int getColor() { return color; }

}

public class StoreCADState {

 public static void main(String[] args) throws Exception {

 List<Class<? extends Shape>> shapeTypes =

 new ArrayList<Class<? extends Shape>>();

 // Add references to the class objects:

 shapeTypes.add(Circle.class);

 shapeTypes.add(Square.class);

 shapeTypes.add(Line.class);

 List<Shape> shapes = new ArrayList<Shape>();

 // Make some shapes:

 for(int i = 0; i < 10; i++)

 shapes.add(Shape.randomFactory());

 // Set all the static colors to GREEN:

 for(int i = 0; i < 10; i++)

 ((Shape)shapes.get(i)).setColor(Shape.GREEN);

 // Save the state vector:

 ObjectOutputStream out = new ObjectOutputStream(

 new FileOutputStream("CADState.out"));

 out.writeObject(shapeTypes);

 Line.serializeStaticState(out);

 out.writeObject(shapes);

 // Display the shapes:

 System.out.println(shapes);

 }

} /* Output:

[class Circlecolor[3] xPos[58] yPos[55] dim[93]

, class Squarecolor[3] xPos[61] yPos[61] dim[29]

, class Linecolor[3] xPos[68] yPos[0] dim[22]

I/O 997

, class Circlecolor[3] xPos[7] yPos[88] dim[28]

, class Squarecolor[3] xPos[51] yPos[89] dim[9]

, class Linecolor[3] xPos[78] yPos[98] dim[61]

, class Circlecolor[3] xPos[20] yPos[58] dim[16]

, class Squarecolor[3] xPos[40] yPos[11] dim[22]

, class Linecolor[3] xPos[4] yPos[83] dim[6]

, class Circlecolor[3] xPos[75] yPos[10] dim[42]

]

*///:~

The Shape class implements Serializable, so anything that is inherited

from Shape is automatically Serializable as well. Each Shape contains

data, and each derived Shape class contains a static field that determines

the color of all of those types of Shapes. (Placing a static field in the base

class would result in only one field, since static fields are not duplicated in

derived classes.) Methods in the base class can be overridden to set the color

for the various types (static methods are not dynamically bound, so these are

normal methods). The randomFactory() method creates a different

Shape each time you call it, using random values for the Shape data.

Circle and Square are straightforward extensions of Shape; the only

difference is that Circle initializes color at the point of definition and

Square initializes it in the constructor. We’ll leave the discussion of Line for

later.

In main(), one ArrayList is used to hold the Class objects and the other to

hold the shapes.

Recovering the objects is fairly straightforward:

//: io/RecoverCADState.java

// Restoring the state of the pretend CAD system.

// {RunFirst: StoreCADState}

import java.io.*;

import java.util.*;

public class RecoverCADState {

 @SuppressWarnings("unchecked")

 public static void main(String[] args) throws Exception {

 ObjectInputStream in = new ObjectInputStream(

 new FileInputStream("CADState.out"));

 // Read in the same order they were written:

 List<Class<? extends Shape>> shapeTypes =

 (List<Class<? extends Shape>>)in.readObject();

998 Thinking in Java Bruce Eckel

 Line.deserializeStaticState(in);

 List<Shape> shapes = (List<Shape>)in.readObject();

 System.out.println(shapes);

 }

} /* Output:

[class Circlecolor[1] xPos[58] yPos[55] dim[93]

, class Squarecolor[0] xPos[61] yPos[61] dim[29]

, class Linecolor[3] xPos[68] yPos[0] dim[22]

, class Circlecolor[1] xPos[7] yPos[88] dim[28]

, class Squarecolor[0] xPos[51] yPos[89] dim[9]

, class Linecolor[3] xPos[78] yPos[98] dim[61]

, class Circlecolor[1] xPos[20] yPos[58] dim[16]

, class Squarecolor[0] xPos[40] yPos[11] dim[22]

, class Linecolor[3] xPos[4] yPos[83] dim[6]

, class Circlecolor[1] xPos[75] yPos[10] dim[42]

]

*///:~

You can see that the values of xPos, yPos, and dim were all stored and

recovered successfully, but there’s something wrong with the retrieval of the

static information. It’s all “3” going in, but it doesn’t come out that way.

Circles have a value of 1 (RED, which is the definition), and Squares have a

value of 0 (remember, they are initialized in the constructor). It’s as if the

statics didn’t get serialized at all! That’s right—even though class Class is

Serializable, it doesn’t do what you expect. So if you want to serialize

statics, you must do it yourself.

This is what the serializeStaticState() and deserializeStaticState()

static methods in Line are for. You can see that they are explicitly called as

part of the storage and retrieval process. (Note that the order of writing to the

serialize file and reading back from it must be maintained.) Thus to make

these programs run correctly, you must:

1. Add a serializeStaticState() and deserializeStaticState() to

the shapes.

2. Remove the ArrayList shapeTypes and all code related to it.

3. Add calls to the new serialize and deserialize static methods in the

shapes.

Another issue you might have to think about is security, since serialization

also saves private data. If you have a security issue, those fields should be

I/O 999

marked as transient. But then you have to design a secure way to store that

information so that when you do a restore, you can reset those private

variables.

Exercise 30: (1) Repair the program CADState.java as described in the
text.

XML
An important limitation of object serialization is that it is a Java-only

solution: Only Java programs can deserialize such objects. A more

interoperable solution is to convert data to XML format, which allows it to be

consumed by a large variety of platforms and languages.

Because of its popularity, there are a confusing number of options for

programming with XML, including the javax.xml.* libraries distributed

with the JDK. I’ve chosen to use Elliotte Rusty Harold’s open-source XOM

library (downloads and documentation at www.xom.nu) because it seems to

be the simplest and most straightforward way to produce and modify XML

using Java. In addition, XOM emphasizes XML correctness.

As an example, suppose you have Person objects containing first and last

names that you’d like to serialize into XML. The following Person class has a

getXML() method that uses XOM to produce the Person data converted to

an XML Element object, and a constructor that takes an Element and

extracts the appropriate Person data (notice that the XML examples are in

their own subdirectory):

//: xml/Person.java

// Use the XOM library to write and read XML

// {Requires: nu.xom.Node; You must install

// the XOM library from http://www.xom.nu }

import nu.xom.*;

import java.io.*;

import java.util.*;

public class Person {

 private String first, last;

 public Person(String first, String last) {

 this.first = first;

 this.last = last;

 }

 // Produce an XML Element from this Person object:

1000 Thinking in Java Bruce Eckel

 public Element getXML() {

 Element person = new Element("person");

 Element firstName = new Element("first");

 firstName.appendChild(first);

 Element lastName = new Element("last");

 lastName.appendChild(last);

 person.appendChild(firstName);

 person.appendChild(lastName);

 return person;

 }

 // Constructor to restore a Person from an XML Element:

 public Person(Element person) {

 first= person.getFirstChildElement("first").getValue();

 last = person.getFirstChildElement("last").getValue();

 }

 public String toString() { return first + " " + last; }

 // Make it human-readable:

 public static void

 format(OutputStream os, Document doc) throws Exception {

 Serializer serializer= new Serializer(os,"ISO-8859-1");

 serializer.setIndent(4);

 serializer.setMaxLength(60);

 serializer.write(doc);

 serializer.flush();

 }

 public static void main(String[] args) throws Exception {

 List<Person> people = Arrays.asList(

 new Person("Dr. Bunsen", "Honeydew"),

 new Person("Gonzo", "The Great"),

 new Person("Phillip J.", "Fry"));

 System.out.println(people);

 Element root = new Element("people");

 for(Person p : people)

 root.appendChild(p.getXML());

 Document doc = new Document(root);

 format(System.out, doc);

 format(new BufferedOutputStream(new FileOutputStream(

 "People.xml")), doc);

 }

} /* Output:

[Dr. Bunsen Honeydew, Gonzo The Great, Phillip J. Fry]

<?xml version="1.0" encoding="ISO-8859-1"?>

<people>

 <person>

I/O 1001

 <first>Dr. Bunsen</first>

 <last>Honeydew</last>

 </person>

 <person>

 <first>Gonzo</first>

 <last>The Great</last>

 </person>

 <person>

 <first>Phillip J.</first>

 <last>Fry</last>

 </person>

</people>

*///:~

The XOM methods are fairly self-explanatory and can be found in the XOM

documentation.

XOM also contains a Serializer class that you can see used in the format()

method to turn the XML into a more readable form. If you just call toXML()

you’ll get everything run together, so the Serializer is a convenient tool.

Deserializing Person objects from an XML file is also simple:

//: xml/People.java

// {Requires: nu.xom.Node; You must install

// the XOM library from http://www.xom.nu }

// {RunFirst: Person}

import nu.xom.*;

import java.util.*;

public class People extends ArrayList<Person> {

 public People(String fileName) throws Exception {

 Document doc = new Builder().build(fileName);

 Elements elements =

 doc.getRootElement().getChildElements();

 for(int i = 0; i < elements.size(); i++)

 add(new Person(elements.get(i)));

 }

 public static void main(String[] args) throws Exception {

 People p = new People("People.xml");

 System.out.println(p);

 }

} /* Output:

[Dr. Bunsen Honeydew, Gonzo The Great, Phillip J. Fry]

*///:~

1002 Thinking in Java Bruce Eckel

The People constructor opens and reads a file using XOM’s

Builder.build() method, and the getChildElements() method produces

an Elements list (not a standard Java List, but an object that only has a

size() and get() method—Harold did not want to force people to use Java

SE5, but still wanted a type-safe container). Each Element in this list

represents a Person object, so it is handed to the second Person

constructor. Note that this requires that you know ahead of time the exact

structure of your XML file, but this is often true with these kinds of problems.

If the structure doesn’t match what you expect, XOM will throw an exception.

It’s also possible for you to write more complex code that will explore the

XML document rather than making assumptions about it, for cases when you

have less concrete information about the incoming XML structure.

In order to get these examples to compile, you will have to put the JAR files

from the XOM distribution into your classpath.

This has only been a brief introduction to XML programming with Java and

the XOM library; for more information see www.xom.nu.

Exercise 31: (2) Add appropriate address information to Person.java
and People.java.

Exercise 32: (4) Using a Map<String,Integer> and the
net.mindview.util.TextFile utility, write a program that counts the
occurrence of words in a file (use "\\W+" as the second argument to the
TextFile constructor). Store the results as an XML file.

Preferences
The Preferences API is much closer to persistence than it is to object

serialization, because it automatically stores and retrieves your information.

However, its use is restricted to small and limited data sets—you can only

hold primitives and Strings, and the length of each stored String can’t be

longer than 8K (not tiny, but you don’t want to build anything serious with it,

either). As the name suggests, the Preferences API is designed to store and

retrieve user preferences and program-configuration settings.

Preferences are key-value sets (like Maps) stored in a hierarchy of nodes.

Although the node hierarchy can be used to create complicated structures, it’s

typical to create a single node named after your class and store the

information there. Here’s a simple example:

I/O 1003

//: io/PreferencesDemo.java

import java.util.prefs.*;

import static net.mindview.util.Print.*;

public class PreferencesDemo {

 public static void main(String[] args) throws Exception {

 Preferences prefs = Preferences

 .userNodeForPackage(PreferencesDemo.class);

 prefs.put("Location", "Oz");

 prefs.put("Footwear", "Ruby Slippers");

 prefs.putInt("Companions", 4);

 prefs.putBoolean("Are there witches?", true);

 int usageCount = prefs.getInt("UsageCount", 0);

 usageCount++;

 prefs.putInt("UsageCount", usageCount);

 for(String key : prefs.keys())

 print(key + ": "+ prefs.get(key, null));

 // You must always provide a default value:

 print("How many companions does Dorothy have? " +

 prefs.getInt("Companions", 0));

 }

} /* Output: (Sample)

Location: Oz

Footwear: Ruby Slippers

Companions: 4

Are there witches?: true

UsageCount: 53

How many companions does Dorothy have? 4

*///:~

Here, userNodeForPackage() is used, but you could also choose

systemNodeForPackage(); the choice is somewhat arbitrary, but the idea

is that “user” is for individual user preferences, and “system” is for general

installation configuration. Since main() is static,

PreferencesDemo.class is used to identify the node, but inside a non-

static method, you’ll usually use getClass(). You don’t need to use the

current class as the node identifier, but that’s the usual practice.

Once you create the node, it’s available for either loading or reading data.

This example loads the node with various types of items and then gets the

keys(). These come back as a String[], which you might not expect if you’re

used to the keys() method in the collections library. Notice the second

argument to get(). This is the default value that is produced if there isn’t any

1004 Thinking in Java Bruce Eckel

entry for that key value. While iterating through a set of keys, you always

know there’s an entry, so using null as the default is safe, but normally you’ll

be fetching a named key, as in:

prefs.getInt("Companions", 0));

In the normal case, you’ll want to provide a reasonable default value. In fact,

a typical idiom is seen in the lines:

int usageCount = prefs.getInt("UsageCount", 0);

usageCount++;

prefs.putInt("UsageCount", usageCount);

This way, the first time you run the program, the UsageCount will be zero,

but on subsequent invocations it will be nonzero.

When you run PreferencesDemo.java you’ll see that the UsageCount

does indeed increment every time you run the program, but where is the data

stored? There’s no local file that appears after the program is run the first

time. The Preferences API uses appropriate system resources to accomplish

its task, and these will vary depending on the OS. In Windows, the registry is

used (since it’s already a hierarchy of nodes with key-value pairs). But the

whole point is that the information is magically stored for you so that you

don’t have to worry about how it works from one system to another.

There’s more to the Preferences API than shown here. Consult the JDK

documentation, which is fairly understandable, for further details.

Exercise 33: (2) Write a program that displays the current value of a
directory called “base directory” and prompts you for a new value. Use the
Preferences API to store the value.

Summary
The Java I/O stream library does satisfy the basic requirements: You can

perform reading and writing with the console, a file, a block of memory, or

even across the Internet. With inheritance, you can create new types of input

and output objects. And you can even add a simple extensibility to the kinds

of objects a stream will accept by redefining the toString() method that’s

automatically called when you pass an object to a method that’s expecting a

String (Java’s limited “automatic type conversion”).

I/O 1005

There are questions left unanswered by the documentation and design of the

I/O stream library. For example, it would have been nice if you could say that

you want an exception thrown if you try to overwrite a file when opening it

for output—some programming systems allow you to specify that you want to

open an output file, but only if it doesn’t already exist. In Java, it appears that

you are supposed to use a File object to determine whether a file exists,

because if you open it as a FileOutputStream or FileWriter, it will always

get overwritten.

The I/O stream library brings up mixed feelings; it does much of the job and

it’s portable. But if you don’t already understand the Decorator design

pattern, the design is not intuitive, so there’s extra overhead in learning and

teaching it. It’s also incomplete; for example, I shouldn’t have to write

utilities like TextFile (the new Java SE5 PrintWriter is a step in the right

direction here, but is only a partial solution). There has been a big

improvement in Java SE5: They’ve finally added the kind of output

formatting that virtually every other language has always supported.

Once you do understand the Decorator pattern and begin using the library in

situations that require its flexibility, you can begin to benefit from this design,

at which point its cost in extra lines of code may not bother you as much.

Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for sale from www.MindViewLLC.com.

 1007

Enumerated Types
The enum keyword allows you to create a new type with a
restricted set of named values, and to treat those values as
regular program components. This turns out to be very
useful. 1

Enumerations were introduced briefly at the end of Initialization & Cleanup.

However, now that you understand some of the deeper issues in Java, we can

take a more detailed look at the Java SE5 enumeration feature. You’ll see that

there are some very interesting things that you can do with enums, but this

chapter should also give you more insight into other language features that

you’ve now seen, such as generics and reflection. You’ll also learn a few more

design patterns.

Basic enum features
As shown in Initialization & Cleanup, you can step through the list of enum

constants by calling values() on the enum. The values() method

produces an array of the enum constants in the order in which they were

declared, so you can use the resulting array in (for example) a foreach loop.

When you create an enum, an associated class is produced for you by the

compiler. This class is automatically inherited from java.lang.Enum, which

provides certain capabilities that you can see in this example:

//: enumerated/EnumClass.java

// Capabilities of the Enum class

import static net.mindview.util.Print.*;

enum Shrubbery { GROUND, CRAWLING, HANGING }

public class EnumClass {

 public static void main(String[] args) {

 for(Shrubbery s : Shrubbery.values()) {

1 Joshua Bloch was extremely helpful in developing this chapter.

1008 Thinking in Java Bruce Eckel

 print(s + " ordinal: " + s.ordinal());

 printnb(s.compareTo(Shrubbery.CRAWLING) + " ");

 printnb(s.equals(Shrubbery.CRAWLING) + " ");

 print(s == Shrubbery.CRAWLING);

 print(s.getDeclaringClass());

 print(s.name());

 print("----------------------");

 }

 // Produce an enum value from a string name:

 for(String s : "HANGING CRAWLING GROUND".split(" ")) {

 Shrubbery shrub = Enum.valueOf(Shrubbery.class, s);

 print(shrub);

 }

 }

} /* Output:

GROUND ordinal: 0

-1 false false

class Shrubbery

GROUND

CRAWLING ordinal: 1

0 true true

class Shrubbery

CRAWLING

HANGING ordinal: 2

1 false false

class Shrubbery

HANGING

HANGING

CRAWLING

GROUND

*///:~

The ordinal() method produces an int indicating the declaration order of

each enum instance, starting from zero. You can always safely compare

enum instances using ==, and equals() and hashCode() are

automatically created for you. The Enum class is Comparable, so there’s a

compareTo() method, and it is also Serializable.

If you call getDeclaringClass() on an enum instance, you’ll find out the

enclosing enum class.

Enumerated Types 1009

The name() method produces the name exactly as it is declared, and this is

what you get with toString(), as well. valueOf() is a static member of

Enum, and produces the enum instance that corresponds to the String

name you pass to it, or throws an exception if there’s no match.

Using static imports with enums
Consider a variation of Burrito.java from the Initialization & Cleanup

chapter:

//: enumerated/Spiciness.java

package enumerated;

public enum Spiciness {

 NOT, MILD, MEDIUM, HOT, FLAMING

} ///:~

//: enumerated/Burrito.java

package enumerated;

import static enumerated.Spiciness.*;

public class Burrito {

 Spiciness degree;

 public Burrito(Spiciness degree) { this.degree = degree;}

 public String toString() { return "Burrito is "+ degree;}

 public static void main(String[] args) {

 System.out.println(new Burrito(NOT));

 System.out.println(new Burrito(MEDIUM));

 System.out.println(new Burrito(HOT));

 }

} /* Output:

Burrito is NOT

Burrito is MEDIUM

Burrito is HOT

*///:~

The static import brings all the enum instance identifiers into the local

namespace, so they don’t need to be qualified. Is this a good idea, or is it

better to be explicit and qualify all enum instances? It probably depends on

the complexity of your code. The compiler certainly won’t let you use the

wrong type, so your only concern is whether the code will be confusing to the

reader. In many situations it will probably be fine but you should evaluate it

on an individual basis.

1010 Thinking in Java Bruce Eckel

Note that it is not possible to use this technique if the enum is defined in the

same file or the default package.

Adding methods to an enum
Except for the fact that you can’t inherit from it, an enum can be treated

much like a regular class. This means that you can add methods to an enum.

It’s even possible for an enum to have a main().

You may want to produce different descriptions for an enumeration than the

default toString(), which simply produces the name of that enum instance,

as you’ve seen. To do this, you can provide a constructor to capture extra

information, and additional methods to provide an extended description, like

this:

//: enumerated/OzWitch.java

// The witches in the land of Oz.

import static net.mindview.util.Print.*;

public enum OzWitch {

 // Instances must be defined first, before methods:

 WEST("Miss Gulch, aka the Wicked Witch of the West"),

 NORTH("Glinda, the Good Witch of the North"),

 EAST("Wicked Witch of the East, wearer of the Ruby " +

 "Slippers, crushed by Dorothy's house"),

 SOUTH("Good by inference, but missing");

 private String description;

 // Constructor must be package or private access:

 private OzWitch(String description) {

 this.description = description;

 }

 public String getDescription() { return description; }

 public static void main(String[] args) {

 for(OzWitch witch : OzWitch.values())

 print(witch + ": " + witch.getDescription());

 }

} /* Output:

WEST: Miss Gulch, aka the Wicked Witch of the West

NORTH: Glinda, the Good Witch of the North

EAST: Wicked Witch of the East, wearer of the Ruby Slippers,

crushed by Dorothy's house

SOUTH: Good by inference, but missing

*///:~

Enumerated Types 1011

Notice that if you are going to define methods you must end the sequence of

enum instances with a semicolon. Also, Java forces you to define the

instances as the first thing in the enum. You’ll get a compile-time error if you

try to define them after any of the methods or fields.

The constructor and methods have the same form as a regular class, because

with a few restrictions this is a regular class. So you can do pretty much

anything you want with enums (although you’ll usually keep them pretty

ordinary).

Although the constructor has been made private here as an example, it

doesn’t make much difference what access you use—the constructor can only

be used to create the enum instances that you declare inside the enum

definition; the compiler won’t let you use it to create any new instances once

the enum definition is complete.

Overriding enum methods
Here’s another approach to producing different string values for

enumerations. In this case, the instance names are OK but we want to

reformat them for display. Overriding the toString() method for an enum

is the same as overriding it for a regular class:

//: enumerated/SpaceShip.java

public enum SpaceShip {

 SCOUT, CARGO, TRANSPORT, CRUISER, BATTLESHIP, MOTHERSHIP;

 public String toString() {

 String id = name();

 String lower = id.substring(1).toLowerCase();

 return id.charAt(0) + lower;

 }

 public static void main(String[] args) {

 for(SpaceShip s : values()) {

 System.out.println(s);

 }

 }

} /* Output:

Scout

Cargo

Transport

Cruiser

Battleship

Mothership

1012 Thinking in Java Bruce Eckel

*///:~

The toString() method gets the SpaceShip name by calling name(), and

modifies the result so that only the first letter is capitalized.

enums in switch statements
One very convenient capability of enums is the way that they can be used in

switch statements. Ordinarily, a switch only works with an integral value,

but since enums have an established integral order and the order of an

instance can be produced with the ordinal() method (apparently the

compiler does something like this), enums can be used in switch

statements.

Although normally you must qualify an enum instance with its type, you do

not have to do this in a case statement. Here’s an example that uses an

enum to create a little state machine:

//: enumerated/TrafficLight.java

// Enums in switch statements.

import static net.mindview.util.Print.*;

// Define an enum type:

enum Signal { GREEN, YELLOW, RED, }

public class TrafficLight {

 Signal color = Signal.RED;

 public void change() {

 switch(color) {

 // Note that you don't have to say Signal.RED

 // in the case statement:

 case RED: color = Signal.GREEN;

 break;

 case GREEN: color = Signal.YELLOW;

 break;

 case YELLOW: color = Signal.RED;

 break;

 }

 }

 public String toString() {

 return "The traffic light is " + color;

 }

 public static void main(String[] args) {

 TrafficLight t = new TrafficLight();

Enumerated Types 1013

 for(int i = 0; i < 7; i++) {

 print(t);

 t.change();

 }

 }

} /* Output:

The traffic light is RED

The traffic light is GREEN

The traffic light is YELLOW

The traffic light is RED

The traffic light is GREEN

The traffic light is YELLOW

The traffic light is RED

*///:~

The compiler does not complain that there is no default statement inside the

switch, but that’s not because it notices that you have case statements for

each Signal instance. If you comment out one of the case statements it still

won’t complain. This means you will have to pay attention and ensure that

you cover all the cases on your own. On the other hand, if you are calling

return from case statements, the compiler will complain if you don’t have a

default—even if you’ve covered all the possible values of the enum.

Exercise 1: (2) Use a static import to modify TrafficLight.java so you
don’t have to qualify the enum instances.

The mystery of values()
As noted earlier, all enum classes are created for you by the compiler and

extend the Enum class. However, if you look at Enum, you’ll see that there

is no values() method, even though we’ve been using it. Are there any other

“hidden” methods? We can write a small reflection program to find out:

//: enumerated/Reflection.java

// Analyzing enums using reflection.

import java.lang.reflect.*;

import java.util.*;

import net.mindview.util.*;

import static net.mindview.util.Print.*;

enum Explore { HERE, THERE }

public class Reflection {

 public static Set<String> analyze(Class<?> enumClass) {

1014 Thinking in Java Bruce Eckel

 print("----- Analyzing " + enumClass + " -----");

 print("Interfaces:");

 for(Type t : enumClass.getGenericInterfaces())

 print(t);

 print("Base: " + enumClass.getSuperclass());

 print("Methods: ");

 Set<String> methods = new TreeSet<String>();

 for(Method m : enumClass.getMethods())

 methods.add(m.getName());

 print(methods);

 return methods;

 }

 public static void main(String[] args) {

 Set<String> exploreMethods = analyze(Explore.class);

 Set<String> enumMethods = analyze(Enum.class);

 print("Explore.containsAll(Enum)? " +

 exploreMethods.containsAll(enumMethods));

 printnb("Explore.removeAll(Enum): ");

 exploreMethods.removeAll(enumMethods);

 print(exploreMethods);

 // Decompile the code for the enum:

 OSExecute.command("javap Explore");

 }

} /* Output:

----- Analyzing class Explore -----

Interfaces:

Base: class java.lang.Enum

Methods:

[compareTo, equals, getClass, getDeclaringClass, hashCode,

name, notify, notifyAll, ordinal, toString, valueOf, values,

wait]

----- Analyzing class java.lang.Enum -----

Interfaces:

java.lang.Comparable<E>

interface java.io.Serializable

Base: class java.lang.Object

Methods:

[compareTo, equals, getClass, getDeclaringClass, hashCode,

name, notify, notifyAll, ordinal, toString, valueOf, wait]

Explore.containsAll(Enum)? true

Explore.removeAll(Enum): [values]

Compiled from "Reflection.java"

final class Explore extends java.lang.Enum{

 public static final Explore HERE;

Enumerated Types 1015

 public static final Explore THERE;

 public static Explore[] values();

 public static Explore valueOf(java.lang.String);

 static {};

}

*///:~

So the answer is that values() is a static method that is added by the

compiler. You can see that valueOf() is also added to Explore in the

process of creating the enum. This is slightly confusing, because there’s also

a valueOf() that is part of the Enum class, but that method has two

arguments and the added method only has one. However, the use of the Set

method here is only looking at method names, and not signatures, so after

calling Explore.removeAll(Enum), the only thing that remains is

[values].

In the output, you can see that Explore has been made final by the

compiler, so you cannot inherit from an enum. There’s also a static

initialization clause, which as you’ll see later can be redefined.

Because of erasure (described in the Generics chapter), the decompiler does

not have full information about Enum, so it shows the base class of Explore

as a raw Enum rather than the actual Enum<Explore>.

Because values() is a static method inserted into the enum definition by

the compiler, if you upcast an enum type to Enum, the values() method

will not be available. Notice, however, that there is a getEnumConstants()

method in Class, so even if values() is not part of the interface of Enum,

you can still get the enum instances via the Class object:

//: enumerated/UpcastEnum.java

// No values() method if you upcast an enum

enum Search { HITHER, YON }

public class UpcastEnum {

 public static void main(String[] args) {

 Search[] vals = Search.values();

 Enum e = Search.HITHER; // Upcast

 // e.values(); // No values() in Enum

 for(Enum en : e.getClass().getEnumConstants())

 System.out.println(en);

 }

1016 Thinking in Java Bruce Eckel

} /* Output:

HITHER

YON

*///:~

Because getEnumConstants() is a method of Class, you can call it for a

class that has no enumerations:

//: enumerated/NonEnum.java

public class NonEnum {

 public static void main(String[] args) {

 Class<Integer> intClass = Integer.class;

 try {

 for(Object en : intClass.getEnumConstants())

 System.out.println(en);

 } catch(Exception e) {

 System.out.println("Expected: " + e);

 }

 }

} /* Output:

Expected: java.lang.NullPointerException

*///:~

However, the method returns null, so you get an exception if you try to use

the result.

Implements, not inherits
We’ve established that all enums extend java.lang.Enum. Since Java does

not support multiple inheritance, this means that you cannot create an enum

via inheritance:

enum NotPossible extends Pet { ... // Won’t work

However, it is possible to create an enum that implements one or more

interfaces:

//: enumerated/cartoons/EnumImplementation.java

// An enum can implement an interface

package enumerated.cartoons;

import java.util.*;

import net.mindview.util.*;

enum CartoonCharacter

Enumerated Types 1017

implements Generator<CartoonCharacter> {

 SLAPPY, SPANKY, PUNCHY, SILLY, BOUNCY, NUTTY, BOB;

 private Random rand = new Random(47);

 public CartoonCharacter next() {

 return values()[rand.nextInt(values().length)];

 }

}

public class EnumImplementation {

 public static <T> void printNext(Generator<T> rg) {

 System.out.print(rg.next() + ", ");

 }

 public static void main(String[] args) {

 // Choose any instance:

 CartoonCharacter cc = CartoonCharacter.BOB;

 for(int i = 0; i < 10; i++)

 printNext(cc);

 }

} /* Output:

BOB, PUNCHY, BOB, SPANKY, NUTTY, PUNCHY, SLAPPY, NUTTY,

NUTTY, SLAPPY,

*///:~

The result is slightly odd, because to call a method you must have an instance

of the enum to call it on. However, a CartoonCharacter can now be

accepted by any method that takes a Generator; for example, printNext().

Exercise 2: (2) Instead of implementing an interface, make next() a
static method. What are the benefits and drawbacks of this approach?

Random selection
Many of the examples in this chapter require random selection from among

enum instances, as you saw in CartoonCharacter.next(). It’s possible to

generalize this task using generics and put the result in the common library:

//: net/mindview/util/Enums.java

package net.mindview.util;

import java.util.*;

public class Enums {

 private static Random rand = new Random(47);

 public static <T extends Enum<T>> T random(Class<T> ec) {

 return random(ec.getEnumConstants());

1018 Thinking in Java Bruce Eckel

 }

 public static <T> T random(T[] values) {

 return values[rand.nextInt(values.length)];

 }

} ///:~

The rather odd syntax <T extends Enum<T>> describes T as an enum

instance. By passing in Class<T>, we make the class object available, and

the array of enum instances can thus be produced. The overloaded

random() method only needs to know that it is getting a T[] because it

doesn’t need to perform Enum operations; it only needs to select an array

element at random. The return type is the exact type of the enum.

Here’s a simple test of the random() method:

//: enumerated/RandomTest.java

import net.mindview.util.*;

enum Activity { SITTING, LYING, STANDING, HOPPING,

 RUNNING, DODGING, JUMPING, FALLING, FLYING }

public class RandomTest {

 public static void main(String[] args) {

 for(int i = 0; i < 20; i++)

 System.out.print(Enums.random(Activity.class) + " ");

 }

} /* Output:

STANDING FLYING RUNNING STANDING RUNNING STANDING LYING

DODGING SITTING RUNNING HOPPING HOPPING HOPPING RUNNING

STANDING LYING FALLING RUNNING FLYING LYING

*///:~

Although Enums is a small class, you’ll see that it prevents a fair amount of

duplication in this chapter. Duplication tends to produce mistakes, so

eliminating duplication is a useful pursuit.

Using interfaces for organization
The inability to inherit from an enum can be a bit frustrating at times. The

motivation for inheriting from an enum comes partly from wanting to

extend the number of elements in the original enum, and partly from

wanting to create subcategories by using subtypes.

Enumerated Types 1019

You can achieve categorization by grouping the elements together inside an

interface and creating an enumeration based on that interface. For example,

suppose you have different classes of food that you’d like to create as enums,

but you’d still like each one to be a type of Food. Here’s what it looks like:

//: enumerated/menu/Food.java

// Subcategorization of enums within interfaces.

package enumerated.menu;

public interface Food {

 enum Appetizer implements Food {

 SALAD, SOUP, SPRING_ROLLS;

 }

 enum MainCourse implements Food {

 LASAGNE, BURRITO, PAD_THAI,

 LENTILS, HUMMOUS, VINDALOO;

 }

 enum Dessert implements Food {

 TIRAMISU, GELATO, BLACK_FOREST_CAKE,

 FRUIT, CREME_CARAMEL;

 }

 enum Coffee implements Food {

 BLACK_COFFEE, DECAF_COFFEE, ESPRESSO,

 LATTE, CAPPUCCINO, TEA, HERB_TEA;

 }

} ///:~

Since the only subtyping available for an enum is that of interface

implementation, each nested enum implements the surrounding interface

Food. Now it’s possible to say that “everything is a type of Food” as you can

see here:

//: enumerated/menu/TypeOfFood.java

package enumerated.menu;

import static enumerated.menu.Food.*;

public class TypeOfFood {

 public static void main(String[] args) {

 Food food = Appetizer.SALAD;

 food = MainCourse.LASAGNE;

 food = Dessert.GELATO;

 food = Coffee.CAPPUCCINO;

 }

} ///:~

1020 Thinking in Java Bruce Eckel

The upcast to Food works for each enum type that implements Food, so

they are all types of Food.

An interface, however, is not as useful as an enum when you want to deal

with a set of types. If you want to have an “enum of enums” you can create a

surrounding enum with one instance for each enum in Food:

//: enumerated/menu/Course.java

package enumerated.menu;

import net.mindview.util.*;

public enum Course {

 APPETIZER(Food.Appetizer.class),

 MAINCOURSE(Food.MainCourse.class),

 DESSERT(Food.Dessert.class),

 COFFEE(Food.Coffee.class);

 private Food[] values;

 private Course(Class<? extends Food> kind) {

 values = kind.getEnumConstants();

 }

 public Food randomSelection() {

 return Enums.random(values);

 }

} ///:~

Each of the above enums takes the corresponding Class object as a

constructor argument, from which it can extract and store all the enum

instances using getEnumConstants(). These instances are later used in

randomSelection(), so now we can create a randomly generated meal by

selecting one Food item from each Course:

//: enumerated/menu/Meal.java

package enumerated.menu;

public class Meal {

 public static void main(String[] args) {

 for(int i = 0; i < 5; i++) {

 for(Course course : Course.values()) {

 Food food = course.randomSelection();

 System.out.println(food);

 }

 System.out.println("---");

 }

 }

Enumerated Types 1021

} /* Output:

SPRING_ROLLS

VINDALOO

FRUIT

DECAF_COFFEE

SOUP

VINDALOO

FRUIT

TEA

SALAD

BURRITO

FRUIT

TEA

SALAD

BURRITO

CREME_CARAMEL

LATTE

SOUP

BURRITO

TIRAMISU

ESPRESSO

*///:~

In this case, the value of creating an enum of enums is to iterate through

each Course. Later, in the VendingMachine.java example, you’ll see

another approach to categorization which is dictated by different constraints.

Another, more compact, approach to the problem of categorization is to nest

enums within enums, like this:

//: enumerated/SecurityCategory.java

// More succinct subcategorization of enums.

import net.mindview.util.*;

enum SecurityCategory {

 STOCK(Security.Stock.class), BOND(Security.Bond.class);

 Security[] values;

 SecurityCategory(Class<? extends Security> kind) {

 values = kind.getEnumConstants();

 }

1022 Thinking in Java Bruce Eckel

 interface Security {

 enum Stock implements Security { SHORT, LONG, MARGIN }

 enum Bond implements Security { MUNICIPAL, JUNK }

 }

 public Security randomSelection() {

 return Enums.random(values);

 }

 public static void main(String[] args) {

 for(int i = 0; i < 10; i++) {

 SecurityCategory category =

 Enums.random(SecurityCategory.class);

 System.out.println(category + ": " +

 category.randomSelection());

 }

 }

} /* Output:

BOND: MUNICIPAL

BOND: MUNICIPAL

STOCK: MARGIN

STOCK: MARGIN

BOND: JUNK

STOCK: SHORT

STOCK: LONG

STOCK: LONG

BOND: MUNICIPAL

BOND: JUNK

*///:~

The Security interface is necessary to collect the contained enums together

as a common type. These are then categorized into the enums within

SecurityCategory.

If we take this approach with the Food example, the result is:

//: enumerated/menu/Meal2.java

package enumerated.menu;

import net.mindview.util.*;

public enum Meal2 {

 APPETIZER(Food.Appetizer.class),

 MAINCOURSE(Food.MainCourse.class),

 DESSERT(Food.Dessert.class),

 COFFEE(Food.Coffee.class);

 private Food[] values;

 private Meal2(Class<? extends Food> kind) {

Enumerated Types 1023

 values = kind.getEnumConstants();

 }

 public interface Food {

 enum Appetizer implements Food {

 SALAD, SOUP, SPRING_ROLLS;

 }

 enum MainCourse implements Food {

 LASAGNE, BURRITO, PAD_THAI,

 LENTILS, HUMMOUS, VINDALOO;

 }

 enum Dessert implements Food {

 TIRAMISU, GELATO, BLACK_FOREST_CAKE,

 FRUIT, CREME_CARAMEL;

 }

 enum Coffee implements Food {

 BLACK_COFFEE, DECAF_COFFEE, ESPRESSO,

 LATTE, CAPPUCCINO, TEA, HERB_TEA;

 }

 }

 public Food randomSelection() {

 return Enums.random(values);

 }

 public static void main(String[] args) {

 for(int i = 0; i < 5; i++) {

 for(Meal2 meal : Meal2.values()) {

 Food food = meal.randomSelection();

 System.out.println(food);

 }

 System.out.println("---");

 }

 }

} /* Same output as Meal.java *///:~

In the end, it’s only a reorganization of the code but it may produce a clearer

structure in some cases.

Exercise 3: (1) Add a new Course to Course.java and demonstrate that
it works in Meal.java.

Exercise 4: (1) Repeat the above exercise for Meal2.java.

Exercise 5: (4) Modify control/VowelsAndConsonants.java so that
it uses three enum types: VOWEL, SOMETIMES_A_VOWEL, and
CONSONANT. The enum constructor should take the various letters that

1024 Thinking in Java Bruce Eckel

describe that particular category. Hint: Use varargs, and remember that
varargs automatically creates an array for you.

Exercise 6: (3) Is there any special benefit in nesting Appetizer,
MainCourse, Dessert, and Coffee inside Food rather than making them
standalone enums that just happen to implement Food?

Using EnumSet instead of flags
A Set is a kind of collection that only allows one of each type of object to be

added. Of course, an enum requires that all its members be unique, so it

would seem to have set behavior, but since you can’t add or remove elements

it’s not very useful as a set. The EnumSet was added to Java SE5 to work in

concert with enums to create a replacement for traditional int-based “bit

flags.” Such flags are used to indicate some kind of on-off information, but

you end up manipulating bits rather than concepts, so it’s easy to write

confusing code.

The EnumSet is designed for speed, because it must compete effectively

with bit flags (operations will be typically much faster than a HashSet).

Internally, it is represented by (if possible) a single long that is treated as a

bit-vector, so it’s extremely fast and efficient. The benefit is that you now

have a much more expressive way to indicate the presence or absence of a

binary feature, without having to worry about performance.

The elements of an EnumSet must come from a single enum. A possible

example uses an enum of positions in a building where alarm sensors are

present:

//: enumerated/AlarmPoints.java

package enumerated;

public enum AlarmPoints {

 STAIR1, STAIR2, LOBBY, OFFICE1, OFFICE2, OFFICE3,

 OFFICE4, BATHROOM, UTILITY, KITCHEN

} ///:~

The EnumSet can be used to keep track of the alarm status:

//: enumerated/EnumSets.java

// Operations on EnumSets

package enumerated;

import java.util.*;

import static enumerated.AlarmPoints.*;

import static net.mindview.util.Print.*;

Enumerated Types 1025

public class EnumSets {

 public static void main(String[] args) {

 EnumSet<AlarmPoints> points =

 EnumSet.noneOf(AlarmPoints.class); // Empty set

 points.add(BATHROOM);

 print(points);

 points.addAll(EnumSet.of(STAIR1, STAIR2, KITCHEN));

 print(points);

 points = EnumSet.allOf(AlarmPoints.class);

 points.removeAll(EnumSet.of(STAIR1, STAIR2, KITCHEN));

 print(points);

 points.removeAll(EnumSet.range(OFFICE1, OFFICE4));

 print(points);

 points = EnumSet.complementOf(points);

 print(points);

 }

} /* Output:

[BATHROOM]

[STAIR1, STAIR2, BATHROOM, KITCHEN]

[LOBBY, OFFICE1, OFFICE2, OFFICE3, OFFICE4, BATHROOM,

UTILITY]

[LOBBY, BATHROOM, UTILITY]

[STAIR1, STAIR2, OFFICE1, OFFICE2, OFFICE3, OFFICE4,

KITCHEN]

*///:~

A static import is used to simplify the use of the enum constants. The

method names are fairly self-explanatory, and you can find the full details in

the JDK documentation. When you look at this documentation, you’ll see

something interesting—the of() method has been overloaded both with

varargs and with individual methods taking two through five explicit

arguments. This is an indication of the concern for performance with

EnumSet, because a single of() method using varargs could have solved the

problem, but it’s slightly less efficient than having explicit arguments. Thus, if

you call of() with two through five arguments you will get the explicit

(slightly faster) method calls, but if you call it with one argument or more

than five, you will get the varargs version of of(). Notice that if you call it

with one argument, the compiler will not construct the varargs array and so

there is no extra overhead for calling that version with a single argument.

EnumSets are built on top of longs, a long is 64 bits, and each enum

instance requires one bit to indicate presence or absence. This means you can

1026 Thinking in Java Bruce Eckel

have an EnumSet for an enum of up to 64 elements without going beyond

the use of a single long. What happens if you have more than 64 elements in

your enum?

//: enumerated/BigEnumSet.java

import java.util.*;

public class BigEnumSet {

 enum Big { A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10,

 A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21,

 A22, A23, A24, A25, A26, A27, A28, A29, A30, A31, A32,

 A33, A34, A35, A36, A37, A38, A39, A40, A41, A42, A43,

 A44, A45, A46, A47, A48, A49, A50, A51, A52, A53, A54,

 A55, A56, A57, A58, A59, A60, A61, A62, A63, A64, A65,

 A66, A67, A68, A69, A70, A71, A72, A73, A74, A75 }

 public static void main(String[] args) {

 EnumSet<Big> bigEnumSet = EnumSet.allOf(Big.class);

 System.out.println(bigEnumSet);

 }

} /* Output:

[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13,

A14, A15, A16, A17, A18, A19, A20, A21, A22, A23, A24, A25,

A26, A27, A28, A29, A30, A31, A32, A33, A34, A35, A36, A37,

A38, A39, A40, A41, A42, A43, A44, A45, A46, A47, A48, A49,

A50, A51, A52, A53, A54, A55, A56, A57, A58, A59, A60, A61,

A62, A63, A64, A65, A66, A67, A68, A69, A70, A71, A72, A73,

A74, A75]

*///:~

The EnumSet clearly has no problem with an enum that has more than 64

elements, so we may presume that it adds another long when necessary.

Exercise 7: (3) Find the source code for EnumSet and explain how it
works.

Using EnumMap
An EnumMap is a specialized Map that requires that its keys be from a

single enum. Because of the constraints on an enum, an EnumMap can be

implemented internally as an array. Thus they are extremely fast, so you can

freely use EnumMaps for enum-based lookups.

You can only call put() for keys that are in your enum, but other than that

it’s like using an ordinary Map.

Enumerated Types 1027

Here’s an example that demonstrates the use of the Command design

pattern. This pattern starts with an interface containing (typically) a single

method, and creates multiple implementations with different behavior for

that method. You install Command objects, and your program calls them

when necessary:

//: enumerated/EnumMaps.java

// Basics of EnumMaps.

package enumerated;

import java.util.*;

import static enumerated.AlarmPoints.*;

import static net.mindview.util.Print.*;

interface Command { void action(); }

public class EnumMaps {

 public static void main(String[] args) {

 EnumMap<AlarmPoints,Command> em =

 new EnumMap<AlarmPoints,Command>(AlarmPoints.class);

 em.put(KITCHEN, new Command() {

 public void action() { print("Kitchen fire!"); }

 });

 em.put(BATHROOM, new Command() {

 public void action() { print("Bathroom alert!"); }

 });

 for(Map.Entry<AlarmPoints,Command> e : em.entrySet()) {

 printnb(e.getKey() + ": ");

 e.getValue().action();

 }

 try { // If there's no value for a particular key:

 em.get(UTILITY).action();

 } catch(Exception e) {

 print("Expected: " + e);

 }

 }

} /* Output:

BATHROOM: Bathroom alert!

KITCHEN: Kitchen fire!

Expected: java.lang.NullPointerException

*///:~

Just as with EnumSet, the order of elements in the EnumMap is

determined by their order of definition in the enum.

1028 Thinking in Java Bruce Eckel

The last part of main() shows that there is always a key entry for each of the

enums, but the value is null unless you have called put() for that key.

One advantage of EnumMap over constant-specific methods (described

next) is that an EnumMap allows you to change the value objects, whereas

you’ll see that constant-specific methods are fixed at compile time.

As you’ll see later in the chapter, EnumMaps can be used to perform

multiple dispatching for situations where you have multiple types of enums

interacting with each other.

Constant-specific methods
Java enums have a very interesting feature that allows you to give each

enum instance different behavior by creating methods for each one. To do

this, you define one or more abstract methods as part of the enum, then

define the methods for each enum instance. For example:

//: enumerated/ConstantSpecificMethod.java

import java.util.*;

import java.text.*;

public enum ConstantSpecificMethod {

 DATE_TIME {

 String getInfo() {

 return

 DateFormat.getDateInstance().format(new Date());

 }

 },

 CLASSPATH {

 String getInfo() {

 return System.getenv("CLASSPATH");

 }

 },

 VERSION {

 String getInfo() {

 return System.getProperty("java.version");

 }

 };

 abstract String getInfo();

 public static void main(String[] args) {

 for(ConstantSpecificMethod csm : values())

 System.out.println(csm.getInfo());

 }

Enumerated Types 1029

} /* (Execute to see output) *///:~

You can look up and call methods via their associated enum instance. This is

often called table-driven code (and note the similarity to the aforementioned

Command pattern).

In object-oriented programming, different behavior is associated with

different classes. Because each instance of an enum can have its own

behavior via constant-specific methods, this suggests that each instance is a

distinct type. In the above example, each enum instance is being treated as

the “base type” ConstantSpecificMethod but you get polymorphic

behavior with the method call getInfo().

However, you can only take the similarity so far. You cannot treat enum

instances as class types:

//: enumerated/NotClasses.java

// {Exec: javap -c LikeClasses}

import static net.mindview.util.Print.*;

enum LikeClasses {

 WINKEN { void behavior() { print("Behavior1"); } },

 BLINKEN { void behavior() { print("Behavior2"); } },

 NOD { void behavior() { print("Behavior3"); } };

 abstract void behavior();

}

public class NotClasses {

 // void f1(LikeClasses.WINKEN instance) {} // Nope

} /* Output:

Compiled from "NotClasses.java"

abstract class LikeClasses extends java.lang.Enum{

public static final LikeClasses WINKEN;

public static final LikeClasses BLINKEN;

public static final LikeClasses NOD;

...

*///:~

In f1(), you can see that the compiler doesn’t allow you to use an enum

instance as a class type, which makes sense if you consider the code

generated by the compiler—each enum element is a static final instance of

LikeClasses.

1030 Thinking in Java Bruce Eckel

Also, because they are static, enum instances of inner enums do not

behave like ordinary inner classes; you cannot access non-static fields or

methods in the outer class.

As a more interesting example, consider a car wash. Each customer is given a

menu of choices for their wash, and each option performs a different action.

A constant-specific method can be associated with each option, and an

EnumSet can be used to hold the customer’s selections:

//: enumerated/CarWash.java

import java.util.*;

import static net.mindview.util.Print.*;

public class CarWash {

 public enum Cycle {

 UNDERBODY {

 void action() { print("Spraying the underbody"); }

 },

 WHEELWASH {

 void action() { print("Washing the wheels"); }

 },

 PREWASH {

 void action() { print("Loosening the dirt"); }

 },

 BASIC {

 void action() { print("The basic wash"); }

 },

 HOTWAX {

 void action() { print("Applying hot wax"); }

 },

 RINSE {

 void action() { print("Rinsing"); }

 },

 BLOWDRY {

 void action() { print("Blowing dry"); }

 };

 abstract void action();

 }

 EnumSet<Cycle> cycles =

 EnumSet.of(Cycle.BASIC, Cycle.RINSE);

 public void add(Cycle cycle) { cycles.add(cycle); }

 public void washCar() {

 for(Cycle c : cycles)

 c.action();

Enumerated Types 1031

 }

 public String toString() { return cycles.toString(); }

 public static void main(String[] args) {

 CarWash wash = new CarWash();

 print(wash);

 wash.washCar();

 // Order of addition is unimportant:

 wash.add(Cycle.BLOWDRY);

 wash.add(Cycle.BLOWDRY); // Duplicates ignored

 wash.add(Cycle.RINSE);

 wash.add(Cycle.HOTWAX);

 print(wash);

 wash.washCar();

 }

} /* Output:

[BASIC, RINSE]

The basic wash

Rinsing

[BASIC, HOTWAX, RINSE, BLOWDRY]

The basic wash

Applying hot wax

Rinsing

Blowing dry

*///:~

The syntax for defining a constant-specific method is effectively that of an

anonymous inner class, but more succinct.

This example also shows more characteristics of EnumSets. Since it’s a set,

it will only hold one of each item, so duplicate calls to add() with the same

argument are ignored (this makes sense, since you can only flip a bit “on”

once). Also, the order that you add enum instances is unimportant—the

output order is determined by the declaration order of the enum.

Is it possible to override constant-specific methods, instead of implementing

an abstract method? Yes, as you can see here:

//: enumerated/OverrideConstantSpecific.java

import static net.mindview.util.Print.*;

public enum OverrideConstantSpecific {

 NUT, BOLT,

 WASHER {

 void f() { print("Overridden method"); }

1032 Thinking in Java Bruce Eckel

 };

 void f() { print("default behavior"); }

 public static void main(String[] args) {

 for(OverrideConstantSpecific ocs : values()) {

 printnb(ocs + ": ");

 ocs.f();

 }

 }

} /* Output:

NUT: default behavior

BOLT: default behavior

WASHER: Overridden method

*///:~

Although enums do prevent certain types of code, in general you should

experiment with them as if they were classes.

Chain of Responsibility with enums
In the Chain of Responsibility design pattern, you create a number of

different ways to solve a problem and chain them together. When a request

occurs, it is passed along the chain until one of the solutions can handle the

request.

You can easily implement a simple Chain of Responsibility with constant-

specific methods. Consider a model of a post office, which tries to deal with

each piece of mail in the most general way possible, but has to keep trying

until it ends up treating the mail as a dead letter. Each attempt can be

thought of as a Strategy (another design pattern), and the entire list together

is a Chain of Responsibility.

We start by describing a piece of mail. All the different characteristics of

interest can be expressed using enums. Because the Mail objects will be

randomly generated, the easiest way to reduce the probability of (for

example) a piece of mail being given a YES for GeneralDelivery is to create

more non-YES instances, so the enum definitions look a little funny at first.

Within Mail, you’ll see randomMail(), which creates random pieces of test

mail. The generator() method produces an Iterable object that uses

randomMail() to produce a number of mail objects, one each time you call

next() via the iterator. This construct allows the simple creation of a foreach

loop by calling Mail.generator():

Enumerated Types 1033

//: enumerated/PostOffice.java

// Modeling a post office.

import java.util.*;

import net.mindview.util.*;

import static net.mindview.util.Print.*;

class Mail {

 // The NO's lower the probability of random selection:

 enum GeneralDelivery {YES,NO1,NO2,NO3,NO4,NO5}

 enum Scannability {UNSCANNABLE,YES1,YES2,YES3,YES4}

 enum Readability {ILLEGIBLE,YES1,YES2,YES3,YES4}

 enum Address {INCORRECT,OK1,OK2,OK3,OK4,OK5,OK6}

 enum ReturnAddress {MISSING,OK1,OK2,OK3,OK4,OK5}

 GeneralDelivery generalDelivery;

 Scannability scannability;

 Readability readability;

 Address address;

 ReturnAddress returnAddress;

 static long counter = 0;

 long id = counter++;

 public String toString() { return "Mail " + id; }

 public String details() {

 return toString() +

 ", General Delivery: " + generalDelivery +

 ", Address Scanability: " + scannability +

 ", Address Readability: " + readability +

 ", Address Address: " + address +

 ", Return address: " + returnAddress;

 }

 // Generate test Mail:

 public static Mail randomMail() {

 Mail m = new Mail();

 m.generalDelivery= Enums.random(GeneralDelivery.class);

 m.scannability = Enums.random(Scannability.class);

 m.readability = Enums.random(Readability.class);

 m.address = Enums.random(Address.class);

 m.returnAddress = Enums.random(ReturnAddress.class);

 return m;

 }

 public static Iterable<Mail> generator(final int count) {

 return new Iterable<Mail>() {

 int n = count;

 public Iterator<Mail> iterator() {

 return new Iterator<Mail>() {

1034 Thinking in Java Bruce Eckel

 public boolean hasNext() { return n-- > 0; }

 public Mail next() { return randomMail(); }

 public void remove() { // Not implemented

 throw new UnsupportedOperationException();

 }

 };

 }

 };

 }

}

public class PostOffice {

 enum MailHandler {

 GENERAL_DELIVERY {

 boolean handle(Mail m) {

 switch(m.generalDelivery) {

 case YES:

 print("Using general delivery for " + m);

 return true;

 default: return false;

 }

 }

 },

 MACHINE_SCAN {

 boolean handle(Mail m) {

 switch(m.scannability) {

 case UNSCANNABLE: return false;

 default:

 switch(m.address) {

 case INCORRECT: return false;

 default:

 print("Delivering "+ m + " automatically");

 return true;

 }

 }

 }

 },

 VISUAL_INSPECTION {

 boolean handle(Mail m) {

 switch(m.readability) {

 case ILLEGIBLE: return false;

 default:

 switch(m.address) {

 case INCORRECT: return false;

Enumerated Types 1035

 default:

 print("Delivering " + m + " normally");

 return true;

 }

 }

 }

 },

 RETURN_TO_SENDER {

 boolean handle(Mail m) {

 switch(m.returnAddress) {

 case MISSING: return false;

 default:

 print("Returning " + m + " to sender");

 return true;

 }

 }

 };

 abstract boolean handle(Mail m);

 }

 static void handle(Mail m) {

 for(MailHandler handler : MailHandler.values())

 if(handler.handle(m))

 return;

 print(m + " is a dead letter");

 }

 public static void main(String[] args) {

 for(Mail mail : Mail.generator(10)) {

 print(mail.details());

 handle(mail);

 print("*****");

 }

 }

} /* Output:

Mail 0, General Delivery: NO2, Address Scanability:

UNSCANNABLE, Address Readability: YES3, Address Address:

OK1, Return address: OK1

Delivering Mail 0 normally

Mail 1, General Delivery: NO5, Address Scanability: YES3,

Address Readability: ILLEGIBLE, Address Address: OK5, Return

address: OK1

Delivering Mail 1 automatically

1036 Thinking in Java Bruce Eckel

Mail 2, General Delivery: YES, Address Scanability: YES3,

Address Readability: YES1, Address Address: OK1, Return

address: OK5

Using general delivery for Mail 2

Mail 3, General Delivery: NO4, Address Scanability: YES3,

Address Readability: YES1, Address Address: INCORRECT,

Return address: OK4

Returning Mail 3 to sender

Mail 4, General Delivery: NO4, Address Scanability:

UNSCANNABLE, Address Readability: YES1, Address Address:

INCORRECT, Return address: OK2

Returning Mail 4 to sender

Mail 5, General Delivery: NO3, Address Scanability: YES1,

Address Readability: ILLEGIBLE, Address Address: OK4, Return

address: OK2

Delivering Mail 5 automatically

Mail 6, General Delivery: YES, Address Scanability: YES4,

Address Readability: ILLEGIBLE, Address Address: OK4, Return

address: OK4

Using general delivery for Mail 6

Mail 7, General Delivery: YES, Address Scanability: YES3,

Address Readability: YES4, Address Address: OK2, Return

address: MISSING

Using general delivery for Mail 7

Mail 8, General Delivery: NO3, Address Scanability: YES1,

Address Readability: YES3, Address Address: INCORRECT,

Return address: MISSING

Mail 8 is a dead letter

Mail 9, General Delivery: NO1, Address Scanability:

UNSCANNABLE, Address Readability: YES2, Address Address:

OK1, Return address: OK4

Delivering Mail 9 normally

*///:~

The Chain of Responsibility is expressed in enum MailHandler, and the

order of the enum definitions determines the order in which the strategies

Enumerated Types 1037

are attempted on each piece of mail. Each strategy is tried in turn until one

succeeds or they all fail, in which case you have a dead letter.

Exercise 8: (6) Modify PostOffice.java so it has the ability to forward
mail.

Exercise 9: (5) Modify class PostOffice so that it uses an EnumMap.

Project:2 Specialized languages like Prolog use backward chaining in order

to solve problems like this. Using PostOffice.java for inspiration, research

such languages and develop a program that allows new “rules” to be easily

added to the system.

State machines with enums
Enumerated types can be ideal for creating state machines. A state machine

can be in a finite number of specific states. The machine normally moves

from one state to the next based on an input, but there are also transient

states; the machine moves out of these as soon as their task is performed.

There are certain allowable inputs for each state, and different inputs change

the state of the machine to different new states. Because enums restrict the

set of possible cases, they are quite useful for enumerating the different states

and inputs.

Each state also typically has some kind of associated output.

A vending machine is a good example of a state machine. First, we define the

various inputs in an enum:

//: enumerated/Input.java

package enumerated;

import java.util.*;

public enum Input {

 NICKEL(5), DIME(10), QUARTER(25), DOLLAR(100),

 TOOTHPASTE(200), CHIPS(75), SODA(100), SOAP(50),

 ABORT_TRANSACTION {

 public int amount() { // Disallow

 throw new RuntimeException("ABORT.amount()");

2 Projects are suggestions to be used (for example) as term projects. Solutions to projects
are not included in the solution guide.

1038 Thinking in Java Bruce Eckel

 }

 },

 STOP { // This must be the last instance.

 public int amount() { // Disallow

 throw new RuntimeException("SHUT_DOWN.amount()");

 }

 };

 int value; // In cents

 Input(int value) { this.value = value; }

 Input() {}

 int amount() { return value; }; // In cents

 static Random rand = new Random(47);

 public static Input randomSelection() {

 // Don't include STOP:

 return values()[rand.nextInt(values().length - 1)];

 }

} ///:~

Note that two of the Inputs have an associated amount, so amount() is

defined in the interface. However, it is inappropriate to call amount() for

the other two Input types, so they throw an exception if you call amount().

Although this is a bit of an odd setup (define a method in an interface, then

throw an exception if you call it for certain implementations), it is imposed

upon us because of the constraints of enums.

The VendingMachine will react to these inputs by first categorizing them

via the Category enum, so that it can switch on the categories. This

example shows how enums make code clearer and easier to manage:

//: enumerated/VendingMachine.java

// {Args: VendingMachineInput.txt}

package enumerated;

import java.util.*;

import net.mindview.util.*;

import static enumerated.Input.*;

import static net.mindview.util.Print.*;

enum Category {

 MONEY(NICKEL, DIME, QUARTER, DOLLAR),

 ITEM_SELECTION(TOOTHPASTE, CHIPS, SODA, SOAP),

 QUIT_TRANSACTION(ABORT_TRANSACTION),

 SHUT_DOWN(STOP);

 private Input[] values;

 Category(Input... types) { values = types; }

Enumerated Types 1039

 private static EnumMap<Input,Category> categories =

 new EnumMap<Input,Category>(Input.class);

 static {

 for(Category c : Category.class.getEnumConstants())

 for(Input type : c.values)

 categories.put(type, c);

 }

 public static Category categorize(Input input) {

 return categories.get(input);

 }

}

public class VendingMachine {

 private static State state = State.RESTING;

 private static int amount = 0;

 private static Input selection = null;

 enum StateDuration { TRANSIENT } // Tagging enum

 enum State {

 RESTING {

 void next(Input input) {

 switch(Category.categorize(input)) {

 case MONEY:

 amount += input.amount();

 state = ADDING_MONEY;

 break;

 case SHUT_DOWN:

 state = TERMINAL;

 default:

 }

 }

 },

 ADDING_MONEY {

 void next(Input input) {

 switch(Category.categorize(input)) {

 case MONEY:

 amount += input.amount();

 break;

 case ITEM_SELECTION:

 selection = input;

 if(amount < selection.amount())

 print("Insufficient money for " + selection);

 else state = DISPENSING;

 break;

 case QUIT_TRANSACTION:

1040 Thinking in Java Bruce Eckel

 state = GIVING_CHANGE;

 break;

 case SHUT_DOWN:

 state = TERMINAL;

 default:

 }

 }

 },

 DISPENSING(StateDuration.TRANSIENT) {

 void next() {

 print("here is your " + selection);

 amount -= selection.amount();

 state = GIVING_CHANGE;

 }

 },

 GIVING_CHANGE(StateDuration.TRANSIENT) {

 void next() {

 if(amount > 0) {

 print("Your change: " + amount);

 amount = 0;

 }

 state = RESTING;

 }

 },

 TERMINAL { void output() { print("Halted"); } };

 private boolean isTransient = false;

 State() {}

 State(StateDuration trans) { isTransient = true; }

 void next(Input input) {

 throw new RuntimeException("Only call " +

 "next(Input input) for non-transient states");

 }

 void next() {

 throw new RuntimeException("Only call next() for " +

 "StateDuration.TRANSIENT states");

 }

 void output() { print(amount); }

 }

 static void run(Generator<Input> gen) {

 while(state != State.TERMINAL) {

 state.next(gen.next());

 while(state.isTransient)

 state.next();

 state.output();

Enumerated Types 1041

 }

 }

 public static void main(String[] args) {

 Generator<Input> gen = new RandomInputGenerator();

 if(args.length == 1)

 gen = new FileInputGenerator(args[0]);

 run(gen);

 }

}

// For a basic sanity check:

class RandomInputGenerator implements Generator<Input> {

 public Input next() { return Input.randomSelection(); }

}

// Create Inputs from a file of ';'-separated strings:

class FileInputGenerator implements Generator<Input> {

 private Iterator<String> input;

 public FileInputGenerator(String fileName) {

 input = new TextFile(fileName, ";").iterator();

 }

 public Input next() {

 if(!input.hasNext())

 return null;

 return Enum.valueOf(Input.class, input.next().trim());

 }

} /* Output:

25

50

75

here is your CHIPS

0

100

200

here is your TOOTHPASTE

0

25

35

Your change: 35

0

25

35

Insufficient money for SODA

35

1042 Thinking in Java Bruce Eckel

60

70

75

Insufficient money for SODA

75

Your change: 75

0

Halted

*///:~

Because selecting among enum instances is most often accomplished with a

switch statement (notice the extra effort that the language goes to in order to

make a switch on enums easy), one of the most common questions to ask

when you are organizing multiple enums is “What do I want to switch on?”

Here, it’s easiest to work back from the VendingMachine by noting that in

each State, you need to switch on the basic categories of input action:

money being inserted, an item being selected, the transaction being aborted,

and the machine being turned off. However, within those categories, you have

different types of money that can be inserted and different items that can be

selected. The Category enum groups the different types of Input so that

the categorize() method can produce the appropriate Category inside a

switch. This method uses an EnumMap to efficiently and safely perform

the lookup.

If you study class VendingMachine, you can see how each state is

different, and responds differently to input. Also note the two transient

states; in run() the machine waits for an Input and doesn’t stop moving

through states until it is no longer in a transient state.

The VendingMachine can be tested in two ways, by using two different

Generator objects. The RandomInputGenerator just keeps producing

inputs, everything except SHUT_DOWN. By running this for a long time

you get a kind of sanity check to help ensure that the machine will not wander

into a bad state. The FileInputGenerator takes a file describing inputs in

text form, turns them into enum instances, and creates Input objects.

Here’s the text file used to produce the output shown above:

//:! enumerated/VendingMachineInput.txt

QUARTER; QUARTER; QUARTER; CHIPS;

DOLLAR; DOLLAR; TOOTHPASTE;

QUARTER; DIME; ABORT_TRANSACTION;

QUARTER; DIME; SODA;

QUARTER; DIME; NICKEL; SODA;

Enumerated Types 1043

ABORT_TRANSACTION;

STOP;

///:~

One limitation to this design is that the fields in VendingMachine that are

accessed by enum State instances must be static, which means you can

only have a single VendingMachine instance. This may not be that big of

an issue if you think about an actual (embedded Java) implementation, since

you are likely to have only one application per machine.

Exercise 10: (7) Modify class VendingMachine (only) using
EnumMap so that one program can have multiple instances of
VendingMachine.

Exercise 11: (7) In a real vending machine you will want to easily add
and change the type of vended items, so the limits imposed by an enum on
Input are impractical (remember that enums are for a restricted set of
types). Modify VendingMachine.java so that the vended items are
represented by a class instead of being part of Input, and initialize an
ArrayList of these objects from a text file (using
net.mindview.util.TextFile).

Project:3 Design the vending machine using internationalization, so that one

machine can easily be adapted to all countries.

Multiple dispatching
When you are dealing with multiple interacting types, a program can get

particularly messy. For example, consider a system that parses and executes

mathematical expressions. You want to say Number.plus(Number),

Number.multiply(Number), etc., where Number is the base class for a

family of numerical objects. But when you say a.plus(b), and you don’t know

the exact type of either a or b, how can you get them to interact properly?

The answer starts with something you probably don’t think about: Java only

performs single dispatching. That is, if you are performing an operation on

more than one object whose type is unknown, Java can invoke the dynamic

binding mechanism on only one of those types. This doesn’t solve the

3 Projects are suggestions to be used (for example) as term projects. Solutions to projects
are not included in the solution guide.

1044 Thinking in Java Bruce Eckel

problem described here, so you end up detecting some types manually and

effectively producing your own dynamic binding behavior.

The solution is called multiple dispatching. (In this case, there will be only

two dispatches, which is referred to as double dispatching.) Polymorphism

can only occur via method calls, so if you want double dispatching, there

must be two method calls: the first to determine the first unknown type, and

the second to determine the second unknown type. With multiple

dispatching, you must have a virtual call for each of the types—if you are

working with two different type hierarchies that are interacting, you’ll need a

virtual call in each hierarchy. Generally, you’ll set up a configuration such

that a single method call produces more than one virtual method call and

thus services more than one type in the process. To get this effect, you need to

work with more than one method: You’ll need a method call for each

dispatch. The methods in the following example (which implements the

“paper, scissors, rock” game, traditionally called RoShamBo) are called

compete() and eval() and are both members of the same type. They

produce one of three possible outcomes:

//: enumerated/Outcome.java

package enumerated;

public enum Outcome { WIN, LOSE, DRAW } ///:~

//: enumerated/RoShamBo1.java

// Demonstration of multiple dispatching.

package enumerated;

import java.util.*;

import static enumerated.Outcome.*;

interface Item {

 Outcome compete(Item it);

 Outcome eval(Paper p);

 Outcome eval(Scissors s);

 Outcome eval(Rock r);

}

class Paper implements Item {

 public Outcome compete(Item it) { return it.eval(this); }

 public Outcome eval(Paper p) { return DRAW; }

 public Outcome eval(Scissors s) { return WIN; }

 public Outcome eval(Rock r) { return LOSE; }

 public String toString() { return "Paper"; }

}

Enumerated Types 1045

class Scissors implements Item {

 public Outcome compete(Item it) { return it.eval(this); }

 public Outcome eval(Paper p) { return LOSE; }

 public Outcome eval(Scissors s) { return DRAW; }

 public Outcome eval(Rock r) { return WIN; }

 public String toString() { return "Scissors"; }

}

class Rock implements Item {

 public Outcome compete(Item it) { return it.eval(this); }

 public Outcome eval(Paper p) { return WIN; }

 public Outcome eval(Scissors s) { return LOSE; }

 public Outcome eval(Rock r) { return DRAW; }

 public String toString() { return "Rock"; }

}

public class RoShamBo1 {

 static final int SIZE = 20;

 private static Random rand = new Random(47);

 public static Item newItem() {

 switch(rand.nextInt(3)) {

 default:

 case 0: return new Scissors();

 case 1: return new Paper();

 case 2: return new Rock();

 }

 }

 public static void match(Item a, Item b) {

 System.out.println(

 a + " vs. " + b + ": " + a.compete(b));

 }

 public static void main(String[] args) {

 for(int i = 0; i < SIZE; i++)

 match(newItem(), newItem());

 }

} /* Output:

Rock vs. Rock: DRAW

Paper vs. Rock: WIN

Paper vs. Rock: WIN

Paper vs. Rock: WIN

Scissors vs. Paper: WIN

Scissors vs. Scissors: DRAW

Scissors vs. Paper: WIN

1046 Thinking in Java Bruce Eckel

Rock vs. Paper: LOSE

Paper vs. Paper: DRAW

Rock vs. Paper: LOSE

Paper vs. Scissors: LOSE

Paper vs. Scissors: LOSE

Rock vs. Scissors: WIN

Rock vs. Paper: LOSE

Paper vs. Rock: WIN

Scissors vs. Paper: WIN

Paper vs. Scissors: LOSE

Paper vs. Scissors: LOSE

Paper vs. Scissors: LOSE

Paper vs. Scissors: LOSE

*///:~

Item is the interface for the types that will be multiply dispatched.

RoShamBo1.match() takes two Item objects and begins the double-

dispatching process by calling the Item.compete() function. The virtual

mechanism determines the type of a, so it wakes up inside the compete()

function of a’s concrete type. The compete() function performs the second

dispatch by calling eval() on the remaining type. Passing itself (this) as an

argument to eval() produces a call to the overloaded eval() function, thus

preserving the type information of the first dispatch. When the second

dispatch is completed, you know the exact types of both Item objects.

It requires a lot of ceremony to set up multiple dispatching, but keep in mind

that the benefit is the syntactic elegance achieved when making the call—

instead of writing awkward code to determine the type of one or more objects

during a call, you simply say, “You two! I don’t care what types you are,

interact properly with each other!” Make sure this kind of elegance is

important to you before embarking on multiple dispatching, however.

Dispatching with enums
Performing a straight translation of RoShamBo1.java into an enum-based

solution is problematic because enum instances are not types, so the

overloaded eval() methods won’t work—you can’t use enum instances as

argument types. However, there are a number of different approaches to

implementing multiple dispatching which benefit from enums.

One approach uses a constructor to initialize each enum instance with a

“row” of outcomes; taken together this produces a kind of lookup table:

Enumerated Types 1047

//: enumerated/RoShamBo2.java

// Switching one enum on another.

package enumerated;

import static enumerated.Outcome.*;

public enum RoShamBo2 implements Competitor<RoShamBo2> {

 PAPER(DRAW, LOSE, WIN),

 SCISSORS(WIN, DRAW, LOSE),

 ROCK(LOSE, WIN, DRAW);

 private Outcome vPAPER, vSCISSORS, vROCK;

 RoShamBo2(Outcome paper,Outcome scissors,Outcome rock) {

 this.vPAPER = paper;

 this.vSCISSORS = scissors;

 this.vROCK = rock;

 }

 public Outcome compete(RoShamBo2 it) {

 switch(it) {

 default:

 case PAPER: return vPAPER;

 case SCISSORS: return vSCISSORS;

 case ROCK: return vROCK;

 }

 }

 public static void main(String[] args) {

 RoShamBo.play(RoShamBo2.class, 20);

 }

} /* Output:

ROCK vs. ROCK: DRAW

SCISSORS vs. ROCK: LOSE

SCISSORS vs. ROCK: LOSE

SCISSORS vs. ROCK: LOSE

PAPER vs. SCISSORS: LOSE

PAPER vs. PAPER: DRAW

PAPER vs. SCISSORS: LOSE

ROCK vs. SCISSORS: WIN

SCISSORS vs. SCISSORS: DRAW

ROCK vs. SCISSORS: WIN

SCISSORS vs. PAPER: WIN

SCISSORS vs. PAPER: WIN

ROCK vs. PAPER: LOSE

ROCK vs. SCISSORS: WIN

SCISSORS vs. ROCK: LOSE

PAPER vs. SCISSORS: LOSE

SCISSORS vs. PAPER: WIN

1048 Thinking in Java Bruce Eckel

SCISSORS vs. PAPER: WIN

SCISSORS vs. PAPER: WIN

SCISSORS vs. PAPER: WIN

*///:~

Once both types have been determined in compete(), the only action is the

return of the resulting Outcome. However, you could also call another

method, even (for example) via a Command object that was assigned in the

constructor.

RoShamBo2.java is much smaller and more straightforward than the

original example, and thus easier to keep track of. Notice that you’re still

using two dispatches to determine the type of both objects. In

RoShamBo1.java, both dispatches were performed using virtual method

calls, but here, only the first dispatch uses a virtual method call. The second

dispatch uses a switch, but is safe because the enum limits the choices in

the switch statement.

The code that drives the enum has been separated out so that it can be used

in the other examples. First, the Competitor interface defines a type that

competes with another Competitor:

//: enumerated/Competitor.java

// Switching one enum on another.

package enumerated;

public interface Competitor<T extends Competitor<T>> {

 Outcome compete(T competitor);

} ///:~

Then we define two static methods (static to avoid having to specify the

parameter type explicitly). First, match() calls compete() for one

Competitor vs. another, and you can see that in this case the type parameter

only needs to be a Competitor<T>. But in play(), the type parameter must

be both an Enum<T> because it is used in Enums.random(), and a

Competitor<T> because it is passed to match():

//: enumerated/RoShamBo.java

// Common tools for RoShamBo examples.

package enumerated;

import net.mindview.util.*;

public class RoShamBo {

 public static <T extends Competitor<T>>

Enumerated Types 1049

 void match(T a, T b) {

 System.out.println(

 a + " vs. " + b + ": " + a.compete(b));

 }

 public static <T extends Enum<T> & Competitor<T>>

 void play(Class<T> rsbClass, int size) {

 for(int i = 0; i < size; i++)

 match(

 Enums.random(rsbClass),Enums.random(rsbClass));

 }

} ///:~

The play() method does not have a return value that involves the type

parameter T, so it seems like you might use wildcards inside the Class<T>

type instead of using the leading parameter description. However, wildcards

cannot extend more than one base type, so we must use the above expression.

Using constant-specific methods
Because constant-specific methods allow you to provide different method

implementations for each enum instance, they might seem like a perfect

solution for setting up multiple dispatching. But even though they can be

given different behavior in this way, enum instances are not types, so you

cannot use them as argument types in method signatures. The best you can

do for this example is to set up a switch statement:

//: enumerated/RoShamBo3.java

// Using constant-specific methods.

package enumerated;

import static enumerated.Outcome.*;

public enum RoShamBo3 implements Competitor<RoShamBo3> {

 PAPER {

 public Outcome compete(RoShamBo3 it) {

 switch(it) {

 default: // To placate the compiler

 case PAPER: return DRAW;

 case SCISSORS: return LOSE;

 case ROCK: return WIN;

 }

 }

 },

 SCISSORS {

 public Outcome compete(RoShamBo3 it) {

1050 Thinking in Java Bruce Eckel

 switch(it) {

 default:

 case PAPER: return WIN;

 case SCISSORS: return DRAW;

 case ROCK: return LOSE;

 }

 }

 },

 ROCK {

 public Outcome compete(RoShamBo3 it) {

 switch(it) {

 default:

 case PAPER: return LOSE;

 case SCISSORS: return WIN;

 case ROCK: return DRAW;

 }

 }

 };

 public abstract Outcome compete(RoShamBo3 it);

 public static void main(String[] args) {

 RoShamBo.play(RoShamBo3.class, 20);

 }

} /* Same output as RoShamBo2.java *///:~

Although this is functional and not unreasonable, the solution of

RoShamBo2.java seems to require less code when adding a new type, and

thus seems more straightforward.

However, RoShamBo3.java can be simplified and compressed:

//: enumerated/RoShamBo4.java

package enumerated;

public enum RoShamBo4 implements Competitor<RoShamBo4> {

 ROCK {

 public Outcome compete(RoShamBo4 opponent) {

 return compete(SCISSORS, opponent);

 }

 },

 SCISSORS {

 public Outcome compete(RoShamBo4 opponent) {

 return compete(PAPER, opponent);

 }

 },

 PAPER {

Enumerated Types 1051

 public Outcome compete(RoShamBo4 opponent) {

 return compete(ROCK, opponent);

 }

 };

 Outcome compete(RoShamBo4 loser, RoShamBo4 opponent) {

 return ((opponent == this) ? Outcome.DRAW

 : ((opponent == loser) ? Outcome.WIN

 : Outcome.LOSE));

 }

 public static void main(String[] args) {

 RoShamBo.play(RoShamBo4.class, 20);

 }

} /* Same output as RoShamBo2.java *///:~

Here, the second dispatch is performed by the two-argument version of

compete(), which performs a sequence of comparisons and is thus similar

to the action of a switch. It’s smaller, but a bit confusing. For a large system

this confusion can become debilitating.

Dispatching with EnumMaps
It’s possible to perform a “true” double dispatch using the EnumMap class,

which is specifically designed to work very efficiently with enums. Since the

goal is to switch on two unknown types, an EnumMap of EnumMaps can

be used to produce the double dispatch:

//: enumerated/RoShamBo5.java

// Multiple dispatching using an EnumMap of EnumMaps.

package enumerated;

import java.util.*;

import static enumerated.Outcome.*;

enum RoShamBo5 implements Competitor<RoShamBo5> {

 PAPER, SCISSORS, ROCK;

 static EnumMap<RoShamBo5,EnumMap<RoShamBo5,Outcome>>

 table = new EnumMap<RoShamBo5,

 EnumMap<RoShamBo5,Outcome>>(RoShamBo5.class);

 static {

 for(RoShamBo5 it : RoShamBo5.values())

 table.put(it,

 new EnumMap<RoShamBo5,Outcome>(RoShamBo5.class));

 initRow(PAPER, DRAW, LOSE, WIN);

 initRow(SCISSORS, WIN, DRAW, LOSE);

 initRow(ROCK, LOSE, WIN, DRAW);

1052 Thinking in Java Bruce Eckel

 }

 static void initRow(RoShamBo5 it,

 Outcome vPAPER, Outcome vSCISSORS, Outcome vROCK) {

 EnumMap<RoShamBo5,Outcome> row =

 RoShamBo5.table.get(it);

 row.put(RoShamBo5.PAPER, vPAPER);

 row.put(RoShamBo5.SCISSORS, vSCISSORS);

 row.put(RoShamBo5.ROCK, vROCK);

 }

 public Outcome compete(RoShamBo5 it) {

 return table.get(this).get(it);

 }

 public static void main(String[] args) {

 RoShamBo.play(RoShamBo5.class, 20);

 }

} /* Same output as RoShamBo2.java *///:~

The EnumMap is initialized using a static clause; you can see the table-like

structure of the calls to initRow(). Notice the compete() method, where

you can see both dispatches happening in a single statement.

Using a 2-D array
We can simplify the solution even more by noting that each enum instance

has a fixed value (based on its declaration order) and that ordinal()

produces this value. A two-dimensional array mapping the competitors onto

the outcomes produces the smallest and most straightforward solution (and

possibly the fastest, although remember that EnumMap uses an internal

array):

//: enumerated/RoShamBo6.java

// Enums using "tables" instead of multiple dispatch.

package enumerated;

import static enumerated.Outcome.*;

enum RoShamBo6 implements Competitor<RoShamBo6> {

 PAPER, SCISSORS, ROCK;

 private static Outcome[][] table = {

 { DRAW, LOSE, WIN }, // PAPER

 { WIN, DRAW, LOSE }, // SCISSORS

 { LOSE, WIN, DRAW }, // ROCK

 };

 public Outcome compete(RoShamBo6 other) {

 return table[this.ordinal()][other.ordinal()];

Enumerated Types 1053

 }

 public static void main(String[] args) {

 RoShamBo.play(RoShamBo6.class, 20);

 }

} ///:~

The table has exactly the same order as the calls to initRow() in the

previous example.

The small size of this code holds great appeal over the previous examples,

partly because it seems much easier to understand and modify but also

because it just seems more straightforward. However, it’s not quite as “safe”

as the previous examples because it uses an array. With a larger array, you

might get the size wrong, and if your tests do not cover all possibilities

something could slip through the cracks.

All of these solutions are different types of tables, but it’s worth exploring the

expression of the tables to find the one that fits best. Note that even though

the above solution is the most compact, it is also fairly rigid because it can

only produce a constant output given constant inputs. However, there’s

nothing that prevents you from having table produce a function object. For

certain types of problems, the concept of “table-driven code” can be very

powerful.

Summary
Even though enumerated types are not terribly complex in themselves, this

chapter was postponed until later in the book because of what you can do

with enums in combination with features like polymorphism, generics, and

reflection.

Although they are significantly more sophisticated than enums in C or C++,

enums are still a “small” feature, something the language has survived (a bit

awkwardly) without for many years. And yet this chapter shows the valuable

impact that a “small” feature can have—sometimes it gives you just the right

leverage to solve a problem elegantly and clearly, and as I have been saying

throughout this book, elegance is important, and clarity may make the

difference between a successful solution and one that fails because others

cannot understand it.

On the subject of clarity, an unfortunate source of confusion comes from the

poor choice in Java 1.0 of the term “enumeration” instead of the common and

1054 Thinking in Java Bruce Eckel

well-accepted term “iterator” to indicate an object that selects each element of

a sequence (as shown in Collections). Some languages even refer to

enumerated data types as “enumerators!” This mistake has since been

rectified in Java, but the Enumeration interface could not, of course,

simply be removed and so is still hanging around in old (and sometimes

new!) code, the library, and documentation.

Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for sale from www.MindViewLLC.com.

 1055

Annotations
Annotations (also known as metadata) provide a
formalized way to add information to your code so that
you can easily use that data at some later point.1

Annotations are partly motivated by a general trend toward combining

metadata with source-code files, instead of keeping it in external documents.

They are also a response to feature pressure from other languages like C#.

Annotations are one of the fundamental language changes introduced in Java

SE5. They provide information that you need to fully describe your program,

but that cannot be expressed in Java. Thus, annotations allow you to store

extra information about your program in a format that is tested and verified

by the compiler. Annotations can be used to generate descriptor files or even

new class definitions and help ease the burden of writing “boilerplate” code.

Using annotations, you can keep this metadata in the Java source code, and

have the advantage of cleaner looking code, compile-time type checking and

the annotation API to help build processing tools for your annotations.

Although a few types of metadata come predefined in Java SE5, in general the

kind of annotations you add and what you do with them are entirely up to

you.

The syntax of annotations is reasonably simple and consists mainly of the

addition of the @ symbol to the language. Java SE5 contains three general-

purpose built-in annotations, defined in java.lang:

• @Override, to indicate that a method definition is intended to

override a method in the base class. This generates a compiler error if

you accidentally misspell the method name or give an improper

signature.2

1 Jeremy Meyer came to Crested Butte and spent two weeks with me working on this
chapter. His help was invaluable.

2 This was no doubt inspired by a similar feature in C#. The C# feature is a keyword and
not an annotation, and is enforced by the compiler. That is, when you override a method in

1056 Thinking in Java Bruce Eckel

• @Deprecated, to produce a compiler warning if this element is

used.

• @SuppressWarnings, to turn off inappropriate compiler warnings.

This annotation is allowed but not supported in earlier releases of

Java SE5 (it was ignored).

Four additional annotation types support the creation of new annotations;

you will learn about these in this chapter.

Anytime you create descriptor classes or interfaces that involve repetitive

work, you can usually use annotations to automate and simplify the process.

Much of the extra work in Enterprise JavaBeans (EJBs), for example, is

eliminated through the use of annotations in EJB3.0.

Annotations can replace existing systems like XDoclet, which is an

independent doclet tool that is specifically designed for creating annotation-

style doclets. In contrast, annotations are true language constructs and hence

are structured, and are type-checked at compile time. Keeping all the

information in the actual source code and not in comments makes the code

neater and easier to maintain. By using and extending the annotation API

and tools, or with external bytecode manipulation libraries as you will see in

this chapter, you can perform powerful inspection and manipulation of your

source code as well as the bytecode.

Basic syntax
In the example below, the method testExecute() is annotated with @Test.

This doesn’t do anything by itself, but the compiler will ensure that you have

a definition for the @Test annotation in your build path. As you will see later

in the chapter, you can create a tool which runs this method for you via

reflection.

//: annotations/Testable.java

package annotations;

import net.mindview.atunit.*;

public class Testable {

C#, you must use the override keyword, whereas in Java the @Override annotation is
optional.

Annotations 1057

 public void execute() {

 System.out.println("Executing..");

 }

 @Test void testExecute() { execute(); }

} ///:~

Annotated methods are no different from other methods. The @Test

annotation in this example can be used in combination with any of the

modifiers like public or static or void. Syntactically, annotations are used

in much the same way as modifiers.

Defining annotations
Here is the definition of the annotation above. You can see that annotation

definitions look a lot like interface definitions. In fact, they compile to class

files like any other Java interface:

//: net/mindview/atunit/Test.java

// The @Test tag.

package net.mindview.atunit;

import java.lang.annotation.*;

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

public @interface Test {} ///:~

Apart from the @ symbol, the definition of @Test is much like that of an

empty interface. An annotation definition also requires the meta-annotations

@Target and @Retention. @Target defines where you can apply this

annotation (a method or a field, for example). @Retention defines whether

the annotations are available in the source code (SOURCE), in the class files

(CLASS), or at run time (RUNTIME).

Annotations will usually contain elements to specify values in your

annotations. A program or tool can use these parameters when processing

your annotations. Elements look like interface methods, except that you can

declare default values.

An annotation without any elements, such as @Test above, is called a

marker annotation.

Here is a simple annotation that tracks use cases in a project. Programmers

annotate each method or set of methods which fulfill the requirements of a

particular use case. A project manager can get an idea of project progress by

1058 Thinking in Java Bruce Eckel

counting the implemented use cases, and developers maintaining the project

can easily find use cases if they need to update or debug business rules within

the system.

//: annotations/UseCase.java

import java.lang.annotation.*;

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

public @interface UseCase {

 public int id();

 public String description() default "no description";

} ///:~

Notice that id and description resemble method declarations. Because id is

type-checked by the compiler, it is a reliable way of linking a tracking

database to the use case document and the source code. The element

description has a default value which is picked up by the annotation

processor if no value is specified when a method is annotated.

Here is a class with three methods annotated as use cases:

//: annotations/PasswordUtils.java

import java.util.*;

public class PasswordUtils {

 @UseCase(id = 47, description =

 "Passwords must contain at least one numeric")

 public boolean validatePassword(String password) {

 return (password.matches("\\w*\\d\\w*"));

 }

 @UseCase(id = 48)

 public String encryptPassword(String password) {

 return new StringBuilder(password).reverse().toString();

 }

 @UseCase(id = 49, description =

 "New passwords can't equal previously used ones")

 public boolean checkForNewPassword(

 List<String> prevPasswords, String password) {

 return !prevPasswords.contains(password);

 }

} ///:~

The values of the annotation elements are expressed as name-value pairs in

parentheses after the @UseCase declaration. The annotation for

Annotations 1059

encryptPassword() is not passed a value for the description element

here, so the default value defined in the @interface UseCase will appear

when the class is run through an annotation processor.

You could imagine using a system like this in order to “sketch” out your

system, and then filling in the functionality as you build it.

Meta-annotations
There are currently only three standard annotations (described earlier) and

four meta-annotations defined in the Java language. The meta-annotations

are for annotating annotations:

@Target Where this annotation can be applied. The possible

ElementType arguments are:

CONSTRUCTOR: Constructor declaration

FIELD: Field declaration (includes enum constants)

LOCAL_VARIABLE: Local variable declaration

METHOD: Method declaration

PACKAGE: Package declaration

PARAMETER: Parameter declaration

TYPE: Class, interface (including annotation type),

or enum declaration

@Retention How long the annotation information is kept. The

possible RetentionPolicy arguments are:

SOURCE: Annotations are discarded by the

compiler.

CLASS: Annotations are available in the class file by

the compiler but can be discarded by the VM.

RUNTIME: Annotations are retained by the VM at

run time, so they may be read reflectively.

@Documented Include this annotation in the Javadocs.

@Inherited Allow subclasses to inherit parent annotations.

Most of the time, you will be defining your own annotations and writing your

own processors to deal with them.

1060 Thinking in Java Bruce Eckel

Writing annotation processors
Without tools to read them, annotations are hardly more useful than

comments. An important part of the process of using annotations is to create

and use annotation processors. Java SE5 provides extensions to the

reflection API to help you create these tools. It also provides an external tool

called apt to help you parse Java source code with annotations.

Here is a very simple annotation processor that reads the annotated

PasswordUtils class and uses reflection to look for @UseCase tags. Given

a list of id values, it lists the use cases it finds and reports any that are

missing:

//: annotations/UseCaseTracker.java

import java.lang.reflect.*;

import java.util.*;

public class UseCaseTracker {

 public static void

 trackUseCases(List<Integer> useCases, Class<?> cl) {

 for(Method m : cl.getDeclaredMethods()) {

 UseCase uc = m.getAnnotation(UseCase.class);

 if(uc != null) {

 System.out.println("Found Use Case:" + uc.id() +

 " " + uc.description());

 useCases.remove(new Integer(uc.id()));

 }

 }

 for(int i : useCases) {

 System.out.println("Warning: Missing use case-" + i);

 }

 }

 public static void main(String[] args) {

 List<Integer> useCases = new ArrayList<Integer>();

 Collections.addAll(useCases, 47, 48, 49, 50);

 trackUseCases(useCases, PasswordUtils.class);

 }

} /* Output:

Found Use Case:47 Passwords must contain at least one

numeric

Found Use Case:48 no description

Found Use Case:49 New passwords can't equal previously used

ones

Annotations 1061

Warning: Missing use case-50

*///:~

This uses both the reflection method getDeclaredMethods() and the

method getAnnotation(), which comes from the AnnotatedElement

interface (classes like Class, Method and Field all implement this

interface). This method returns the annotation object of the specified type, in

this case “UseCase.” If there are no annotations of that particular type on

the annotated method, a null value is returned. The element values are

extracted by calling id() and description(). Remember that no description

was specified in the annotation for the encryptPassword() method, so the

processor above finds the default value “no description” when it calls the

description() method on that particular annotation.

Annotation elements
The @UseCase tag defined in UseCase.java contains the int element id

and String element description. Here is a list of the allowed types for

annotation elements:

• All primitives (int, float, boolean etc.)

• String

• Class

• enums

• Annotations

• Arrays of any of the above

The compiler will report an error if you try to use any other types. Note that

you are not allowed to use any of the wrapper classes, but because of

autoboxing this isn’t really a limitation. You can also have elements that are

themselves annotations. As you will see a bit later, nested annotations can be

very helpful.

Default value constraints
The compiler is quite picky about default element values. No element can

have an unspecified value. This means that elements must either have default

values or values provided by the class that uses the annotation.

There is another restriction, which is that none of the non-primitive type

elements are allowed to take null as a value, either when declared in the

1062 Thinking in Java Bruce Eckel

source code or when defined as a default value in the annotation interface.

This makes it hard to write a processor that acts on the presence or absence

of an element, because every element is effectively present in every

annotation declaration. You can get around this by checking for specific

values, like empty strings or negative values:

//: annotations/SimulatingNull.java

import java.lang.annotation.*;

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

public @interface SimulatingNull {

 public int id() default -1;

 public String description() default "";

} ///:~

This is a typical idiom in annotation definitions.

Generating external files
Annotations are especially useful when working with frameworks that require

some sort of additional information to accompany your source code.

Technologies like Enterprise JavaBeans (prior to EJB3) require numerous

interfaces and deployment descriptors which are “boilerplate” code, defined

in the same way for every bean. Web services, custom tag libraries and

object/relational mapping tools like Toplink and Hibernate often require

XML descriptors that are external to the code. After defining a Java class, the

programmer must undergo the tedium of respecifying information like the

name, package and so on—information that already exists in the original

class. Whenever you use an external descriptor file, you end up with two

separate sources of information about a class, which usually leads to code

synchronization problems. This also requires that programmers working on

the project must know about editing the descriptor as well as how to write

Java programs.

Suppose you want to provide basic object/relational mapping functionality to

automate the creation of a database table in order to store a JavaBean. You

could use an XML descriptor file to specify the name of the class, each

member, and information about its database mapping. Using annotations,

however, you can keep all of the information in the JavaBean source file. To

do this, you need annotations to define the name of the database table

Annotations 1063

associated with the bean, the columns, and the SQL types to map to the

bean’s properties.

Here is an annotation for a bean that tells the annotation processor that it

should create a database table:

//: annotations/database/DBTable.java

package annotations.database;

import java.lang.annotation.*;

@Target(ElementType.TYPE) // Applies to classes only

@Retention(RetentionPolicy.RUNTIME)

public @interface DBTable {

 public String name() default "";

} ///:~

Each ElementType that you specify in the @Target annotation is a

restriction that tells the compiler that your annotation can only be applied to

that particular type. You can specify a single value of the enum

ElementType, or you can specify a comma-separated list of any

combination of values. If you want to apply the annotation to any

ElementType, you can leave out the @Target annotation altogether,

although this is uncommon.

Note that @DBTable has a name() element so that the annotation can

supply a name for the database table that the processor will create.

Here are the annotations for the JavaBean fields:

//: annotations/database/Constraints.java

package annotations.database;

import java.lang.annotation.*;

@Target(ElementType.FIELD)

@Retention(RetentionPolicy.RUNTIME)

public @interface Constraints {

 boolean primaryKey() default false;

 boolean allowNull() default true;

 boolean unique() default false;

} ///:~

//: annotations/database/SQLString.java

package annotations.database;

import java.lang.annotation.*;

1064 Thinking in Java Bruce Eckel

@Target(ElementType.FIELD)

@Retention(RetentionPolicy.RUNTIME)

public @interface SQLString {

 int value() default 0;

 String name() default "";

 Constraints constraints() default @Constraints;

} ///:~

//: annotations/database/SQLInteger.java

package annotations.database;

import java.lang.annotation.*;

@Target(ElementType.FIELD)

@Retention(RetentionPolicy.RUNTIME)

public @interface SQLInteger {

 String name() default "";

 Constraints constraints() default @Constraints;

} ///:~

The @Constraints annotation allows the processor to extract the metadata

about the database table. This represents a small subset of the constraints

generally offered by databases, but it gives you the general idea. The elements

primaryKey(), allowNull() and unique() are given sensible default

values so that in most cases a user of the annotation won’t have to type too

much.

The other two @interfaces define SQL types. Again, for this framework to

be more useful, you need to define an annotation for each additional SQL

type. Here, two types will be enough.

These types each have a name() element and a constraints() element.

The latter makes use of the nested annotation feature to embed the

information about the column type’s database constraints. Note that the

default value for the contraints() element is @Constraints. Since there

are no element values specified in parentheses after this annotation type, the

default value of constraints() is actually an @Constraints annotation

with its own default values set. To make a nested @Constraints annotation

with uniqueness set to true by default, you can define its element like this:

//: annotations/database/Uniqueness.java

// Sample of nested annotations

package annotations.database;

public @interface Uniqueness {

Annotations 1065

 Constraints constraints()

 default @Constraints(unique=true);

} ///:~

Here is a simple bean that uses these annotations:

//: annotations/database/Member.java

package annotations.database;

@DBTable(name = "MEMBER")

public class Member {

 @SQLString(30) String firstName;

 @SQLString(50) String lastName;

 @SQLInteger Integer age;

 @SQLString(value = 30,

 constraints = @Constraints(primaryKey = true))

 String handle;

 static int memberCount;

 public String getHandle() { return handle; }

 public String getFirstName() { return firstName; }

 public String getLastName() { return lastName; }

 public String toString() { return handle; }

 public Integer getAge() { return age; }

} ///:~

The @DBTable class annotation is given the value “MEMBER”, which will

be used as the table name. The bean properties, firstName and lastName,

are both annotated with @SQLStrings and have element values of 30 and

50, respectively. These annotations are interesting for two reasons: First, they

use the default value on the nested @Constraints annotation, and second,

they use a shortcut feature. If you define an element on an annotation with

the name value, then as long as it is the only element type specified you don’t

need to use the name-value pair syntax; you can just specify the value in

parentheses. This can be applied to any of the legal element types. Of course

this limits you to naming your element “value” but in the case above, it does

allow for the semantically meaningful and easy-to-read annotation

specification:

 @SQLString(30)

The processor will use this value to set the size of the SQL column that it will

create.

1066 Thinking in Java Bruce Eckel

As neat as the default-value syntax is, it quickly becomes complex. Look at

the annotation on the field handle. This has an @SQLString annotation,

but it also needs to be a primary key on the database, so the element type

primaryKey must be set on the nested @Constraint annotation. This is

where it gets messy. You are now forced to use the rather long-winded name-

value pair form for this nested annotation, respecifying the element name

and the @interface name. But because the specially named element value

is no longer the only element value being specified, you can’t use the shortcut

form. As you can see, the result is not pretty.

Alternative solutions

There are other ways of creating annotations for this task. You could, for

example, have a single annotation class called @TableColumn with an

enum element which defines values like STRING, INTEGER, FLOAT, etc.

This eliminates the need for an @interface for each SQL type, but makes it

impossible to qualify your types with additional elements like size, or

precision, which is probably more useful.

You could also use a String element to describe the actual SQL type, e.g.,

“VARCHAR(30)” or “INTEGER”. This does allow you to qualify the types, but

it ties up the mapping from Java type to SQL type in your code, which is not

good design. You don’t want to have to recompile classes if you change

databases; it would be more elegant just to tell your annotation processor

that you are using a different “flavor” of SQL, and it let it take that into

account when processing the annotations.

A third workable solution is to use two annotation types together,

@Constraints and the relevant SQL type (for example, @SQLInteger), to

annotate the desired field. This is slightly messy but the compiler allows as

many different annotations as you like on an annotation target. Note that

when using multiple annotations, you cannot use the same annotation twice.

Annotations don’t support inheritance
You cannot use the extends keyword with @interfaces. This is a pity,

because an elegant solution would have been to define an annotation

@TableColumn, as suggested above, with a nested annotation of type

@SQLType. That way, you could inherit all your SQL types, like

@SQLInteger and @SQLString, from @SQLType. This would reduce

typing and neaten the syntax. There doesn’t seem to be any suggestion of

Annotations 1067

annotations supporting inheritance in future releases, so the examples above

seem to be the best you can do under the circumstances.

Implementing the processor
Here is an example of an annotation processor which reads in a class file,

checks for its database annotations and generates the SQL command for

making the database:

//: annotations/database/TableCreator.java

// Reflection-based annotation processor.

// {Args: annotations.database.Member}

package annotations.database;

import java.lang.annotation.*;

import java.lang.reflect.*;

import java.util.*;

public class TableCreator {

 public static void main(String[] args) throws Exception {

 if(args.length < 1) {

 System.out.println("arguments: annotated classes");

 System.exit(0);

 }

 for(String className : args) {

 Class<?> cl = Class.forName(className);

 DBTable dbTable = cl.getAnnotation(DBTable.class);

 if(dbTable == null) {

 System.out.println(

 "No DBTable annotations in class " + className);

 continue;

 }

 String tableName = dbTable.name();

 // If the name is empty, use the Class name:

 if(tableName.length() < 1)

 tableName = cl.getName().toUpperCase();

 List<String> columnDefs = new ArrayList<String>();

 for(Field field : cl.getDeclaredFields()) {

 String columnName = null;

 Annotation[] anns = field.getDeclaredAnnotations();

 if(anns.length < 1)

 continue; // Not a db table column

 if(anns[0] instanceof SQLInteger) {

 SQLInteger sInt = (SQLInteger) anns[0];

 // Use field name if name not specified

1068 Thinking in Java Bruce Eckel

 if(sInt.name().length() < 1)

 columnName = field.getName().toUpperCase();

 else

 columnName = sInt.name();

 columnDefs.add(columnName + " INT" +

 getConstraints(sInt.constraints()));

 }

 if(anns[0] instanceof SQLString) {

 SQLString sString = (SQLString) anns[0];

 // Use field name if name not specified.

 if(sString.name().length() < 1)

 columnName = field.getName().toUpperCase();

 else

 columnName = sString.name();

 columnDefs.add(columnName + " VARCHAR(" +

 sString.value() + ")" +

 getConstraints(sString.constraints()));

 }

 StringBuilder createCommand = new StringBuilder(

 "CREATE TABLE " + tableName + "(");

 for(String columnDef : columnDefs)

 createCommand.append("\n " + columnDef + ",");

 // Remove trailing comma

 String tableCreate = createCommand.substring(

 0, createCommand.length() - 1) + ");";

 System.out.println("Table Creation SQL for " +

 className + " is :\n" + tableCreate);

 }

 }

 }

 private static String getConstraints(Constraints con) {

 String constraints = "";

 if(!con.allowNull())

 constraints += " NOT NULL";

 if(con.primaryKey())

 constraints += " PRIMARY KEY";

 if(con.unique())

 constraints += " UNIQUE";

 return constraints;

 }

} /* Output:

Table Creation SQL for annotations.database.Member is :

CREATE TABLE MEMBER(

 FIRSTNAME VARCHAR(30));

Annotations 1069

Table Creation SQL for annotations.database.Member is :

CREATE TABLE MEMBER(

 FIRSTNAME VARCHAR(30),

 LASTNAME VARCHAR(50));

Table Creation SQL for annotations.database.Member is :

CREATE TABLE MEMBER(

 FIRSTNAME VARCHAR(30),

 LASTNAME VARCHAR(50),

 AGE INT);

Table Creation SQL for annotations.database.Member is :

CREATE TABLE MEMBER(

 FIRSTNAME VARCHAR(30),

 LASTNAME VARCHAR(50),

 AGE INT,

 HANDLE VARCHAR(30) PRIMARY KEY);

*///:~

The main() method cycles through each of the class names on the command

line. Each class is loaded using forName() and checked to see if it has the

@DBTable annotation on it with getAnnotation(DBTable.class). If it

does, then the table name is found and stored. All of the fields in the class are

then loaded and checked using getDeclaredAnnotations(). This method

returns an array of all of the defined annotations for a particular method. The

instanceof operator is used to determine if these annotations are of type

@SQLInteger and @SQLString, and in each case the relevant String

fragment is then created with the name of the table column. Note that

because there is no inheritance of annotation interfaces, using

getDeclaredAnnotations() is the only way you can approximate

polymorphic behavior.

The nested @Constraint annotation is passed to the getConstraints()

which builds up a String containing the SQL constraints.

It is worth mentioning that the technique shown above is a somewhat naïve

way of defining an object/relational mapping. Having an annotation of type

@DBTable which takes the table name as a parameter forces you to

recompile your Java code if you want to change the table name. This might

not be desirable. There are many available frameworks for mapping objects to

relational databases, and more and more of them are making use of

annotations.

Exercise 1: (2) Implement more SQL types in the database example.

1070 Thinking in Java Bruce Eckel

Project:3 Modify the database example so that it connects and interacts with

a real database using JDBC.

Project: Modify the database example so that it creates conformant XML

files rather than writing SQL code.

Using apt to process annotations
The annotation processing tool apt is the first version of a tool that aids the

processing of annotations. Because it is an early incarnation, the tool is still a

little primitive, but it has features which can make your life easier.

Like javac, apt is designed to be run on Java source files rather than

compiled classes. By default, apt compiles the source files when it has

finished processing them. This is useful if you are automatically creating new

source files as part of your build process. In fact, apt checks newly created

source files for annotations and compiles them all in the same pass.

When your annotation processor creates a new source file, that file is itself

checked for annotations in a new round (as it is referred to in the

documentation) of processing. The tool will continue round after round of

processing until no more source files are being created. It then compiles all of

the source files.

Each annotation you write will need its own processor, but the apt tool can

easily group several annotation processors together. It allows you to specify

multiple classes to be processed, which is a lot easier than having to iterate

through File classes yourself. You can also add listeners to receive

notification of when an annotation processing round is complete.

At the time of this writing, apt is not available as an Ant task, but it can

obviously be run as an external task from Ant in the meantime. In order to

compile the annotation processors in this section you must have tools.jar in

your classpath; this library also contains the the com.sun.mirror.*

interfaces.

apt works by using an AnnotationProcessorFactory to create the right

kind of annotation processor for each annotation it finds. When you run apt,

3 Projects are suggestions to be used (for example) as term projects. Solutions to projects
are not included in the solution guide.

Annotations 1071

you specify either a factory class or a classpath where it can find the factories

it needs. If you don’t do this, apt will embark on an arcane discovery process,

the details of which can be found in the Developing an Annotation Processor

section of Oracle’s documentation.

When you create an annotation processor for use with apt, you can’t use the

reflection features in Java because you are working with source code, not

compiled classes.4 The mirror API5 solves this problem by allowing you to

view methods, fields and types in uncompiled source code.

Here is an annotation that can be used to extract the public methods from a

class and turn them into an interface:

//: annotations/ExtractInterface.java

// APT-based annotation processing.

package annotations;

import java.lang.annotation.*;

@Target(ElementType.TYPE)

@Retention(RetentionPolicy.SOURCE)

public @interface ExtractInterface {

 public String value();

} ///:~

The RetentionPolicy is SOURCE because there is no point in keeping this

annotation in the class file after we have extracted the interface from the

class. The following class provides a public method which can become part of

a useful interface:

//: annotations/Multiplier.java

// APT-based annotation processing.

package annotations;

@ExtractInterface("IMultiplier")

public class Multiplier {

 public int multiply(int x, int y) {

 int total = 0;

 for(int i = 0; i < x; i++)

4 However, using the non-standard -XclassesAsDecls option, you may work with
annotations that are in compiled classes.

5 The Java designers coyly suggest that a mirror is where you find a reflection.

1072 Thinking in Java Bruce Eckel

 total = add(total, y);

 return total;

 }

 private int add(int x, int y) { return x + y; }

 public static void main(String[] args) {

 Multiplier m = new Multiplier();

 System.out.println("11*16 = " + m.multiply(11, 16));

 }

} /* Output:

11*16 = 176

*///:~

The Multiplier class (which only works with positive integers) has a

multiply() method which calls the private add() method numerous times

to perform multiplication. The add() method is not public, so is not part of

the interface. The annotation is given the value of IMultiplier, which is the

name of the interface to create.

Now you need a processor to do the extraction:

//: annotations/InterfaceExtractorProcessor.java

// APT-based annotation processing.

// {Exec: apt -factory

// annotations.InterfaceExtractorProcessorFactory

// Multiplier.java -s ../annotations}

package annotations;

import com.sun.mirror.apt.*;

import com.sun.mirror.declaration.*;

import java.io.*;

import java.util.*;

public class InterfaceExtractorProcessor

 implements AnnotationProcessor {

 private final AnnotationProcessorEnvironment env;

 private ArrayList<MethodDeclaration> interfaceMethods =

 new ArrayList<MethodDeclaration>();

 public InterfaceExtractorProcessor(

 AnnotationProcessorEnvironment env) { this.env = env; }

 public void process() {

 for(TypeDeclaration typeDecl :

 env.getSpecifiedTypeDeclarations()) {

 ExtractInterface annot =

 typeDecl.getAnnotation(ExtractInterface.class);

 if(annot == null)

 break;

Annotations 1073

 for(MethodDeclaration m : typeDecl.getMethods())

 if(m.getModifiers().contains(Modifier.PUBLIC) &&

 !(m.getModifiers().contains(Modifier.STATIC)))

 interfaceMethods.add(m);

 if(interfaceMethods.size() > 0) {

 try {

 PrintWriter writer =

 env.getFiler().createSourceFile(annot.value());

 writer.println("package " +

 typeDecl.getPackage().getQualifiedName() +";");

 writer.println("public interface " +

 annot.value() + " {");

 for(MethodDeclaration m : interfaceMethods) {

 writer.print(" public ");

 writer.print(m.getReturnType() + " ");

 writer.print(m.getSimpleName() + " (");

 int i = 0;

 for(ParameterDeclaration parm :

 m.getParameters()) {

 writer.print(parm.getType() + " " +

 parm.getSimpleName());

 if(++i < m.getParameters().size())

 writer.print(", ");

 }

 writer.println(");");

 }

 writer.println("}");

 writer.close();

 } catch(IOException ioe) {

 throw new RuntimeException(ioe);

 }

 }

 }

 }

} ///:~

The process() method is where all the work is done. The

MethodDeclaration class and its getModifiers() method are used to

identify the public methods (but ignore the static ones) of the class being

processed. If any are found, they are stored in an ArrayList and used to

create the methods of a new interface definition in a .java file.

Notice that an AnnotationProcessorEnvironment object is passed into

the constructor. You can query this object for all of the types (class

1074 Thinking in Java Bruce Eckel

definitions) that the apt tool is processing, and you can use it to get a

Messager object and a Filer object. The Messager enables you to report

messages to the user, e.g., any errors that might have occurred with the

processing and where they are in the source code. The Filer is a kind of

PrintWriter through which you will create new files. The main reason that

you use a Filer object, rather than a plain PrintWriter, is that it allows apt

to keep track of any new files that you create, so it can check them for

annotations and compile them if it needs to.

You will also see that the method createSourceFile() opens an ordinary

output stream with the correct name for your Java class or interface. There

isn’t any support for creating Java language constructs, so you have to

generate the Java source code using the somewhat primitive print() and

println() methods. This means making sure that your brackets match up

and that your code is syntactically correct.

process() is called by the apt tool, which needs a factory to provide the

right processor:

//: annotations/InterfaceExtractorProcessorFactory.java

// APT-based annotation processing.

package annotations;

import com.sun.mirror.apt.*;

import com.sun.mirror.declaration.*;

import java.util.*;

public class InterfaceExtractorProcessorFactory

 implements AnnotationProcessorFactory {

 public AnnotationProcessor getProcessorFor(

 Set<AnnotationTypeDeclaration> atds,

 AnnotationProcessorEnvironment env) {

 return new InterfaceExtractorProcessor(env);

 }

 public Collection<String> supportedAnnotationTypes() {

 return

 Collections.singleton("annotations.ExtractInterface");

 }

 public Collection<String> supportedOptions() {

 return Collections.emptySet();

 }

} ///:~

Annotations 1075

There are only three methods on the AnnotationProcessorFactory

interface. As you can see, the one which provides the processor is

getProcessorFor(), which takes a Set of type declarations (the Java

classes that the apt tool is being run against), and the

AnnotationProcessorEnvironment object, which you have already seen

being passed through to the processor. The other two methods,

supportedAnnotationTypes() and supportedOptions(), are there so

you can check that you have processors for all of the annotations found by

apt and that you support all options specified at the command prompt. The

getProcessorFor() method is particularly important because if you don’t

return the full class name of your annotation type in the String collection,

apt will warn you that there is no relevant processor and exit without doing

anything.

The processor and factory are in the package annotations, so for the

directory structure above, the command line is embedded in the ‘Exec’

comment tag at the beginning of InterfaceExtractorProcessor.java. This

tells apt to use the factory class defined above and process the file

Multiplier.java. The -s option specifies that any new files must be created

in the directory annotations. The generated IMultiplier.java file, as you

might guess by looking at the println() statements in the processor above,

looks like this:

package annotations;

public interface IMultiplier {

 public int multiply (int x, int y);

}

This file will also be compiled by apt, so you will see the file

IMultiplier.class in the same directory.

Exercise 2: (3) Add support for division to the interface extractor.

Using the Visitor pattern with apt
Processing annotations can become complex. The example above is a

relatively simple annotation processor and only interprets one annotation,

but still requires a fair amount of complexity to make it work. To prevent the

complexity from scaling up badly when you have more annotations and more

processors, the mirror API provides classes to support the Visitor design

pattern. Visitor is one of the classic design patterns from the book Design

1076 Thinking in Java Bruce Eckel

Patterns by Gamma et al., and you can also find a more a detailed

explanation in On Java 8 at www.MindViewLLC.com.

A Visitor traverses a data structure or collection of objects, performing an

operation on each one. The data structure need not be ordered, and the

operation that you perform on each object will be specific to its type. This

decouples the operations from the objects themselves, meaning that you can

add new operations without adding methods to the class definitions.

This makes it useful for processing annotations, because a Java class can be

thought of as a collection of objects such as TypeDeclarations,

FieldDeclarations, MethodDeclarations, and so on. When you use the

apt tool with the Visitor pattern, you provide a Visitor class which has a

method for handling each type of declaration that you visit. Thus you can

implement appropriate behavior for annotations on methods, classes, fields

and so on.

Here is the SQL table generator again, this time using a factory and a

processor that makes use of the Visitor pattern:

//: annotations/database/TableCreationProcessorFactory.java

// The database example using Visitor.

// {Exec: apt -factory

// annotations.database.TableCreationProcessorFactory

// database/Member.java -s database}

package annotations.database;

import com.sun.mirror.apt.*;

import com.sun.mirror.declaration.*;

import com.sun.mirror.util.*;

import java.util.*;

import static com.sun.mirror.util.DeclarationVisitors.*;

public class TableCreationProcessorFactory

 implements AnnotationProcessorFactory {

 public AnnotationProcessor getProcessorFor(

 Set<AnnotationTypeDeclaration> atds,

 AnnotationProcessorEnvironment env) {

 return new TableCreationProcessor(env);

 }

 public Collection<String> supportedAnnotationTypes() {

 return Arrays.asList(

 "annotations.database.DBTable",

 "annotations.database.Constraints",

Annotations 1077

 "annotations.database.SQLString",

 "annotations.database.SQLInteger");

 }

 public Collection<String> supportedOptions() {

 return Collections.emptySet();

 }

 private static class TableCreationProcessor

 implements AnnotationProcessor {

 private final AnnotationProcessorEnvironment env;

 private String sql = "";

 public TableCreationProcessor(

 AnnotationProcessorEnvironment env) {

 this.env = env;

 }

 public void process() {

 for(TypeDeclaration typeDecl :

 env.getSpecifiedTypeDeclarations()) {

 typeDecl.accept(getDeclarationScanner(

 new TableCreationVisitor(), NO_OP));

 sql = sql.substring(0, sql.length() - 1) + ");";

 System.out.println("creation SQL is :\n" + sql);

 sql = "";

 }

 }

 private class TableCreationVisitor

 extends SimpleDeclarationVisitor {

 public void visitClassDeclaration(

 ClassDeclaration d) {

 DBTable dbTable = d.getAnnotation(DBTable.class);

 if(dbTable != null) {

 sql += "CREATE TABLE ";

 sql += (dbTable.name().length() < 1)

 ? d.getSimpleName().toUpperCase()

 : dbTable.name();

 sql += " (";

 }

 }

 public void visitFieldDeclaration(

 FieldDeclaration d) {

 String columnName = "";

 if(d.getAnnotation(SQLInteger.class) != null) {

 SQLInteger sInt = d.getAnnotation(

 SQLInteger.class);

 // Use field name if name not specified

1078 Thinking in Java Bruce Eckel

 if(sInt.name().length() < 1)

 columnName = d.getSimpleName().toUpperCase();

 else

 columnName = sInt.name();

 sql += "\n " + columnName + " INT" +

 getConstraints(sInt.constraints()) + ",";

 }

 if(d.getAnnotation(SQLString.class) != null) {

 SQLString sString = d.getAnnotation(

 SQLString.class);

 // Use field name if name not specified.

 if(sString.name().length() < 1)

 columnName = d.getSimpleName().toUpperCase();

 else

 columnName = sString.name();

 sql += "\n " + columnName + " VARCHAR(" +

 sString.value() + ")" +

 getConstraints(sString.constraints()) + ",";

 }

 }

 private String getConstraints(Constraints con) {

 String constraints = "";

 if(!con.allowNull())

 constraints += " NOT NULL";

 if(con.primaryKey())

 constraints += " PRIMARY KEY";

 if(con.unique())

 constraints += " UNIQUE";

 return constraints;

 }

 }

 }

} ///:~

The output is identical to the previous DBTable example.

The processor and the visitor are inner classes in this example. Note that the

process() method only adds the visitor class and initializes the SQL string.

Both parameters of getDeclarationScanner() are visitors; the first is used

before each declaration is visited and the second is used afterwards. This

processor only needs the pre-visit visitor, so NO_OP is given as the second

parameter. This is a static field in the DeclarationVisitors class, which is

a DeclarationVisitor that doesn’t do anything.

Annotations 1079

TableCreationVisitor extends SimpleDeclarationVisitor, overriding

the two methods visitClassDeclaration() and visitFieldDeclaration().

The SimpleDeclarationVisitor is an adapter that implements all of the

methods on the DeclarationVisitor interface, so you can concentrate on

the ones you need. In visitClassDeclaration(), the ClassDeclaration

object is checked for the DBTable annotation, and if it is there, the first part

of the SQL creation String is initialized. In visitFieldDeclaration(), the

field declaration is queried for its field annotations and the information is

extracted in much the same way as it was in the original example, earlier in

the chapter.

This may seem like a more complicated way of doing things, but it produces a

more scalable solution. If the complexity of your annotation processor

increases, then writing your own standalone processor as in the earlier

example would soon become quite complicated.

Exercise 3: (2) Add support for more SQL types to
TableCreationProcessorFactory.java.

Annotation-based unit testing
Unit testing is the practice of creating one or more tests for each method in a

class, in order to regularly test the portions of a class for correct behavior.

The most popular tool used for unit testing in Java is called JUnit; at the time

of this writing, JUnit was in the process of being updated to JUnit version 4,

in order to incorporate annotations.6 One of the main problems with pre-

annotation versions of JUnit is the amount of “ceremony” necessary in order

to set up and run JUnit tests. This has been reduced over time, but

annotations will move testing closer to “the simplest unit testing system that

can possibly work.”

With pre-annotation versions of JUnit, you must create a separate class to

hold your unit tests. With annotations we can include the unit tests inside the

class to be tested, and thus reduce the time and trouble of unit testing to a

minimum. This approach has the additional benefit of being able to test

private methods as easily as public ones.

6 I originally had thoughts of making a “better JUnit” based on the design shown here.
However, it appears that JUnit4 also includes many of the ideas presented here, so it
remains easier to go along with that.

1080 Thinking in Java Bruce Eckel

Since this example test framework is annotation-based, it’s called @Unit.

The most basic form of testing, and one which you will probably use much of

the time, only needs the @Test annotation to indicate which methods should

be tested. One option is for the test methods to take no arguments and return

a boolean to indicate success or failure. You can use any name you like for

test methods. Also, @Unit test methods can have any access that you’d like,

including private.

To use @Unit, all you need to do is import net.mindview.atunit,7 mark

the appropriate methods and fields with @Unit test tags (which you’ll learn

about in the following examples) and then have your build system run @Unit

on the resulting class. Here’s a simple example:

//: annotations/AtUnitExample1.java

package annotations;

import net.mindview.atunit.*;

import net.mindview.util.*;

public class AtUnitExample1 {

 public String methodOne() {

 return "This is methodOne";

 }

 public int methodTwo() {

 System.out.println("This is methodTwo");

 return 2;

 }

 @Test boolean methodOneTest() {

 return methodOne().equals("This is methodOne");

 }

 @Test boolean m2() { return methodTwo() == 2; }

 @Test private boolean m3() { return true; }

 // Shows output for failure:

 @Test boolean failureTest() { return false; }

 @Test boolean anotherDisappointment() { return false; }

 public static void main(String[] args) throws Exception {

 OSExecute.command(

 "java net.mindview.atunit.AtUnit AtUnitExample1");

 }

} /* Output:

annotations.AtUnitExample1

7 This library is part of this book’s code package, available at www.MindViewLLC.com.

Annotations 1081

 . methodOneTest

 . m2 This is methodTwo

 . m3

 . failureTest (failed)

 . anotherDisappointment (failed)

(5 tests)

>>> 2 FAILURES <<<

 annotations.AtUnitExample1: failureTest

 annotations.AtUnitExample1: anotherDisappointment

*///:~

Classes to be @Unit tested must be placed in packages.

The @Test annotation preceding the methods methodOneTest(), m2(),

m3(), failureTest() and anotherDisappointment() tells @Unit to

run these methods as unit tests. It will also ensure that those methods take no

arguments and return a boolean or void. Your only responsibility when you

write the unit test is to determine whether the test succeeds or fails and

returns true or false, respectively (for methods that return boolean).

If you’re familiar with JUnit, you’ll also note @Unit’s more informative

output—you can see the test that’s currently being run so the output from that

test is more useful, and at the end it tells you the classes and tests that caused

failures.

You’re not forced to embed test methods inside your classes, if that doesn’t

work for you. The easiest way to create non-embedded tests is with

inheritance:

//: annotations/AtUnitExternalTest.java

// Creating non-embedded tests.

package annotations;

import net.mindview.atunit.*;

import net.mindview.util.*;

public class AtUnitExternalTest extends AtUnitExample1 {

 @Test boolean _methodOne() {

 return methodOne().equals("This is methodOne");

 }

 @Test boolean _methodTwo() { return methodTwo() == 2; }

 public static void main(String[] args) throws Exception {

 OSExecute.command(

1082 Thinking in Java Bruce Eckel

 "java net.mindview.atunit.AtUnit AtUnitExternalTest");

 }

} /* Output:

annotations.AtUnitExternalTest

 . _methodOne

 . _methodTwo This is methodTwo

OK (2 tests)

*///:~

This example also demonstrates the value of flexible naming (in contrast to

JUnit’s requirement to start all your tests with the word “test”). Here, @Test

methods that are directly testing another method are given the name of that

method starting with an underscore (I’m not suggesting that this is an ideal

style, just showing a possibility).

You can also use composition to create non-embedded tests:

//: annotations/AtUnitComposition.java

// Creating non-embedded tests.

package annotations;

import net.mindview.atunit.*;

import net.mindview.util.*;

public class AtUnitComposition {

 AtUnitExample1 testObject = new AtUnitExample1();

 @Test boolean _methodOne() {

 return

 testObject.methodOne().equals("This is methodOne");

 }

 @Test boolean _methodTwo() {

 return testObject.methodTwo() == 2;

 }

 public static void main(String[] args) throws Exception {

 OSExecute.command(

 "java net.mindview.atunit.AtUnit AtUnitComposition");

 }

} /* Output:

annotations.AtUnitComposition

 . _methodOne

 . _methodTwo This is methodTwo

OK (2 tests)

*///:~

Annotations 1083

A new member testObject is created for each test, since an

AtUnitComposition object is created for each test.

There are no special “assert” methods as there are in JUnit, but the second

form of the @Test method allows you to return void (or boolean, if you still

want to return true or false in this case). To test for success, you can use

Java assert statements. Java assertions normally have to be enabled with the

-ea flag on the java command line, but @Unit automatically enables them.

To indicate failure, you can even use an exception. One of the @Unit design

goals is to require as little additional syntax as possible, and Java’s assert

and exceptions are all that is necessary to report errors. A failed assert or an

exception that emerges from the test method is treated as a failed test, but

@Unit does not halt in this case—it continues until all the tests are run.

Here’s an example:

//: annotations/AtUnitExample2.java

// Assertions and exceptions can be used in @Tests.

package annotations;

import java.io.*;

import net.mindview.atunit.*;

import net.mindview.util.*;

public class AtUnitExample2 {

 public String methodOne() {

 return "This is methodOne";

 }

 public int methodTwo() {

 System.out.println("This is methodTwo");

 return 2;

 }

 @Test void assertExample() {

 assert methodOne().equals("This is methodOne");

 }

 @Test void assertFailureExample() {

 assert 1 == 2: "What a surprise!";

 }

 @Test void exceptionExample() throws IOException {

 new FileInputStream("nofile.txt"); // Throws

 }

 @Test boolean assertAndReturn() {

 // Assertion with message:

 assert methodTwo() == 2: "methodTwo must equal 2";

 return methodOne().equals("This is methodOne");

1084 Thinking in Java Bruce Eckel

 }

 public static void main(String[] args) throws Exception {

 OSExecute.command(

 "java net.mindview.atunit.AtUnit AtUnitExample2");

 }

} /* Output:

annotations.AtUnitExample2

 . assertExample

 . assertFailureExample java.lang.AssertionError: What a

surprise!

(failed)

 . exceptionExample java.io.FileNotFoundException:

nofile.txt (The system cannot find the file specified)

(failed)

 . assertAndReturn This is methodTwo

(4 tests)

>>> 2 FAILURES <<<

 annotations.AtUnitExample2: assertFailureExample

 annotations.AtUnitExample2: exceptionExample

*///:~

Here’s an example using non-embedded tests with assertions, performing

some simple tests of java.util.HashSet:

//: annotations/HashSetTest.java

package annotations;

import java.util.*;

import net.mindview.atunit.*;

import net.mindview.util.*;

public class HashSetTest {

 HashSet<String> testObject = new HashSet<String>();

 @Test void initialization() {

 assert testObject.isEmpty();

 }

 @Test void _contains() {

 testObject.add("one");

 assert testObject.contains("one");

 }

 @Test void _remove() {

 testObject.add("one");

 testObject.remove("one");

 assert testObject.isEmpty();

Annotations 1085

 }

 public static void main(String[] args) throws Exception {

 OSExecute.command(

 "java net.mindview.atunit.AtUnit HashSetTest");

 }

} /* Output:

annotations.HashSetTest

 . initialization

 . _remove

 . _contains

OK (3 tests)

*///:~

The inheritance approach would seem to be simpler, in the absence of other

constraints.

Exercise 4: (3) Verify that a new testObject is created before each test.

Exercise 5: (1) Modify the above example to use the inheritance
approach.

Exercise 6: (1) Test LinkedList using the approach shown in
HashSetTest.java.

Exercise 7: (1) Modify the previous exercise to use the inheritance
approach.

For each unit test, @Unit creates an object of the class under test using the

default constructor. The test is called for that object, and then the object is

discarded to prevent side effects from leaking into other unit tests. This relies

on the default constructor to create the objects. If you don’t have a default

constructor or you need more sophisticated construction for objects, you

create a static method to build the object and attach the

@TestObjectCreate annotation, like this:

//: annotations/AtUnitExample3.java

package annotations;

import net.mindview.atunit.*;

import net.mindview.util.*;

public class AtUnitExample3 {

 private int n;

 public AtUnitExample3(int n) { this.n = n; }

 public int getN() { return n; }

 public String methodOne() {

1086 Thinking in Java Bruce Eckel

 return "This is methodOne";

 }

 public int methodTwo() {

 System.out.println("This is methodTwo");

 return 2;

 }

 @TestObjectCreate static AtUnitExample3 create() {

 return new AtUnitExample3(47);

 }

 @Test boolean initialization() { return n == 47; }

 @Test boolean methodOneTest() {

 return methodOne().equals("This is methodOne");

 }

 @Test boolean m2() { return methodTwo() == 2; }

 public static void main(String[] args) throws Exception {

 OSExecute.command(

 "java net.mindview.atunit.AtUnit AtUnitExample3");

 }

} /* Output:

annotations.AtUnitExample3

 . initialization

 . methodOneTest

 . m2 This is methodTwo

OK (3 tests)

*///:~

The @TestObjectCreate method must be static and must return an object

of the type that you’re testing—the @Unit program will ensure that this is

true.

Sometimes you need additional fields to support your unit testing. The

@TestProperty annotation can be used to tag fields that are only used for

unit testing (so that they can be removed before you deliver the product to the

client). Here’s an example that reads values from a String that is broken up

using the String.split() method. This input is used to produce test objects:

//: annotations/AtUnitExample4.java

package annotations;

import java.util.*;

import net.mindview.atunit.*;

import net.mindview.util.*;

import static net.mindview.util.Print.*;

Annotations 1087

public class AtUnitExample4 {

 static String theory = "All brontosauruses " +

 "are thin at one end, much MUCH thicker in the " +

 "middle, and then thin again at the far end.";

 private String word;

 private Random rand = new Random(); // Time-based seed

 public AtUnitExample4(String word) { this.word = word; }

 public String getWord() { return word; }

 public String scrambleWord() {

 List<Character> chars = new ArrayList<Character>();

 for(Character c : word.toCharArray())

 chars.add(c);

 Collections.shuffle(chars, rand);

 StringBuilder result = new StringBuilder();

 for(char ch : chars)

 result.append(ch);

 return result.toString();

 }

 @TestProperty static List<String> input =

 Arrays.asList(theory.split(" "));

 @TestProperty

 static Iterator<String> words = input.iterator();

 @TestObjectCreate static AtUnitExample4 create() {

 if(words.hasNext())

 return new AtUnitExample4(words.next());

 else

 return null;

 }

 @Test boolean words() {

 print("'" + getWord() + "'");

 return getWord().equals("are");

 }

 @Test boolean scramble1() {

 // Change to a specific seed to get verifiable results:

 rand = new Random(47);

 print("'" + getWord() + "'");

 String scrambled = scrambleWord();

 print(scrambled);

 return scrambled.equals("lAl");

 }

 @Test boolean scramble2() {

 rand = new Random(74);

 print("'" + getWord() + "'");

 String scrambled = scrambleWord();

1088 Thinking in Java Bruce Eckel

 print(scrambled);

 return scrambled.equals("tsaeborornussu");

 }

 public static void main(String[] args) throws Exception {

 System.out.println("starting");

 OSExecute.command(

 "java net.mindview.atunit.AtUnit AtUnitExample4");

 }

} /* Output:

starting

annotations.AtUnitExample4

 . scramble1 'All'

lAl

 . scramble2 'brontosauruses'

tsaeborornussu

 . words 'are'

OK (3 tests)

*///:~

@TestProperty can also be used to tag methods that may be used during

testing, but are not tests themselves.

Note that this program relies on the execution order of the tests, which is in

general not a good practice.

If your test object creation performs initialization that requires later cleanup,

you can optionally add a static @TestObjectCleanup method to perform

cleanup when you are finished with the test object. In this example,

@TestObjectCreate opens a file to create each test object, so the file must

be closed before the test object is discarded:

//: annotations/AtUnitExample5.java

package annotations;

import java.io.*;

import net.mindview.atunit.*;

import net.mindview.util.*;

public class AtUnitExample5 {

 private String text;

 public AtUnitExample5(String text) { this.text = text; }

 public String toString() { return text; }

Annotations 1089

 @TestProperty static PrintWriter output;

 @TestProperty static int counter;

 @TestObjectCreate static AtUnitExample5 create() {

 String id = Integer.toString(counter++);

 try {

 output = new PrintWriter("Test" + id + ".txt");

 } catch(IOException e) {

 throw new RuntimeException(e);

 }

 return new AtUnitExample5(id);

 }

 @TestObjectCleanup static void

 cleanup(AtUnitExample5 tobj) {

 System.out.println("Running cleanup");

 output.close();

 }

 @Test boolean test1() {

 output.print("test1");

 return true;

 }

 @Test boolean test2() {

 output.print("test2");

 return true;

 }

 @Test boolean test3() {

 output.print("test3");

 return true;

 }

 public static void main(String[] args) throws Exception {

 OSExecute.command(

 "java net.mindview.atunit.AtUnit AtUnitExample5");

 }

} /* Output:

annotations.AtUnitExample5

 . test1

Running cleanup

 . test2

Running cleanup

 . test3

Running cleanup

OK (3 tests)

*///:~

You can see from the output that the cleanup method is automatically run

after each test.

1090 Thinking in Java Bruce Eckel

Using @Unit with generics
Generics pose a special problem, because you can’t “test generically.” You

must test for a specific type parameter or set of parameters. The solution is

simple: Inherit a test class from a specified version of the generic class.

Here’s a simple implementation of a stack:

//: annotations/StackL.java

// A stack built on a linkedList.

package annotations;

import java.util.*;

public class StackL<T> {

 private LinkedList<T> list = new LinkedList<T>();

 public void push(T v) { list.addFirst(v); }

 public T top() { return list.getFirst(); }

 public T pop() { return list.removeFirst(); }

} ///:~

To test a String version, inherit a test class from StackL<String>:

//: annotations/StackLStringTest.java

// Applying @Unit to generics.

package annotations;

import net.mindview.atunit.*;

import net.mindview.util.*;

public class StackLStringTest extends StackL<String> {

 @Test void _push() {

 push("one");

 assert top().equals("one");

 push("two");

 assert top().equals("two");

 }

 @Test void _pop() {

 push("one");

 push("two");

 assert pop().equals("two");

 assert pop().equals("one");

 }

 @Test void _top() {

 push("A");

 push("B");

 assert top().equals("B");

Annotations 1091

 assert top().equals("B");

 }

 public static void main(String[] args) throws Exception {

 OSExecute.command(

 "java net.mindview.atunit.AtUnit StackLStringTest");

 }

} /* Output:

annotations.StackLStringTest

 . _push

 . _pop

 . _top

OK (3 tests)

*///:~

The only potential drawback to inheritance is that you lose the ability to

access private methods in the class under test. If this is a problem, you can

either make the method in question protected, or add a non-private

@TestProperty method that calls the private method (the

@TestProperty method will then be stripped out of the production code by

the AtUnitRemover tool that is shown later in this chapter).

Exercise 8: (2) Create a class with a private method and add a non-
private @TestProperty method as described above. Call this method in
your test code.

Exercise 9: (2) Write basic @Unit tests for HashMap.

Exercise 10: (2) Select an example from elsewhere in the book and add
@Unit tests.

No “suites” necessary
One of the big advantages of @Unit over JUnit is that “suites” are

unnecessary. In JUnit, you need to somehow tell the unit testing tool what it

is that you need to test, and this requires the introduction of “suites” to group

tests together so that JUnit can find them and run the tests.

@Unit simply searches for class files containing the appropriate annotations,

and then executes the @Test methods. Much of my goal with the @Unit

testing system is to make it incredibly transparent, so that people can begin

using it by simply adding @Test methods, with no other special code or

knowledge like that required by JUnit and many other unit testing

frameworks. It’s hard enough to write tests without adding any new hurdles,

1092 Thinking in Java Bruce Eckel

so @Unit tries to make it trivial. This way, you’re more likely to actually

write the tests.

Implementing @Unit
First, we need to define all the annotation types. These are simple tags, and

have no fields. The @Test tag was defined at the beginning of the chapter,

and here are the rest of the annotations:

//: net/mindview/atunit/TestObjectCreate.java

// The @Unit @TestObjectCreate tag.

package net.mindview.atunit;

import java.lang.annotation.*;

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

public @interface TestObjectCreate {} ///:~

//: net/mindview/atunit/TestObjectCleanup.java

// The @Unit @TestObjectCleanup tag.

package net.mindview.atunit;

import java.lang.annotation.*;

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

public @interface TestObjectCleanup {} ///:~

//: net/mindview/atunit/TestProperty.java

// The @Unit @TestProperty tag.

package net.mindview.atunit;

import java.lang.annotation.*;

// Both fields and methods may be tagged as properties:

@Target({ElementType.FIELD, ElementType.METHOD})

@Retention(RetentionPolicy.RUNTIME)

public @interface TestProperty {} ///:~

All the tests have RUNTIME retention because the @Unit system must

discover the tests in compiled code.

To implement the system that runs the tests, we use reflection to extract the

annotations. The program uses this information to decide how to build the

test objects and run tests on them. Because of annotations this is surprisingly

small and straightforward:

Annotations 1093

//: net/mindview/atunit/AtUnit.java

// An annotation-based unit-test framework.

// {RunByHand}

package net.mindview.atunit;

import java.lang.reflect.*;

import java.io.*;

import java.util.*;

import net.mindview.util.*;

import static net.mindview.util.Print.*;

public class AtUnit implements ProcessFiles.Strategy {

 static Class<?> testClass;

 static List<String> failedTests= new ArrayList<String>();

 static long testsRun = 0;

 static long failures = 0;

 public static void main(String[] args) throws Exception {

 ClassLoader.getSystemClassLoader()

 .setDefaultAssertionStatus(true); // Enable asserts

 new ProcessFiles(new AtUnit(), "class").start(args);

 if(failures == 0)

 print("OK (" + testsRun + " tests)");

 else {

 print("(" + testsRun + " tests)");

 print("\n>>> " + failures + " FAILURE" +

 (failures > 1 ? "S" : "") + " <<<");

 for(String failed : failedTests)

 print(" " + failed);

 }

 }

 public void process(File cFile) {

 try {

 String cName = ClassNameFinder.thisClass(

 BinaryFile.read(cFile));

 if(!cName.contains("."))

 return; // Ignore unpackaged classes

 testClass = Class.forName(cName);

 } catch(Exception e) {

 throw new RuntimeException(e);

 }

 TestMethods testMethods = new TestMethods();

 Method creator = null;

 Method cleanup = null;

 for(Method m : testClass.getDeclaredMethods()) {

 testMethods.addIfTestMethod(m);

1094 Thinking in Java Bruce Eckel

 if(creator == null)

 creator = checkForCreatorMethod(m);

 if(cleanup == null)

 cleanup = checkForCleanupMethod(m);

 }

 if(testMethods.size() > 0) {

 if(creator == null)

 try {

 if(!Modifier.isPublic(testClass

 .getDeclaredConstructor().getModifiers())) {

 print("Error: " + testClass +

 " default constructor must be public");

 System.exit(1);

 }

 } catch(NoSuchMethodException e) {

 // Synthesized default constructor; OK

 }

 print(testClass.getName());

 }

 for(Method m : testMethods) {

 printnb(" . " + m.getName() + " ");

 try {

 Object testObject = createTestObject(creator);

 boolean success = false;

 try {

 if(m.getReturnType().equals(boolean.class))

 success = (Boolean)m.invoke(testObject);

 else {

 m.invoke(testObject);

 success = true; // If no assert fails

 }

 } catch(InvocationTargetException e) {

 // Actual exception is inside e:

 print(e.getCause());

 }

 print(success ? "" : "(failed)");

 testsRun++;

 if(!success) {

 failures++;

 failedTests.add(testClass.getName() +

 ": " + m.getName());

 }

 if(cleanup != null)

 cleanup.invoke(testObject, testObject);

Annotations 1095

 } catch(Exception e) {

 throw new RuntimeException(e);

 }

 }

 }

 static class TestMethods extends ArrayList<Method> {

 void addIfTestMethod(Method m) {

 if(m.getAnnotation(Test.class) == null)

 return;

 if(!(m.getReturnType().equals(boolean.class) ||

 m.getReturnType().equals(void.class)))

 throw new RuntimeException("@Test method" +

 " must return boolean or void");

 m.setAccessible(true); // In case it's private, etc.

 add(m);

 }

 }

 private static Method checkForCreatorMethod(Method m) {

 if(m.getAnnotation(TestObjectCreate.class) == null)

 return null;

 if(!m.getReturnType().equals(testClass))

 throw new RuntimeException("@TestObjectCreate " +

 "must return instance of Class to be tested");

 if((m.getModifiers() &

 java.lang.reflect.Modifier.STATIC) < 1)

 throw new RuntimeException("@TestObjectCreate " +

 "must be static.");

 m.setAccessible(true);

 return m;

 }

 private static Method checkForCleanupMethod(Method m) {

 if(m.getAnnotation(TestObjectCleanup.class) == null)

 return null;

 if(!m.getReturnType().equals(void.class))

 throw new RuntimeException("@TestObjectCleanup " +

 "must return void");

 if((m.getModifiers() &

 java.lang.reflect.Modifier.STATIC) < 1)

 throw new RuntimeException("@TestObjectCleanup " +

 "must be static.");

 if(m.getParameterTypes().length == 0 ||

 m.getParameterTypes()[0] != testClass)

 throw new RuntimeException("@TestObjectCleanup " +

 "must take an argument of the tested type.");

1096 Thinking in Java Bruce Eckel

 m.setAccessible(true);

 return m;

 }

 private static Object createTestObject(Method creator) {

 if(creator != null) {

 try {

 return creator.invoke(testClass);

 } catch(Exception e) {

 throw new RuntimeException("Couldn't run " +

 "@TestObject (creator) method.");

 }

 } else { // Use the default constructor:

 try {

 return testClass.newInstance();

 } catch(Exception e) {

 throw new RuntimeException("Couldn't create a " +

 "test object. Try using a @TestObject method.");

 }

 }

 }

} ///:~

AtUnit.java uses the ProcessFiles tool in net.mindview.util. The

AtUnit class implements ProcessFiles.Strategy, which comprises the

method process(). This way, an instance of AtUnit can be passed to the

ProcessFiles constructor. The second constructor argument tells

ProcessFiles to look for all files that have “class” extensions.

If you do not provide a command-line argument, the program will traverse

the current directory tree. You may also provide multiple arguments which

can be either class files (with or without the .class extension) or directories.

Since @Unit will automatically find the testable classes and methods, no

“suite” mechanism is necessary.8

One of the problems that AtUnit.java must solve when it discovers class

files is that the actual qualified class name (including package) is not evident

from the class file name. In order to discover this information, the class file

must be analyzed, which is not trivial, but not impossible, either.9 So the first

8 It is not clear why the default constructor for the class under test must be public, but if
it isn’t, the call to newInstance() just hangs (doesn’t throw an exception).

9 Jeremy Meyer and I spent most of a day figuring this out.

Annotations 1097

thing that happens when a .class file is found is that it is opened and its

binary data is read and handed to ClassNameFinder.thisClass(). Here,

we are moving into the realm of “bytecode engineering,” because we are

actually analyzing the contents of a class file:

//: net/mindview/atunit/ClassNameFinder.java

package net.mindview.atunit;

import java.io.*;

import java.util.*;

import net.mindview.util.*;

import static net.mindview.util.Print.*;

public class ClassNameFinder {

 public static String thisClass(byte[] classBytes) {

 Map<Integer,Integer> offsetTable =

 new HashMap<Integer,Integer>();

 Map<Integer,String> classNameTable =

 new HashMap<Integer,String>();

 try {

 DataInputStream data = new DataInputStream(

 new ByteArrayInputStream(classBytes));

 int magic = data.readInt(); // 0xcafebabe

 int minorVersion = data.readShort();

 int majorVersion = data.readShort();

 int constant_pool_count = data.readShort();

 int[] constant_pool = new int[constant_pool_count];

 for(int i = 1; i < constant_pool_count; i++) {

 int tag = data.read();

 int tableSize;

 switch(tag) {

 case 1: // UTF

 int length = data.readShort();

 char[] bytes = new char[length];

 for(int k = 0; k < bytes.length; k++)

 bytes[k] = (char)data.read();

 String className = new String(bytes);

 classNameTable.put(i, className);

 break;

 case 5: // LONG

 case 6: // DOUBLE

 data.readLong(); // discard 8 bytes

 i++; // Special skip necessary

 break;

 case 7: // CLASS

1098 Thinking in Java Bruce Eckel

 int offset = data.readShort();

 offsetTable.put(i, offset);

 break;

 case 8: // STRING

 data.readShort(); // discard 2 bytes

 break;

 case 3: // INTEGER

 case 4: // FLOAT

 case 9: // FIELD_REF

 case 10: // METHOD_REF

 case 11: // INTERFACE_METHOD_REF

 case 12: // NAME_AND_TYPE

 data.readInt(); // discard 4 bytes;

 break;

 default:

 throw new RuntimeException("Bad tag " + tag);

 }

 }

 short access_flags = data.readShort();

 int this_class = data.readShort();

 int super_class = data.readShort();

 return classNameTable.get(

 offsetTable.get(this_class)).replace('/', '.');

 } catch(Exception e) {

 throw new RuntimeException(e);

 }

 }

 // Demonstration:

 public static void main(String[] args) throws Exception {

 if(args.length > 0) {

 for(String arg : args)

 print(thisClass(BinaryFile.read(new File(arg))));

 } else

 // Walk the entire tree:

 for(File klass : Directory.walk(".", ".*\\.class"))

 print(thisClass(BinaryFile.read(klass)));

 }

} ///:~

Although it’s not possible to go into full detail here, each class file follows a

particular format and I’ve tried to use meaningful field names for the pieces

of data that are picked out of the ByteArrayInputStream; you can also see

the size of each piece by the length of the read performed on the input stream.

For example, the first 32 bits of any class file is always the “magic number”

Annotations 1099

hex 0xcafebabe,10 and the next two shorts are version information. The

constant pool contains the constants for the program and so is of variable

size; the next short tells how big it is, so that an appropriate-sized array can

be allocated. Each entry in the constant pool may be a fixed-size or variable-

sized value, so we must examine the tag that begins each one to find out what

to do with it—that’s the switch statement. Here, we are not trying to

accurately analyze all the data in the class file, but merely to step through and

store the pieces of interest, so you’ll notice that a fair amount of data is

discarded. Information about classes is stored in the classNameTable and

the offsetTable. After the constant pool is read, the this_class information

can be found, which is an index into the offsetTable, which produces an

index into the classNameTable, which produces the class name.

Back in AtUnit.java, process() now has the class name and can look to see

if it contains a ‘.’, which means it’s in a package. Unpackaged classes are

ignored. If a class is in a package, the standard class loader is used to load the

class with Class.forName(). Now the class can be analyzed for @Unit

annotations.

We only need to look for three things: @Test methods, which are stored in a

TestMethods list, and whether there’s an @TestObjectCreate and

@TestObjectCleanup method. These are discovered through the

associated method calls that you see in the code, which look for the

annotations.

If any @Test methods have been found, the name of the class is printed so

the viewer can see what’s happening, and then each test is executed. This

means printing the method name, then calling createTestObject(), which

will use the @TestObjectCreate method if one exists, or will fall back to the

default constructor otherwise. Once the test object has been created, the test

method is invoked upon that object. If the test returns a boolean, the result

is captured. If not, we assume success if there is no exception (which would

happen in the case of a failed assert or any other kind of exception). If an

exception is thrown, the exception information is printed to show the cause.

If any failure occurs, the failure count is increased and the class name and

10 Various legends surround the meaning of this, but since Java was created by nerds we
can make a reasonable guess that it had something to do with fantasizing about a woman
in a coffee shop.

1100 Thinking in Java Bruce Eckel

method are added to failedTests so these can be reported at the end of the

run.

Exercise 11: (5) Add an @TestNote annotation to @Unit, so that the
accompanying note is simply displayed during testing.

Removing test code
Although in many projects it won’t make a difference if you leave the test

code in the deliverable (especially if you make all the test methods private,

which you can do if you like), in some cases you will want to strip out the test

code either to keep the deliverable small or so that it is not exposed to the

client.

This requires more sophisticated bytecode engineering than it is comfortable

to do by hand. However, the open-source Javassist library11 brings bytecode

engineering into the realm of the possible. The following program takes an

optional -r flag as its first argument; if you provide the flag it will remove the

@Test annotations, and if you do not it will simply display the @Test

annotations. ProcessFiles is also used here to traverse the files and

directories of your choosing:

//: net/mindview/atunit/AtUnitRemover.java

// Displays @Unit annotations in compiled class files. If

// first argument is "-r", @Unit annotations are removed.

// {Args: ..}

// {Requires: javassist.bytecode.ClassFile;

// You must install the Javassist library from

// http://sourceforge.net/projects/jboss/ }

package net.mindview.atunit;

import javassist.*;

import javassist.bytecode.*;

import javassist.bytecode.annotation.*;

import java.io.*;

import net.mindview.util.*;

import static net.mindview.util.Print.*;

11 Thanks to Dr. Shigeru Chiba for creating this library, and for all his help in developing
AtUnitRemover.java.

Annotations 1101

public class AtUnitRemover

implements ProcessFiles.Strategy {

 private static boolean remove = false;

 public static void main(String[] args) throws Exception {

 if(args.length > 0 && args[0].equals("-r")) {

 remove = true;

 String[] nargs = new String[args.length - 1];

 System.arraycopy(args, 1, nargs, 0, nargs.length);

 args = nargs;

 }

 new ProcessFiles(

 new AtUnitRemover(), "class").start(args);

 }

 public void process(File cFile) {

 boolean modified = false;

 try {

 String cName = ClassNameFinder.thisClass(

 BinaryFile.read(cFile));

 if(!cName.contains("."))

 return; // Ignore unpackaged classes

 ClassPool cPool = ClassPool.getDefault();

 CtClass ctClass = cPool.get(cName);

 for(CtMethod method : ctClass.getDeclaredMethods()) {

 MethodInfo mi = method.getMethodInfo();

 AnnotationsAttribute attr = (AnnotationsAttribute)

 mi.getAttribute(AnnotationsAttribute.visibleTag);

 if(attr == null) continue;

 for(Annotation ann : attr.getAnnotations()) {

 if(ann.getTypeName()

 .startsWith("net.mindview.atunit")) {

 print(ctClass.getName() + " Method: "

 + mi.getName() + " " + ann);

 if(remove) {

 ctClass.removeMethod(method);

 modified = true;

 }

 }

 }

 }

 // Fields are not removed in this version (see text).

 if(modified)

 ctClass.toBytecode(new DataOutputStream(

 new FileOutputStream(cFile)));

 ctClass.detach();

1102 Thinking in Java Bruce Eckel

 } catch(Exception e) {

 throw new RuntimeException(e);

 }

 }

} ///:~

The ClassPool is a kind of picture of all the classes in the system that you are

modifying. It guarantees the consistency of all the modified classes. You must

get each CtClass from the ClassPool, similar to the way the class loader and

Class.forName() load classes into the JVM.

The CtClass contains the bytecodes for a class object and allows you to

produce information about the class and to manipulate the code in the class.

Here, we call getDeclaredMethods() (just like Java’s reflection

mechanism) and get a MethodInfo object from each CtMethod object.

From this, we can look at the annotations. If a method has an annotation in

the net.mindview.atunit package, that method is removed.

If the class has been modified, the original class file is overwritten with the

new class.

At the time of this writing, the “remove” functionality in Javassist had

recently been added,12 and we discovered that removing @TestProperty

fields turns out to be more complex than removing methods. Because there

may be static initialization operations that refer to those fields, you cannot

simply remove them. So the above version of the code only removes @Unit

methods. However, you should check the Javassist Web site for updates; field

removal should eventually be possible. In the meantime, note that the

external testing method shown in AtUnitExternalTest.java allows all tests

to be removed by simply deleting the class file created by the test code.

Summary
Annotations are a welcome addition to Java. They are a structured and type-

checked means of adding metadata to your code without rendering it

unreadable and messy. They can help remove the tedium of writing

deployment descriptors and other generated files. The fact that the

@deprecated Javadoc tag has been superseded by the @Deprecated

12 Dr. Shigeru Chiba very nicely added the CtClass.removeMethod() at our request.

Annotations 1103

annotation is just one indication of how much better suited annotations are

for describing information about classes than are comments.

Only a small handful of annotations come with Java SE5. This means that, if

you can’t find a library elsewhere, you will be creating annotations and the

associated logic to do this. With the apt tool, you can compile newly

generated files in one step, easing the build process, but currently there is

little more in the mirror API than some basic functionality to help you

identify the elements of Java class definitions. As you’ve seen, Javassist can

be used for bytecode engineering, or you can hand-code your own bytecode

manipulation tools.

This situation will certainly improve, and providers of APIs and frameworks

will start providing annotations as part of their toolkits. As you can imagine

by seeing the @Unit system, it is very likely that annotations will cause

significant changes in our Java programming experience.

Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for sale from www.MindViewLLC.com.

 1105

Concurrency
Up to this point, you’ve been learning about sequential
programming. Everything in a program happens one step
at a time.

A large subset of programming problems can be solved using sequential

programming. For some problems, however, it becomes convenient or even

essential to execute several parts of a program in parallel, so that those

portions either appear to be executing concurrently, or if multiple processors

are available, actually do execute simultaneously.

Parallel programming can produce great improvements in program execution

speed, provide an easier model for designing certain types of programs, or

both. However, becoming adept at concurrent programming theory and

techniques is a step up from everything you’ve learned so far in this book, and

is an intermediate to advanced topic. This chapter can only serve as an

introduction, and you should by no means consider yourself a good

concurrent programmer even if you understand this chapter thoroughly.

As you shall see, the real problem with concurrency occurs when tasks that

are executing in parallel begin to interfere with each other. This can happen

in such a subtle and occasional manner that it’s probably fair to say that

concurrency is “arguably deterministic but effectively nondeterministic.” That

is, you can make an argument to conclude that it’s possible to write

concurrent programs that, through care and code inspection, work correctly.

In practice, however, it’s much easier to write concurrent programs that only

appear to work, but given the right conditions, will fail. These conditions may

never actually occur, or occur so infrequently that you never see them during

testing. In fact, you may not be able to write test code that will generate

failure conditions for your concurrent program. The resulting failures will

often only occur occasionally, and as a result they appear in the form of

customer complaints. This is one of the strongest arguments for studying

concurrency: If you ignore it, you’re likely to get bitten.

Concurrency thus seems fraught with peril, and if that makes you a bit

fearful, this is probably a good thing. Although Java SE5 has made significant

1106 Thinking in Java Bruce Eckel

improvements in concurrency, there are still no safety nets like compile-time

verification or checked exceptions to tell you when you make a mistake. With

concurrency, you’re on your own, and only by being both suspicious and

aggressive can you write multithreaded code in Java that will be reliable.

People sometimes suggest that concurrency is too advanced to include in a

book that introduces the language. They argue that concurrency is a discrete

topic that can be treated independently, and the few cases where it appears in

daily programming (such as graphical user interfaces) can be handled with

special idioms. Why introduce such a complex topic if you can avoid it?

Alas, if only it were so. Unfortunately, you don’t get to choose when threads

will appear in your Java programs. Just because you never start a thread

yourself doesn’t mean you’ll be able to avoid writing threaded code. For

example, Web systems are one of the most common Java applications, and

the basic Web library class, the servlet, is inherently multithreaded—this is

essential because Web servers often contain multiple processors, and

concurrency is an ideal way to utilize these processors. As simple as a servlet

might seem, you must understand concurrency issues in order to use servlets

properly. The same goes for graphical user interface programming, as you

shall see in the Graphical User Interfaces chapter. Although the Swing and

SWT libraries both have mechanisms for thread safety, it’s hard to know how

to use these properly without understanding concurrency.

Java is a multithreaded language, and concurrency issues are present

whether you are aware of them or not. As a result, there are many Java

programs in use that either just work by accident, or work most of the time

and mysteriously break every now and again because of undiscovered

concurrency flaws. Sometimes this breakage is benign, but sometimes it

means the loss of valuable data, and if you aren’t at least aware of

concurrency issues, you may end up assuming the problem is somewhere else

rather than in your software. These kinds of issues can also be exposed or

amplified if a program is moved to a multiprocessor system. Basically,

knowing about concurrency makes you aware that apparently correct

programs can exhibit incorrect behavior.

Concurrent programming is like stepping into a new world and learning a

new language, or at least a new set of language concepts. Understanding

concurrent programming is on the same order of difficulty as understanding

object-oriented programming. If you apply some effort, you can fathom the

basic mechanism, but it generally takes deep study and understanding to

Concurrency 1107

develop a true grasp of the subject. The goal of this chapter is to give you a

solid foundation in the basics of concurrency so that you can understand the

concepts and write reasonable multithreaded programs. Be aware that you

can easily become overconfident. If you are writing anything complex, you

will need to study dedicated books on the topic.

The many faces of concurrency
A primary reason why concurrent programming can be confusing is that

there is more than one problem to solve using concurrency, and more than

one approach to implementing concurrency, and no clean mapping between

the two issues (and often a blurring of the lines all around). As a result, you’re

forced to understand all issues and special cases in order to use concurrency

effectively.

The problems that you solve with concurrency can be roughly classified as

“speed” and “design manageability.”

Faster execution
The speed issue sounds simple at first: If you want a program to run faster,

break it into pieces and run each piece on a separate processor. Concurrency

is a fundamental tool for multiprocessor programming. Now, with Moore’s

Law running out of steam (at least for conventional chips), speed

improvements are appearing in the form of multicore processors rather than

faster chips. To make your programs run faster, you’ll have to learn to take

advantage of those extra processors, and that’s one thing that concurrency

gives you.

If you have a multiprocessor machine, multiple tasks can be distributed

across those processors, which can dramatically improve throughput. This is

often the case with powerful multiprocessor Web servers, which can

distribute large numbers of user requests across CPUs in a program that

allocates one thread per request.

However, concurrency can often improve the performance of programs

running on a single processor.

This can sound a bit counterintuitive. If you think about it, a concurrent

program running on a single processor should actually have more overhead

than if all the parts of the program ran sequentially, because of the added cost

1108 Thinking in Java Bruce Eckel

of the so-called context switch (changing from one task to another). On the

surface, it would appear to be cheaper to run all the parts of the program as a

single task and save the cost of context switching.

The issue that can make a difference is blocking. If one task in your program

is unable to continue because of some condition outside of the control of the

program (typically I/O), we say that the task or the thread blocks. Without

concurrency, the whole program comes to a stop until the external condition

changes. If the program is written using concurrency, however, the other

tasks in the program can continue to execute when one task is blocked, so the

program continues to move forward. In fact, from a performance standpoint,

it makes no sense to use concurrency on a single-processor machine unless

one of the tasks might block.

A very common example of performance improvements in single-processor

systems is event-driven programming. Indeed, one of the most compelling

reasons for using concurrency is to produce a responsive user interface.

Consider a program that performs some long-running operation and thus

ends up ignoring user input and being unresponsive. If you have a “quit”

button, you don’t want to be forced to poll it in every piece of code you write.

This produces awkward code, without any guarantee that a programmer

won’t forget to perform the check. Without concurrency, the only way to

produce a responsive user interface is for all tasks to periodically check for

user input. By creating a separate thread of execution to respond to user

input, even though this thread will be blocked most of the time, the program

guarantees a certain level of responsiveness.

The program needs to continue performing its operations, and at the same

time it needs to return control to the user interface so that the program can

respond to the user. But a conventional method cannot continue performing

its operations and at the same time return control to the rest of the program.

In fact, this sounds like an impossibility, as if the CPU must be in two places

at once, but this is precisely the illusion that concurrency provides (in the

case of multiprocessor systems, this is more than just an illusion).

One very straightforward way to implement concurrency is at the operating

system level, using processes. A process is a self-contained program running

within its own address space. A multitasking operating system can run more

than one process (program) at a time by periodically switching the CPU from

one process to another, while making it look as if each process is chugging

along on its own. Processes are very attractive because the operating system

Concurrency 1109

usually isolates one process from another so they cannot interfere with each

other, which makes programming with processes relatively easy. In contrast,

concurrent systems like the one used in Java share resources like memory

and I/O, so the fundamental difficulty in writing multithreaded programs is

coordinating the use of these resources between different thread-driven tasks,

so that they cannot be accessed by more than one task at a time.

Here’s a simple example that utilizes operating system processes. While

writing a book, I regularly make multiple redundant backup copies of the

current state of the book. I make a copy into a local directory, one onto a

memory stick, one onto a Zip disk, and one onto a remote FTP site. To

automate this process, I wrote a small program (in Python, but the concepts

are the same) which zips the book into a file with a version number in the

name and then performs the copies. Initially, I performed all the copies

sequentially, waiting for each one to complete before starting the next one.

But then I realized that each copy operation took a different amount of time

depending on the I/O speed of the medium. Since I was using a multitasking

operating system, I could start each copy operation as a separate process and

let them run in parallel, which speeds up the execution of the entire program.

While one process is blocked, another one can be moving forward.

This is an ideal example of concurrency. Each task executes as a process in its

own address space, so there’s no possibility of interference between tasks.

More importantly, there’s no need for the tasks to communicate with each

other because they’re all completely independent. The operating system

minds all the details of ensuring proper file copying. As a result, there’s no

risk and you get a faster program, effectively for free.

Some people go so far as to advocate processes as the only reasonable

approach to concurrency,1 but unfortunately there are generally quantity and

overhead limitations to processes that prevent their applicability across the

concurrency spectrum.

Some programming languages are designed to isolate concurrent tasks from

each other. These are generally called functional languages, where each

function call produces no side effects (and so cannot interfere with other

functions) and can thus be driven as an independent task. Erlang is one such

1 Eric Raymond, for example, makes a strong case in The Art of UNIX Programming
(Addison-Wesley, 2004).

1110 Thinking in Java Bruce Eckel

language, and it includes safe mechanisms for one task to communicate with

another. If you find that a portion of your program must make heavy use of

concurrency and you are running into excessive problems trying to build that

portion, you may want to consider creating that part of your program in a

dedicated concurrency language like Erlang.

Java took the more traditional approach of adding support for threading on

top of a sequential language.2 Instead of forking external processes in a

multitasking operating system, threading creates tasks within the single

process represented by the executing program. One advantage that this

provided was operating system transparency, which was an important design

goal for Java. For example, the pre-OSX versions of the Macintosh operating

system (a reasonably important target for the first versions of Java) did not

support multitasking. Unless multithreading had been added to Java, any

concurrent Java programs wouldn’t have been portable to the Macintosh and

similar platforms, thus breaking the “write once/run everywhere”

requirement.3

Improving code design
A program that uses multiple tasks on a single-CPU machine is still just doing

one thing at a time, so it must be theoretically possible to write the same

program without using any tasks. However, concurrency provides an

important organizational benefit: The design of your program can be greatly

simplified. Some types of problems, such as simulation, are difficult to solve

without support for concurrency.

Most people have seen at least one form of simulation, as either a computer

game or computer-generated animations within movies. Simulations

generally involve many interacting elements, each with “a mind of its own.”

Although you may observe that, on a single-processor machine, each

simulation element is being driven forward by that one processor, from a

2 It could be argued that trying to bolt concurrency onto a sequential language is a doomed
approach, but you’ll have to draw your own conclusions.

3 This requirement was never completely fulfilled and is no longer so loudly touted.
Ironically, one reason that “write once/run everywhere” didn’t completely work may have
resulted from problems in the threading system—which might actually be fixed in Java
SE5.

Concurrency 1111

programming standpoint it’s much easier to pretend that each simulation

element has its own processor and is an independent task.

A full-fledged simulation may involve a very large number of tasks,

corresponding to the fact that each element in a simulation can act

independently—this includes doors and rocks, not just elves and wizards.

Multithreaded systems often have a relatively small size limit on the number

of threads available, sometimes on the order of tens or hundreds. This

number may vary outside the control of the program—it may depend on the

platform, or in the case of Java, the version of the JVM. In Java, you can

generally assume that you will not have enough threads available to provide

one for each element in a large simulation.

A typical approach to solving this problem is the use of cooperative

multithreading. Java’s threading is preemptive, which means that a

scheduling mechanism provides time slices for each thread, periodically

interrupting a thread and context switching to another thread so that each

one is given a reasonable amount of time to drive its task. In a cooperative

system, each task voluntarily gives up control, which requires the

programmer to consciously insert some kind of yielding statement into each

task. The advantage to a cooperative system is twofold: Context switching is

typically much cheaper than with a preemptive system, and there is

theoretically no limit to the number of independent tasks that can be running

at once. When you are dealing with a large number of simulation elements,

this can be the ideal solution. Note, however, that some cooperative systems

are not designed to distribute tasks across processors, which can be very

limiting.

At the other extreme, concurrency is a very useful model—because it’s what is

actually happening—when you are working with modern messaging systems,

which involve many independent computers distributed across a network. In

this case, all the processes are running completely independently of each

other, and there’s not even an opportunity to share resources. However, you

must still synchronize the information transfer between processes so that the

entire messaging system doesn’t lose information or incorporate information

at incorrect times. Even if you don’t plan to use concurrency very much in

your immediate future, it’s helpful to understand it just so you can grasp

messaging architectures, which are becoming more predominant ways to

create distributed systems.

1112 Thinking in Java Bruce Eckel

Concurrency imposes costs, including complexity costs, but these are usually

outweighed by improvements in program design, resource balancing, and

user convenience. In general, threads enable you to create a more loosely

coupled design; otherwise, parts of your code would be forced to pay explicit

attention to tasks that would normally be handled by threads.

Basic threading
Concurrent programming allows you to partition a program into separate,

independently running tasks. Using multithreading, each of these

independent tasks (also called subtasks) is driven by a thread of execution. A

thread is a single sequential flow of control within a process. A single process

can thus have multiple concurrently executing tasks, but you program as if

each task has the CPU to itself. An underlying mechanism divides up the CPU

time for you, but in general, you don’t need to think about it.

The threading model is a programming convenience to simplify juggling

several operations at the same time within a single program: The CPU will

pop around and give each task some of its time.4 Each task has the

consciousness of constantly having the CPU to itself, but the CPU’s time is

being sliced among all the tasks (except when the program is actually running

on multiple CPUs). One of the great things about threading is that you are

abstracted away from this layer, so your code does not need to know whether

it is running on a single CPU or many. Thus, using threads is a way to create

transparently scalable programs—if a program is running too slowly, you can

easily speed it up by adding CPUs to your computer. Multitasking and

multithreading tend to be the most reasonable ways to utilize multiprocessor

systems.

Defining tasks
A thread drives a task, so you need a way to describe that task. This is

provided by the Runnable interface. To define a task, simply implement

Runnable and write a run() method to make the task do your bidding.

4 This is true when the system uses time slicing (Windows, for example). Solaris uses a
FIFO concurrency model: Unless a higher-priority thread is awakened, the current thread
runs until it blocks or terminates. That means that other threads with the same priority
don’t run until the current one gives up the processor.

Concurrency 1113

For example, the following LiftOff task displays the countdown before liftoff:

//: concurrency/LiftOff.java

// Demonstration of the Runnable interface.

public class LiftOff implements Runnable {

 protected int countDown = 10; // Default

 private static int taskCount = 0;

 private final int id = taskCount++;

 public LiftOff() {}

 public LiftOff(int countDown) {

 this.countDown = countDown;

 }

 public String status() {

 return "#" + id + "(" +

 (countDown > 0 ? countDown : "Liftoff!") + "), ";

 }

 public void run() {

 while(countDown-- > 0) {

 System.out.print(status());

 Thread.yield();

 }

 }

} ///:~

The identifier id distinguishes between multiple instances of the task. It is

final because it is not expected to change once it is initialized.

A task’s run() method usually has some kind of loop that continues until the

task is no longer necessary, so you must establish the condition on which to

break out of this loop (one option is to simply return from run()). Often,

run() is cast in the form of an infinite loop, which means that, barring some

factor that causes run() to terminate, it will continue forever (later in the

chapter you’ll see how to safely terminate tasks).

The call to the static method Thread.yield() inside run() is a suggestion

to the thread scheduler (the part of the Java threading mechanism that

moves the CPU from one thread to the next) that says, “I’ve done the

important parts of my cycle and this would be a good time to switch to

another task for a while.” It’s completely optional, but it is used here because

it tends to produce more interesting output in these examples: You’re more

likely to see evidence of tasks being swapped in and out.

1114 Thinking in Java Bruce Eckel

In the following example, the task’s run() is not driven by a separate thread;

it is simply called directly in main() (actually, this is using a thread: the one

that is always allocated for main()):

//: concurrency/MainThread.java

public class MainThread {

 public static void main(String[] args) {

 LiftOff launch = new LiftOff();

 launch.run();

 }

} /* Output:

#0(9), #0(8), #0(7), #0(6), #0(5), #0(4), #0(3), #0(2),

#0(1), #0(Liftoff!),

*///:~

When a class is derived from Runnable, it must have a run() method, but

that’s nothing special—it doesn’t produce any innate threading abilities. To

achieve threading behavior, you must explicitly attach a task to a thread.

The Thread class
The traditional way to turn a Runnable object into a working task is to hand

it to a Thread constructor. This example shows how to drive a LiftOff object

using a Thread:

//: concurrency/BasicThreads.java

// The most basic use of the Thread class.

public class BasicThreads {

 public static void main(String[] args) {

 Thread t = new Thread(new LiftOff());

 t.start();

 System.out.println("Waiting for LiftOff");

 }

} /* Output: (90% match)

Waiting for LiftOff

#0(9), #0(8), #0(7), #0(6), #0(5), #0(4), #0(3), #0(2),

#0(1), #0(Liftoff!),

*///:~

A Thread constructor only needs a Runnable object. Calling a Thread

object’s start() will perform the necessary initialization for the thread and

then call that Runnable’s run() method to start the task in the new thread.

Concurrency 1115

Even though start() appears to be making a call to a long-running method,

you can see from the output—the “Waiting for LiftOff” message appears

before the countdown has completed—that start() quickly returns. In effect,

you have made a method call to LiftOff.run(), and that method has not yet

finished, but because LiftOff.run() is being executed by a different thread,

you can still perform other operations in the main() thread. (This ability is

not restricted to the main() thread—any thread can start another thread.)

Thus, the program is running two methods at once—main() and

LiftOff.run(). run() is the code that is executed “simultaneously” with the

other threads in a program.

You can easily add more threads to drive more tasks. Here, you can see how

all the tasks run in concert with one another:5

//: concurrency/MoreBasicThreads.java

// Adding more threads.

public class MoreBasicThreads {

 public static void main(String[] args) {

 for(int i = 0; i < 5; i++)

 new Thread(new LiftOff()).start();

 System.out.println("Waiting for LiftOff");

 }

} /* Output: (Sample)

Waiting for LiftOff

#0(9), #1(9), #2(9), #3(9), #4(9), #0(8), #1(8), #2(8),

#3(8), #4(8), #0(7), #1(7), #2(7), #3(7), #4(7), #0(6),

#1(6), #2(6), #3(6), #4(6), #0(5), #1(5), #2(5), #3(5),

#4(5), #0(4), #1(4), #2(4), #3(4), #4(4), #0(3), #1(3),

#2(3), #3(3), #4(3), #0(2), #1(2), #2(2), #3(2), #4(2),

#0(1), #1(1), #2(1), #3(1), #4(1), #0(Liftoff!),

#1(Liftoff!), #2(Liftoff!), #3(Liftoff!), #4(Liftoff!),

*///:~

The output shows that the execution of the different tasks is mixed together

as the threads are swapped in and out. This swapping is automatically

controlled by the thread scheduler. If you have multiple processors on your

5 In this case, a single thread (main()), is creating all the LiftOff threads. If you have
multiple threads creating LiftOff threads, however, it is possible for more than one
LiftOff to have the same id. You’ll learn why later in this chapter.

1116 Thinking in Java Bruce Eckel

machine, the thread scheduler will quietly distribute the threads among the

processors.6

The output for one run of this program will be different from that of another,

because the thread-scheduling mechanism is not deterministic. In fact, you

may see dramatic differences in the output of this simple program between

one version of the JDK and the next. For example, an earlier JDK didn’t time-

slice very often, so thread 1 might loop to extinction first, then thread 2 would

go through all of its loops, etc. This was virtually the same as calling a routine

that would do all the loops at once, except that starting up all those threads is

more expensive. Later JDKs seem to produce better time-slicing behavior, so

each thread seems to get more regular service. Generally, these kinds of JDK

behavioral changes have not been officially mentioned, so you cannot plan on

any consistent threading behavior. The best approach is to be as conservative

as possible while writing threaded code.

When main() creates the Thread objects, it isn’t capturing the references

for any of them. With an ordinary object, this would make it fair game for

garbage collection, but not with a Thread. Each Thread “registers” itself so

there is actually a reference to it someplace, and the garbage collector can’t

clean it up until the task exits its run() and dies. You can see from the

output that the tasks are indeed running to conclusion, so a thread creates a

separate thread of execution that persists after the call to start() completes.

Exercise 1: (2) Implement a Runnable. Inside run(), print a message,
and then call yield(). Repeat this three times, and then return from run().
Put a startup message in the constructor and a shutdown message when the
task terminates. Create a number of these tasks and drive them using threads.

Exercise 2: (2) Following the form of generics/Fibonacci.java, create
a task that produces a sequence of n Fibonacci numbers, where n is provided
to the constructor of the task. Create a number of these tasks and drive them
using threads.

Using Executors
Java SE5 java.util.concurrent Executors simplify concurrent

programming by managing Thread objects for you. Executors provide a

layer of indirection between a client and the execution of a task; instead of a

6 This was not true for some of the earliest versions of Java.

Concurrency 1117

client executing a task directly, an intermediate object executes the task.

Executors allow you to manage the execution of asynchronous tasks without

having to explicitly manage the lifecycle of threads. Executors are the

preferred method for starting tasks in Java SE5/6.

We can use an Executor instead of explicitly creating Thread objects in

MoreBasicThreads.java. A LiftOff object knows how to run a specific

task; like the Command design pattern, it exposes a single method to be

executed. An ExecutorService (an Executor with a service lifecycle—e.g.,

shutdown) knows how to build the appropriate context to execute Runnable

objects. In the following example, the CachedThreadPool creates one

thread per task. Note that an ExecutorService object is created using a

static Executors method which determines the kind of Executor it will be:

//: concurrency/CachedThreadPool.java

import java.util.concurrent.*;

public class CachedThreadPool {

 public static void main(String[] args) {

 ExecutorService exec = Executors.newCachedThreadPool();

 for(int i = 0; i < 5; i++)

 exec.execute(new LiftOff());

 exec.shutdown();

 }

} /* Output: (Sample)

#0(9), #0(8), #1(9), #2(9), #3(9), #4(9), #0(7), #1(8),

#2(8), #3(8), #4(8), #0(6), #1(7), #2(7), #3(7), #4(7),

#0(5), #1(6), #2(6), #3(6), #4(6), #0(4), #1(5), #2(5),

#3(5), #4(5), #0(3), #1(4), #2(4), #3(4), #4(4), #0(2),

#1(3), #2(3), #3(3), #4(3), #0(1), #1(2), #2(2), #3(2),

#4(2), #0(Liftoff!), #1(1), #2(1), #3(1), #4(1),

#1(Liftoff!), #2(Liftoff!), #3(Liftoff!), #4(Liftoff!),

*///:~

Very often, a single Executor can be used to create and manage all the tasks

in your system.

The call to shutdown() prevents new tasks from being submitted to that

Executor. The current thread (in this case, the one driving main()) will

continue to run all tasks submitted before shutdown() was called. The

program will exit as soon as all the tasks in the Executor finish.

1118 Thinking in Java Bruce Eckel

You can easily replace the CachedThreadPool in the previous example

with a different type of Executor. A FixedThreadPool uses a limited set of

threads to execute the submitted tasks:

//: concurrency/FixedThreadPool.java

import java.util.concurrent.*;

public class FixedThreadPool {

 public static void main(String[] args) {

 // Constructor argument is number of threads:

 ExecutorService exec = Executors.newFixedThreadPool(5);

 for(int i = 0; i < 5; i++)

 exec.execute(new LiftOff());

 exec.shutdown();

 }

} /* Output: (Sample)

#0(9), #0(8), #1(9), #2(9), #3(9), #4(9), #0(7), #1(8),

#2(8), #3(8), #4(8), #0(6), #1(7), #2(7), #3(7), #4(7),

#0(5), #1(6), #2(6), #3(6), #4(6), #0(4), #1(5), #2(5),

#3(5), #4(5), #0(3), #1(4), #2(4), #3(4), #4(4), #0(2),

#1(3), #2(3), #3(3), #4(3), #0(1), #1(2), #2(2), #3(2),

#4(2), #0(Liftoff!), #1(1), #2(1), #3(1), #4(1),

#1(Liftoff!), #2(Liftoff!), #3(Liftoff!), #4(Liftoff!),

*///:~

With the FixedThreadPool, you do expensive thread allocation once, up

front, and you thus limit the number of threads. This saves time because you

aren’t constantly paying for thread creation overhead for every single task.

Also, in an event-driven system, event handlers that require threads can be

serviced as quickly as you want by simply fetching threads from the pool. You

don’t overrun the available resources because the FixedThreadPool uses a

bounded number of Thread objects.

Note that in any of the thread pools, existing threads are automatically reused

when possible.

Although this book will use CachedThreadPools, consider using

FixedThreadPools in production code. A CachedThreadPool will

generally create as many threads as it needs during the execution of a

program and then will stop creating new threads as it recycles the old ones, so

it’s a reasonable first choice as an Executor. Only if this approach causes

problems do you need to switch to a FixedThreadPool.

Concurrency 1119

A SingleThreadExecutor is like a FixedThreadPool with a size of one

thread.7 This is useful for anything you want to run in another thread

continually (a long-lived task), such as a task that listens to incoming socket

connections. It is also handy for short tasks that you want to run in a thread—

for example, small tasks that update a local or remote log, or for an event-

dispatching thread.

If more than one task is submitted to a SingleThreadExecutor, the tasks

will be queued and each task will run to completion before the next task is

begun, all using the same thread. In the following example, you’ll see each

task completed, in the order in which it was submitted, before the next one is

begun. Thus, a SingleThreadExecutor serializes the tasks that are

submitted to it, and maintains its own (hidden) queue of pending tasks.

//: concurrency/SingleThreadExecutor.java

import java.util.concurrent.*;

public class SingleThreadExecutor {

 public static void main(String[] args) {

 ExecutorService exec =

 Executors.newSingleThreadExecutor();

 for(int i = 0; i < 5; i++)

 exec.execute(new LiftOff());

 exec.shutdown();

 }

} /* Output:

#0(9), #0(8), #0(7), #0(6), #0(5), #0(4), #0(3), #0(2),

#0(1), #0(Liftoff!), #1(9), #1(8), #1(7), #1(6), #1(5),

#1(4), #1(3), #1(2), #1(1), #1(Liftoff!), #2(9), #2(8),

#2(7), #2(6), #2(5), #2(4), #2(3), #2(2), #2(1),

#2(Liftoff!), #3(9), #3(8), #3(7), #3(6), #3(5), #3(4),

#3(3), #3(2), #3(1), #3(Liftoff!), #4(9), #4(8), #4(7),

#4(6), #4(5), #4(4), #4(3), #4(2), #4(1), #4(Liftoff!),

*///:~

As another example, suppose you have a number of threads running tasks

that use the file system. You can run these tasks with a

SingleThreadExecutor to ensure that only one task at a time is running

7 It also offers an important concurrency guarantee that the others do not—no two tasks
will be called concurrently. This changes the locking requirements for the tasks (you’ll
learn about locking later in the chapter).

1120 Thinking in Java Bruce Eckel

from any thread. This way, you don’t need to deal with synchronizing on the

shared resource (and you won’t clobber the file system in the meantime).

Sometimes a better solution is to synchronize on the resource (which you’ll

learn about later in this chapter), but a SingleThreadExecutor lets you

skip the trouble of getting coordinated properly just to prototype something.

By serializing tasks, you can eliminate the need to serialize the objects.

Exercise 3: (1) Repeat Exercise 1 using the different types of executors
shown in this section.

Exercise 4: (1) Repeat Exercise 2 using the different types of executors
shown in this section.

Producing return values from tasks
A Runnable is a separate task that performs work, but it doesn’t return a

value. If you want the task to produce a value when it’s done, you can

implement the Callable interface rather than the Runnable interface.

Callable, introduced in Java SE5, is a generic with a type parameter

representing the return value from the method call() (instead of run()),

and must be invoked using an ExecutorService submit() method. Here’s

a simple example:

//: concurrency/CallableDemo.java

import java.util.concurrent.*;

import java.util.*;

class TaskWithResult implements Callable<String> {

 private int id;

 public TaskWithResult(int id) {

 this.id = id;

 }

 public String call() {

 return "result of TaskWithResult " + id;

 }

}

public class CallableDemo {

 public static void main(String[] args) {

 ExecutorService exec = Executors.newCachedThreadPool();

 ArrayList<Future<String>> results =

 new ArrayList<Future<String>>();

 for(int i = 0; i < 10; i++)

 results.add(exec.submit(new TaskWithResult(i)));

Concurrency 1121

 for(Future<String> fs : results)

 try {

 // get() blocks until completion:

 System.out.println(fs.get());

 } catch(InterruptedException e) {

 System.out.println(e);

 return;

 } catch(ExecutionException e) {

 System.out.println(e);

 } finally {

 exec.shutdown();

 }

 }

} /* Output:

result of TaskWithResult 0

result of TaskWithResult 1

result of TaskWithResult 2

result of TaskWithResult 3

result of TaskWithResult 4

result of TaskWithResult 5

result of TaskWithResult 6

result of TaskWithResult 7

result of TaskWithResult 8

result of TaskWithResult 9

*///:~

The submit() method produces a Future object, parameterized for the

particular type of result returned by the Callable. You can query the Future

with isDone() to see if it has completed. When the task is completed and

has a result, you can call get() to fetch the result. You can simply call get()

without checking isDone(), in which case get() will block until the result is

ready. You can also call get() with a timeout, or isDone() to see if the task

has completed, before trying to call get() to fetch the result.

The overloaded Executors.callable() method takes a Runnable and

produces a Callable. ExecutorService has some “invoke” methods that

run collections of Callable objects.

Exercise 5: (2) Modify Exercise 2 so that the task is a Callable that sums
the values of all the Fibonacci numbers. Create several tasks and display the
results.

1122 Thinking in Java Bruce Eckel

Sleeping
A simple way to affect the behavior of your tasks is by calling sleep() to

cease (block) the execution of that task for a given time. In the LiftOff class,

if you replace the call to yield() with a call to sleep(), you get the following:

//: concurrency/SleepingTask.java

// Calling sleep() to pause for a while.

import java.util.concurrent.*;

public class SleepingTask extends LiftOff {

 public void run() {

 try {

 while(countDown-- > 0) {

 System.out.print(status());

 // Old-style:

 // Thread.sleep(100);

 // Java SE5/6-style:

 TimeUnit.MILLISECONDS.sleep(100);

 }

 } catch(InterruptedException e) {

 System.err.println("Interrupted");

 }

 }

 public static void main(String[] args) {

 ExecutorService exec = Executors.newCachedThreadPool();

 for(int i = 0; i < 5; i++)

 exec.execute(new SleepingTask());

 exec.shutdown();

 }

} /* Output:

#0(9), #1(9), #2(9), #3(9), #4(9), #0(8), #1(8), #2(8),

#3(8), #4(8), #0(7), #1(7), #2(7), #3(7), #4(7), #0(6),

#1(6), #2(6), #3(6), #4(6), #0(5), #1(5), #2(5), #3(5),

#4(5), #0(4), #1(4), #2(4), #3(4), #4(4), #0(3), #1(3),

#2(3), #3(3), #4(3), #0(2), #1(2), #2(2), #3(2), #4(2),

#0(1), #1(1), #2(1), #3(1), #4(1), #0(Liftoff!),

#1(Liftoff!), #2(Liftoff!), #3(Liftoff!), #4(Liftoff!),

*///:~

The call to sleep() can throw an InterruptedException, and you can see

that this is caught in run(). Because exceptions won’t propagate across

threads back to main(), you must locally handle any exceptions that arise

within a task.

Concurrency 1123

Java SE5 introduced the more explicit version of sleep() as part of the

TimeUnit class, as shown in the above example. This provides better

readability by allowing you to specify the units of the sleep() delay.

TimeUnit can also be used to perform conversions, as you shall see later in

the chapter.

Depending on your platform, you may notice that the tasks run in “perfectly

distributed” order—zero through four, then back to zero again. This makes

sense because, after each print statement, each task goes to sleep (it blocks),

which allows the thread scheduler to switch to another thread, driving

another task. However, the sequential behavior relies on the underlying

threading mechanism, which is different from one operating system to

another, so you cannot rely on it. If you must control the order of execution of

tasks, your best bet is to use synchronization controls (described later) or, in

some cases, not to use threads at all, but instead to write your own

cooperative routines that hand control to each other in a specified order.

Exercise 6: (2) Create a task that sleeps for a random amount of time
between 1 and 10 seconds, then displays its sleep time and exits. Create and
run a quantity (given on the command line) of these tasks.

Priority
The priority of a thread conveys the importance of a thread to the scheduler.

Although the order in which the CPU runs a set of threads is indeterminate,

the scheduler will lean toward running the waiting thread with the highest

priority first. However, this doesn’t mean that threads with lower priority

aren’t run (so you can’t get deadlocked because of priorities). Lower-priority

threads just tend to run less often.

The vast majority of the time, all threads should run at the default priority.

Trying to manipulate thread priorities is usually a mistake.

Here’s an example that demonstrates priority levels. You can read the priority

of an existing thread with getPriority() and change it at any time with

setPriority().

//: concurrency/SimplePriorities.java

// Shows the use of thread priorities.

import java.util.concurrent.*;

public class SimplePriorities implements Runnable {

 private int countDown = 5;

1124 Thinking in Java Bruce Eckel

 private volatile double d; // No optimization

 private int priority;

 public SimplePriorities(int priority) {

 this.priority = priority;

 }

 public String toString() {

 return Thread.currentThread() + ": " + countDown;

 }

 public void run() {

 Thread.currentThread().setPriority(priority);

 while(true) {

 // An expensive, interruptable operation:

 for(int i = 1; i < 100000; i++) {

 d += (Math.PI + Math.E) / (double)i;

 if(i % 1000 == 0)

 Thread.yield();

 }

 System.out.println(this);

 if(--countDown == 0) return;

 }

 }

 public static void main(String[] args) {

 ExecutorService exec = Executors.newCachedThreadPool();

 for(int i = 0; i < 5; i++)

 exec.execute(

 new SimplePriorities(Thread.MIN_PRIORITY));

 exec.execute(

 new SimplePriorities(Thread.MAX_PRIORITY));

 exec.shutdown();

 }

} /* Output: (70% match)

Thread[pool-1-thread-6,10,main]: 5

Thread[pool-1-thread-6,10,main]: 4

Thread[pool-1-thread-6,10,main]: 3

Thread[pool-1-thread-6,10,main]: 2

Thread[pool-1-thread-6,10,main]: 1

Thread[pool-1-thread-3,1,main]: 5

Thread[pool-1-thread-2,1,main]: 5

Thread[pool-1-thread-1,1,main]: 5

Thread[pool-1-thread-5,1,main]: 5

Thread[pool-1-thread-4,1,main]: 5

...

*///:~

Concurrency 1125

toString() is overridden to use Thread.toString(), which prints the

thread name, the priority level, and the “thread group” that the thread

belongs to. You can set the thread name yourself via the constructor; here it’s

automatically generated as pool-1-thread-1, pool-1-thread-2, etc. The

overridden toString() also shows the countdown value of the task. Notice

that you can get a reference to the Thread object that is driving a task, inside

that task, by calling Thread.currentThread().

You can see that the priority level of the last thread is at the highest level, and

all the rest of the threads are at the lowest level. Note that the priority is set at

the beginning of run(); setting it in the constructor would do no good since

the Executor has not begun the task at that point.

Inside run(), 100,000 repetitions of a rather expensive floating point

calculation are performed, involving double addition and division. The

variable d is volatile to try to ensure that no compiler optimizations are

performed. Without this calculation, you don’t see the effect of setting the

priority levels. (Try it: Comment out the for loop containing the double

calculations.) With the calculation, you see that the thread with

MAX_PRIORITY is given a higher preference by the thread scheduler. (At

least, this was the behavior on a Windows XP machine.) Even though

printing to the console is also an expensive behavior, you won’t see the

priority levels that way, because console printing doesn’t get interrupted

(otherwise, the console display would get garbled during threading), whereas

the math calculation can be interrupted. The calculation takes long enough

that the scheduling mechanism jumps in, swaps tasks, and pays attention to

the priorities so that high-priority threads get preference. However, to ensure

that a context switch occurs, yield() statements are regularly called.

Although the JDK has 10 priority levels, this doesn’t map well to many

operating systems. For example, Windows has 7 priority levels that are not

fixed, so the mapping is indeterminate. Sun’s Solaris has 231 levels. The only

portable approach is to stick to MAX_PRIORITY, NORM_PRIORITY,

and MIN_PRIORITY when you’re adjusting priority levels.

Yielding
If you know that you’ve accomplished what you need to during one pass

through a loop in your run() method, you can give a hint to the thread-

scheduling mechanism that you’ve done enough and that some other task

might as well have the CPU. This hint (and it is a hint—there’s no guarantee

1126 Thinking in Java Bruce Eckel

your implementation will listen to it) takes the form of the yield() method.

When you call yield(), you are suggesting that other threads of the same

priority might be run.

LiftOff.java uses yield() to produce well-distributed processing across the

various LiftOff tasks. Try commenting out the call to Thread.yield() in

LiftOff.run() to see the difference. In general, however, you can’t rely on

yield() for any serious control or tuning of your application. Indeed,

yield() is often used incorrectly.

Daemon threads
A “daemon” thread is intended to provide a general service in the background

as long as the program is running, but is not part of the essence of the

program. Thus, when all of the non-daemon threads complete, the program is

terminated, killing all daemon threads in the process. Conversely, if there are

any non-daemon threads still running, the program doesn’t terminate. There

is, for instance, a non-daemon thread that runs main().

//: concurrency/SimpleDaemons.java

// Daemon threads don't prevent the program from ending.

import java.util.concurrent.*;

import static net.mindview.util.Print.*;

public class SimpleDaemons implements Runnable {

 public void run() {

 try {

 while(true) {

 TimeUnit.MILLISECONDS.sleep(100);

 print(Thread.currentThread() + " " + this);

 }

 } catch(InterruptedException e) {

 print("sleep() interrupted");

 }

 }

 public static void main(String[] args) throws Exception {

 for(int i = 0; i < 10; i++) {

 Thread daemon = new Thread(new SimpleDaemons());

 daemon.setDaemon(true); // Must call before start()

 daemon.start();

 }

 print("All daemons started");

 TimeUnit.MILLISECONDS.sleep(175);

Concurrency 1127

 }

} /* Output: (Sample)

All daemons started

Thread[Thread-0,5,main] SimpleDaemons@530daa

Thread[Thread-1,5,main] SimpleDaemons@a62fc3

Thread[Thread-2,5,main] SimpleDaemons@89ae9e

Thread[Thread-3,5,main] SimpleDaemons@1270b73

Thread[Thread-4,5,main] SimpleDaemons@60aeb0

Thread[Thread-5,5,main] SimpleDaemons@16caf43

Thread[Thread-6,5,main] SimpleDaemons@66848c

Thread[Thread-7,5,main] SimpleDaemons@8813f2

Thread[Thread-8,5,main] SimpleDaemons@1d58aae

Thread[Thread-9,5,main] SimpleDaemons@83cc67

...

*///:~

You must set the thread to be a daemon by calling setDaemon() before it is

started.

There’s nothing to keep the program from terminating once main() finishes

its job, since there are nothing but daemon threads running. So that you can

see the results of starting all the daemon threads, the main() thread is

briefly put to sleep. Without this, you see only some of the results from the

creation of the daemon threads. (Try sleep() calls of various lengths to see

this behavior.)

SimpleDaemons.java creates explicit Thread objects in order to set their

daemon flag. It is possible to customize the attributes (daemon, priority,

name) of threads created by Executors by writing a custom

ThreadFactory:

//: net/mindview/util/DaemonThreadFactory.java

package net.mindview.util;

import java.util.concurrent.*;

public class DaemonThreadFactory implements ThreadFactory {

 public Thread newThread(Runnable r) {

 Thread t = new Thread(r);

 t.setDaemon(true);

 return t;

 }

} ///:~

1128 Thinking in Java Bruce Eckel

The only difference from an ordinary ThreadFactory is that this one sets

the daemon status to true. You can now pass a new

DaemonThreadFactory as an argument to

Executors.newCachedThreadPool():

//: concurrency/DaemonFromFactory.java

// Using a Thread Factory to create daemons.

import java.util.concurrent.*;

import net.mindview.util.*;

import static net.mindview.util.Print.*;

public class DaemonFromFactory implements Runnable {

 public void run() {

 try {

 while(true) {

 TimeUnit.MILLISECONDS.sleep(100);

 print(Thread.currentThread() + " " + this);

 }

 } catch(InterruptedException e) {

 print("Interrupted");

 }

 }

 public static void main(String[] args) throws Exception {

 ExecutorService exec = Executors.newCachedThreadPool(

 new DaemonThreadFactory());

 for(int i = 0; i < 10; i++)

 exec.execute(new DaemonFromFactory());

 print("All daemons started");

 TimeUnit.MILLISECONDS.sleep(500); // Run for a while

 }

} /* (Execute to see output) *///:~

Each of the static ExecutorService creation methods is overloaded to take

a ThreadFactory object that it will use to create new threads.

We can take this one step further and create a

DaemonThreadPoolExecutor utility:

//: net/mindview/util/DaemonThreadPoolExecutor.java

package net.mindview.util;

import java.util.concurrent.*;

public class DaemonThreadPoolExecutor

extends ThreadPoolExecutor {

 public DaemonThreadPoolExecutor() {

Concurrency 1129

 super(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS,

 new SynchronousQueue<Runnable>(),

 new DaemonThreadFactory());

 }

} ///:~

To get the values for the constructor base-class call, I simply looked at the

Executors.java source code.

You can find out if a thread is a daemon by calling isDaemon(). If a thread

is a daemon, then any threads it creates will automatically be daemons, as the

following example demonstrates:

//: concurrency/Daemons.java

// Daemon threads spawn other daemon threads.

import java.util.concurrent.*;

import static net.mindview.util.Print.*;

class Daemon implements Runnable {

 private Thread[] t = new Thread[10];

 public void run() {

 for(int i = 0; i < t.length; i++) {

 t[i] = new Thread(new DaemonSpawn());

 t[i].start();

 printnb("DaemonSpawn " + i + " started, ");

 }

 for(int i = 0; i < t.length; i++)

 printnb("t[" + i + "].isDaemon() = " +

 t[i].isDaemon() + ", ");

 while(true)

 Thread.yield();

 }

}

class DaemonSpawn implements Runnable {

 public void run() {

 while(true)

 Thread.yield();

 }

}

public class Daemons {

 public static void main(String[] args) throws Exception {

 Thread d = new Thread(new Daemon());

 d.setDaemon(true);

1130 Thinking in Java Bruce Eckel

 d.start();

 printnb("d.isDaemon() = " + d.isDaemon() + ", ");

 // Allow the daemon threads to

 // finish their startup processes:

 TimeUnit.SECONDS.sleep(1);

 }

} /* Output: (Sample)

d.isDaemon() = true, DaemonSpawn 0 started, DaemonSpawn 1

started, DaemonSpawn 2 started, DaemonSpawn 3 started,

DaemonSpawn 4 started, DaemonSpawn 5 started, DaemonSpawn 6

started, DaemonSpawn 7 started, DaemonSpawn 8 started,

DaemonSpawn 9 started, t[0].isDaemon() = true,

t[1].isDaemon() = true, t[2].isDaemon() = true,

t[3].isDaemon() = true, t[4].isDaemon() = true,

t[5].isDaemon() = true, t[6].isDaemon() = true,

t[7].isDaemon() = true, t[8].isDaemon() = true,

t[9].isDaemon() = true,

*///:~

The Daemon thread is set to daemon mode. It then spawns a bunch of other

threads—which are not explicitly set to daemon mode—to show that they are

daemons anyway. Then Daemon goes into an infinite loop that calls yield()

to give up control to the other processes.

You should be aware that daemon threads will terminate their run()

methods without executing finally clauses:

//: concurrency/DaemonsDontRunFinally.java

// Daemon threads don't run the finally clause

import java.util.concurrent.*;

import static net.mindview.util.Print.*;

class ADaemon implements Runnable {

 public void run() {

 try {

 print("Starting ADaemon");

 TimeUnit.SECONDS.sleep(1);

 } catch(InterruptedException e) {

 print("Exiting via InterruptedException");

 } finally {

 print("This should always run?");

 }

 }

}

Concurrency 1131

public class DaemonsDontRunFinally {

 public static void main(String[] args) throws Exception {

 Thread t = new Thread(new ADaemon());

 t.setDaemon(true);

 t.start();

 }

} /* Output:

Starting ADaemon

*///:~

When you run this program, you’ll see that the finally clause is not executed,

but if you comment out the call to setDaemon(), you’ll see that the finally

clause is executed.

This behavior is correct, even if you don’t expect it based on the previous

promises given for finally. Daemons are terminated “abruptly” when the last

of the non-daemons terminates. So as soon as main() exits, the JVM shuts

down all the daemons immediately, without any of the formalities you might

have come to expect. Because you cannot shut daemons down in a nice

fashion, they are rarely a good idea. Non-daemon Executors are generally a

better approach, since all the tasks controlled by an Executor can be shut

down at once. As you shall see later in the chapter, shutdown in this case

proceeds in an orderly fashion.

Exercise 7: (2) Experiment with different sleep times in Daemons.java
to see what happens.

Exercise 8: (1) Modify MoreBasicThreads.java so that all the threads
are daemon threads, and verify that the program ends as soon as main() is
able to exit.

Exercise 9: (3) Modify SimplePriorities.java so that a custom
ThreadFactory sets the priorities of the threads.

Coding variations
In the examples that you’ve seen so far, the task classes all implement

Runnable. In very simple cases, you may want to use the alternative

approach of inheriting directly from Thread, like this:

//: concurrency/SimpleThread.java

// Inheriting directly from the Thread class.

public class SimpleThread extends Thread {

1132 Thinking in Java Bruce Eckel

 private int countDown = 5;

 private static int threadCount = 0;

 public SimpleThread() {

 // Store the thread name:

 super(Integer.toString(++threadCount));

 start();

 }

 public String toString() {

 return "#" + getName() + "(" + countDown + "), ";

 }

 public void run() {

 while(true) {

 System.out.print(this);

 if(--countDown == 0)

 return;

 }

 }

 public static void main(String[] args) {

 for(int i = 0; i < 5; i++)

 new SimpleThread();

 }

} /* Output:

#1(5), #1(4), #1(3), #1(2), #1(1), #2(5), #2(4), #2(3),

#2(2), #2(1), #3(5), #3(4), #3(3), #3(2), #3(1), #4(5),

#4(4), #4(3), #4(2), #4(1), #5(5), #5(4), #5(3), #5(2),

#5(1),

*///:~

You give the Thread objects specific names by calling the appropriate

Thread constructor. This name is retrieved in toString() using

getName().

Another idiom that you may see is that of the self-managed Runnable:

//: concurrency/SelfManaged.java

// A Runnable containing its own driver Thread.

public class SelfManaged implements Runnable {

 private int countDown = 5;

 private Thread t = new Thread(this);

 public SelfManaged() { t.start(); }

 public String toString() {

 return Thread.currentThread().getName() +

 "(" + countDown + "), ";

 }

Concurrency 1133

 public void run() {

 while(true) {

 System.out.print(this);

 if(--countDown == 0)

 return;

 }

 }

 public static void main(String[] args) {

 for(int i = 0; i < 5; i++)

 new SelfManaged();

 }

} /* Output:

Thread-0(5), Thread-0(4), Thread-0(3), Thread-0(2), Thread-

0(1), Thread-1(5), Thread-1(4), Thread-1(3), Thread-1(2),

Thread-1(1), Thread-2(5), Thread-2(4), Thread-2(3), Thread-

2(2), Thread-2(1), Thread-3(5), Thread-3(4), Thread-3(3),

Thread-3(2), Thread-3(1), Thread-4(5), Thread-4(4), Thread-

4(3), Thread-4(2), Thread-4(1),

*///:~

This is not especially different from inheriting from Thread except that the

syntax is slightly more awkward. However, implementing an interface does

allow you to inherit from a different class, whereas inheriting from Thread

does not.

Notice that start() is called within the constructor. This example is quite

simple and therefore probably safe, but you should be aware that starting

threads inside a constructor can be quite problematic, because another task

might start executing before the constructor has completed, which means the

task may be able to access the object in an unstable state. This is yet another

reason to prefer the use of Executors to the explicit creation of Thread

objects.

Sometimes it makes sense to hide your threading code inside your class by

using an inner class, as shown here:

//: concurrency/ThreadVariations.java

// Creating threads with inner classes.

import java.util.concurrent.*;

import static net.mindview.util.Print.*;

// Using a named inner class:

class InnerThread1 {

 private int countDown = 5;

1134 Thinking in Java Bruce Eckel

 private Inner inner;

 private class Inner extends Thread {

 Inner(String name) {

 super(name);

 start();

 }

 public void run() {

 try {

 while(true) {

 print(this);

 if(--countDown == 0) return;

 sleep(10);

 }

 } catch(InterruptedException e) {

 print("interrupted");

 }

 }

 public String toString() {

 return getName() + ": " + countDown;

 }

 }

 public InnerThread1(String name) {

 inner = new Inner(name);

 }

}

// Using an anonymous inner class:

class InnerThread2 {

 private int countDown = 5;

 private Thread t;

 public InnerThread2(String name) {

 t = new Thread(name) {

 public void run() {

 try {

 while(true) {

 print(this);

 if(--countDown == 0) return;

 sleep(10);

 }

 } catch(InterruptedException e) {

 print("sleep() interrupted");

 }

 }

 public String toString() {

Concurrency 1135

 return getName() + ": " + countDown;

 }

 };

 t.start();

 }

}

// Using a named Runnable implementation:

class InnerRunnable1 {

 private int countDown = 5;

 private Inner inner;

 private class Inner implements Runnable {

 Thread t;

 Inner(String name) {

 t = new Thread(this, name);

 t.start();

 }

 public void run() {

 try {

 while(true) {

 print(this);

 if(--countDown == 0) return;

 TimeUnit.MILLISECONDS.sleep(10);

 }

 } catch(InterruptedException e) {

 print("sleep() interrupted");

 }

 }

 public String toString() {

 return t.getName() + ": " + countDown;

 }

 }

 public InnerRunnable1(String name) {

 inner = new Inner(name);

 }

}

// Using an anonymous Runnable implementation:

class InnerRunnable2 {

 private int countDown = 5;

 private Thread t;

 public InnerRunnable2(String name) {

 t = new Thread(new Runnable() {

 public void run() {

1136 Thinking in Java Bruce Eckel

 try {

 while(true) {

 print(this);

 if(--countDown == 0) return;

 TimeUnit.MILLISECONDS.sleep(10);

 }

 } catch(InterruptedException e) {

 print("sleep() interrupted");

 }

 }

 public String toString() {

 return Thread.currentThread().getName() +

 ": " + countDown;

 }

 }, name);

 t.start();

 }

}

// A separate method to run some code as a task:

class ThreadMethod {

 private int countDown = 5;

 private Thread t;

 private String name;

 public ThreadMethod(String name) { this.name = name; }

 public void runTask() {

 if(t == null) {

 t = new Thread(name) {

 public void run() {

 try {

 while(true) {

 print(this);

 if(--countDown == 0) return;

 sleep(10);

 }

 } catch(InterruptedException e) {

 print("sleep() interrupted");

 }

 }

 public String toString() {

 return getName() + ": " + countDown;

 }

 };

 t.start();

Concurrency 1137

 }

 }

}

public class ThreadVariations {

 public static void main(String[] args) {

 new InnerThread1("InnerThread1");

 new InnerThread2("InnerThread2");

 new InnerRunnable1("InnerRunnable1");

 new InnerRunnable2("InnerRunnable2");

 new ThreadMethod("ThreadMethod").runTask();

 }

} /* (Execute to see output) *///:~

InnerThread1 creates a named inner class that extends Thread, and

makes an instance of this inner class inside the constructor. This makes sense

if the inner class has special capabilities (new methods) that you need to

access in other methods. However, most of the time the reason for creating a

thread is only to use the Thread capabilities, so it’s not necessary to create a

named inner class. InnerThread2 shows the alternative: An anonymous

inner subclass of Thread is created inside the constructor and is upcast to a

Thread reference t. If other methods of the class need to access t, they can

do so through the Thread interface, and they don’t need to know the exact

type of the object.

The third and fourth classes in the example repeat the first two classes, but

they use the Runnable interface rather than the Thread class.

The ThreadMethod class shows the creation of a thread inside a method.

You call the method when you’re ready to run the thread, and the method

returns after the thread begins. If the thread is only performing an auxiliary

operation rather than being fundamental to the class, this is probably a more

useful and appropriate approach than starting a thread inside the constructor

of the class.

Exercise 10: (4) Modify Exercise 5 following the example of the
ThreadMethod class, so that runTask() takes an argument of the number
of Fibonacci numbers to sum, and each time you call runTask() it returns
the Future produced by the call to submit().

1138 Thinking in Java Bruce Eckel

Terminology
As the previous section shows, you have choices in how you implement

concurrent programs in Java, and these choices can be confusing. Often the

problem comes from the terminology that’s used in describing concurrent

program technology, especially where threads are involved.

You should see by now that there’s a distinction between the task that’s being

executed and the thread that drives it; this distinction is especially clear in the

Java libraries because you don’t really have any control over the Thread

class (and this separation is even clearer with executors, which take care of

the creation and management of threads for you). You create tasks and

somehow attach a thread to your task so that the thread will drive that task.

In Java, the Thread class by itself does nothing. It drives the task that it’s

given. Yet threading literature invariably uses language like “the thread

performs this or that action.” The impression that you get is that the thread is

the task, and when I first encountered Java threads, this impression was so

strong that I saw a clear “is-a” relationship, which said to me that I should

obviously inherit a task from a Thread. Add to this the poor choice of name

for the Runnable interface, which I think would have been much better

named “Task.” If the interface is clearly nothing more than a generic

encapsulation of its methods, then the “it-does-this-thing-able” naming

approach is appropriate, but if it intends to express a higher concept, like

Task, then the concept name is more helpful.

The problem is that the levels of abstraction are mixed together.

Conceptually, we want to create a task that runs independently of other tasks,

so we ought to be able to define a task, and then say “go,” and not worry

about details. But physically, threads can be expensive to create, so you must

conserve and manage them. Thus it makes sense from an implementation

standpoint to separate tasks from threads. In addition, Java threading is

based on the low-level pthreads approach which comes from C, where you are

immersed in, and must thoroughly understand, the nuts and bolts of

everything that’s going on. Some of this low-level nature has trickled through

into the Java implementation, so to stay at a higher level of abstraction, you

must use discipline when writing code (I will try to demonstrate that

discipline in this chapter).

To clarify these discussions, I shall attempt to use the term “task” when I am

describing the work that is being done, and “thread” only when I am referring

Concurrency 1139

to the specific mechanism that’s driving the task. Thus, if you are discussing a

system at a conceptual level, you could just use the term “task” without

mentioning the driving mechanism at all.

Joining a thread
One thread may call join() on another thread to wait for the second thread

to complete before proceeding. If a thread calls t.join() on another thread t,

then the calling thread is suspended until the target thread t finishes (when

t.isAlive() is false).

You may also call join() with a timeout argument (in either milliseconds or

milliseconds and nanoseconds) so that if the target thread doesn’t finish in

that period of time, the call to join() returns anyway.

The call to join() may be aborted by calling interrupt() on the calling

thread, so a try-catch clause is required.

All of these operations are shown in the following example:

//: concurrency/Joining.java

// Understanding join().

import static net.mindview.util.Print.*;

class Sleeper extends Thread {

 private int duration;

 public Sleeper(String name, int sleepTime) {

 super(name);

 duration = sleepTime;

 start();

 }

 public void run() {

 try {

 sleep(duration);

 } catch(InterruptedException e) {

 print(getName() + " was interrupted. " +

 "isInterrupted(): " + isInterrupted());

 return;

 }

 print(getName() + " has awakened");

 }

}

class Joiner extends Thread {

1140 Thinking in Java Bruce Eckel

 private Sleeper sleeper;

 public Joiner(String name, Sleeper sleeper) {

 super(name);

 this.sleeper = sleeper;

 start();

 }

 public void run() {

 try {

 sleeper.join();

 } catch(InterruptedException e) {

 print("Interrupted");

 }

 print(getName() + " join completed");

 }

}

public class Joining {

 public static void main(String[] args) {

 Sleeper

 sleepy = new Sleeper("Sleepy", 1500),

 grumpy = new Sleeper("Grumpy", 1500);

 Joiner

 dopey = new Joiner("Dopey", sleepy),

 doc = new Joiner("Doc", grumpy);

 grumpy.interrupt();

 }

} /* Output:

Grumpy was interrupted. isInterrupted(): false

Doc join completed

Sleepy has awakened

Dopey join completed

*///:~

A Sleeper is a thread that goes to sleep for a time specified in its constructor.

In run(), the call to sleep() may terminate when the time expires, but it

may also be interrupted. Inside the catch clause, the interruption is reported,

along with the value of isInterrupted(). When another thread calls

interrupt() on this thread, a flag is set to indicate that the thread has been

interrupted. However, this flag is cleared when the exception is caught, so the

result will always be false inside the catch clause. The flag is used for other

situations where a thread may examine its interrupted state apart from the

exception.

Concurrency 1141

A Joiner is a task that waits for a Sleeper to wake up by calling join() on

the Sleeper object. In main(), each Sleeper has a Joiner, and you can see

in the output that if the Sleeper either is interrupted or ends normally, the

Joiner completes in conjunction with the Sleeper.

Note that the Java SE5 java.util.concurrent libraries contain tools such as

CyclicBarrier (demonstrated later in this chapter) that may be more

appropriate than join(), which was part of the original threading library.

Creating responsive user interfaces
As stated earlier, one of the motivations for using threading is to create a

responsive user interface. Although we won’t get to graphical interfaces until

the Graphical User Interfaces chapter, the following example is a simple

mock-up of a console-based user interface. The example has two versions:

one that gets stuck in a calculation and thus can never read console input,

and a second that puts the calculation inside a task and thus can be

performing the calculation and listening for console input.

//: concurrency/ResponsiveUI.java

// User interface responsiveness.

// {RunByHand}

class UnresponsiveUI {

 private volatile double d = 1;

 public UnresponsiveUI() throws Exception {

 while(d > 0)

 d = d + (Math.PI + Math.E) / d;

 System.in.read(); // Never gets here

 }

}

public class ResponsiveUI extends Thread {

 private static volatile double d = 1;

 public ResponsiveUI() {

 setDaemon(true);

 start();

 }

 public void run() {

 while(true) {

 d = d + (Math.PI + Math.E) / d;

 }

 }

1142 Thinking in Java Bruce Eckel

 public static void main(String[] args) throws Exception {

 //! new UnresponsiveUI(); // Must kill this process

 new ResponsiveUI();

 System.in.read();

 System.out.println(d); // Shows progress

 }

} ///:~

UnresponsiveUI performs a calculation inside an infinite while loop, so it

can obviously never reach the console input line (the compiler is fooled into

believing that the input line is reachable by the while conditional). If you

uncomment the line that creates an UnresponsiveUI, you’ll have to kill the

process to get out.

To make the program responsive, put the calculation inside a run() method

to allow it to be preempted, and when you press the Enter key, you’ll see that

the calculation has indeed been running in the background while waiting for

your user input.

Thread groups
A thread group holds a collection of threads. The value of thread groups can

be summed up by a quote from Joshua Bloch,8 the software architect who,

while he was at Sun, fixed and greatly improved the Java collections library in

JDK 1.2 (among other contributions):

“Thread groups are best viewed as an unsuccessful experiment, and you

may simply ignore their existence.”

If you’ve spent time and energy trying to figure out the value of thread groups

(as I have), you may wonder why there was not some more official

announcement on the topic—the same question can be asked about any

number of other changes that have happened to Java over the years. The

Nobel laureate economist Joseph Stiglitz has a philosophy of life that would

seem to apply here.9 It’s called The Theory of Escalating Commitment:

8 Effective JavaTM Programming Language Guide, by Joshua Bloch (Addison-Wesley,
2001), p. 211.

9 And in a number of other places throughout the experience of Java. Well, why stop
there? I’ve consulted on more than a few projects where this has applied.

Concurrency 1143

“The cost of continuing mistakes is borne by others, while the cost of

admitting mistakes is borne by yourself.”

Catching exceptions
Because of the nature of threads, you can’t catch an exception that has

escaped from a thread. Once an exception gets outside of a task’s run()

method, it will propagate out to the console unless you take special steps to

capture such errant exceptions. Before Java SE5, you used thread groups to

catch these exceptions, but with Java SE5 you can solve the problem with

Executors, and thus you no longer need to know anything about thread

groups.

Here’s a task that always throws an exception which propagates outside of its

run() method, and a main() that shows what happens when you run it:

//: concurrency/ExceptionThread.java

// {ThrowsException}

import java.util.concurrent.*;

public class ExceptionThread implements Runnable {

 public void run() {

 throw new RuntimeException();

 }

 public static void main(String[] args) {

 ExecutorService exec = Executors.newCachedThreadPool();

 exec.execute(new ExceptionThread());

 }

} ///:~

The output is (after trimming some qualifiers to fit):

java.lang.RuntimeException

 at ExceptionThread.run(ExceptionThread.java:7)

 at ThreadPoolExecutor$Worker.runTask(Unknown Source)

 at ThreadPoolExecutor$Worker.run(Unknown Source)

 at java.lang.Thread.run(Unknown Source)

Encompassing the body of main within a try-catch block is unsuccessful:

//: concurrency/NaiveExceptionHandling.java

// {ThrowsException}

import java.util.concurrent.*;

public class NaiveExceptionHandling {

1144 Thinking in Java Bruce Eckel

 public static void main(String[] args) {

 try {

 ExecutorService exec =

 Executors.newCachedThreadPool();

 exec.execute(new ExceptionThread());

 } catch(RuntimeException ue) {

 // This statement will NOT execute!

 System.out.println("Exception has been handled!");

 }

 }

} ///:~

This produces the same result as the previous example: an uncaught

exception.

To solve the problem, we change the way the Executor produces threads.

Thread.UncaughtExceptionHandler is a new interface in Java SE5; it

allows you to attach an exception handler to each Thread object.

Thread.UncaughtExceptionHandler.uncaughtException() is

automatically called when that thread is about to die from an uncaught

exception. To use it, we create a new type of ThreadFactory which attaches

a new Thread.UncaughtExceptionHandler to each new Thread object

it creates. We pass that factory to the Executors method that creates a new

ExecutorService:

//: concurrency/CaptureUncaughtException.java

import java.util.concurrent.*;

class ExceptionThread2 implements Runnable {

 public void run() {

 Thread t = Thread.currentThread();

 System.out.println("run() by " + t);

 System.out.println(

 "eh = " + t.getUncaughtExceptionHandler());

 throw new RuntimeException();

 }

}

class MyUncaughtExceptionHandler implements

Thread.UncaughtExceptionHandler {

 public void uncaughtException(Thread t, Throwable e) {

 System.out.println("caught " + e);

 }

}

Concurrency 1145

class HandlerThreadFactory implements ThreadFactory {

 public Thread newThread(Runnable r) {

 System.out.println(this + " creating new Thread");

 Thread t = new Thread(r);

 System.out.println("created " + t);

 t.setUncaughtExceptionHandler(

 new MyUncaughtExceptionHandler());

 System.out.println(

 "eh = " + t.getUncaughtExceptionHandler());

 return t;

 }

}

public class CaptureUncaughtException {

 public static void main(String[] args) {

 ExecutorService exec = Executors.newCachedThreadPool(

 new HandlerThreadFactory());

 exec.execute(new ExceptionThread2());

 }

} /* Output: (90% match)

HandlerThreadFactory@de6ced creating new Thread

created Thread[Thread-0,5,main]

eh = MyUncaughtExceptionHandler@1fb8ee3

run() by Thread[Thread-0,5,main]

eh = MyUncaughtExceptionHandler@1fb8ee3

caught java.lang.RuntimeException

*///:~

Additional tracing has been added to verify that the threads created by the

factory are given the new UncaughtExceptionHandler. You can see that

the uncaught exceptions are now being captured by uncaughtException.

The above example allows you to set the handler on a case-by-case basis. If

you know that you’re going to use the same exception handler everywhere, an

even simpler approach is to set the default uncaught exception handler,

which sets a static field inside the Thread class:

//: concurrency/SettingDefaultHandler.java

import java.util.concurrent.*;

public class SettingDefaultHandler {

 public static void main(String[] args) {

 Thread.setDefaultUncaughtExceptionHandler(

1146 Thinking in Java Bruce Eckel

 new MyUncaughtExceptionHandler());

 ExecutorService exec = Executors.newCachedThreadPool();

 exec.execute(new ExceptionThread());

 }

} /* Output:

caught java.lang.RuntimeException

*///:~

This handler is only called if there is no per-thread uncaught exception

handler. The system checks for a per-thread version, and if it doesn’t find one

it checks to see if the thread group specializes its uncaughtException()

method; if not, it calls the defaultUncaughtExceptionHandler.

Sharing resources
You can think of a single-threaded program as one lonely entity moving

around through your problem space and doing one thing at a time. Because

there’s only one entity, you never have to think about the problem of two

entities trying to use the same resource at the same time: problems such as

two people trying to park in the same space, walk through a door at the same

time, or even talk at the same time.

With concurrency, things aren’t lonely anymore, but you now have the

possibility of two or more tasks interfering with each other. If you don’t

prevent such a collision, you’ll have two tasks trying to access the same bank

account at the same time, print to the same printer, adjust the same valve,

and so on.

Improperly accessing resources
Consider the following example, where one task generates even numbers and

other tasks consume those numbers. Here, the only job of the consumer tasks

is to check the validity of the even numbers.

First we’ll define EvenChecker, the consumer task, since it will be reused in

all the subsequent examples. To decouple EvenChecker from the various

types of generators that we will experiment with, we’ll create an abstract class

called IntGenerator, which contains the minimum necessary methods that

EvenChecker must know about: that it has a next() method and that it can

be canceled. This class doesn’t implement the Generator interface, because

it must produce an int, and generics don’t support primitive parameters.

Concurrency 1147

//: concurrency/IntGenerator.java

public abstract class IntGenerator {

 private volatile boolean canceled = false;

 public abstract int next();

 // Allow this to be canceled:

 public void cancel() { canceled = true; }

 public boolean isCanceled() { return canceled; }

} ///:~

IntGenerator has a cancel() method to change the state of a boolean

canceled flag and isCanceled() to see whether the object has been

canceled. Because the canceled flag is a boolean, it is atomic, which means

that simple operations like assignment and value return happen without the

possibility of interruption, so you can’t see the field in an intermediate state

in the midst of those simple operations. The canceled flag is also volatile in

order to ensure visibility. You’ll learn about atomicity and visibility later in

this chapter.

Any IntGenerator can be tested with the following EvenChecker class:

//: concurrency/EvenChecker.java

import java.util.concurrent.*;

public class EvenChecker implements Runnable {

 private IntGenerator generator;

 private final int id;

 public EvenChecker(IntGenerator g, int ident) {

 generator = g;

 id = ident;

 }

 public void run() {

 while(!generator.isCanceled()) {

 int val = generator.next();

 if(val % 2 != 0) {

 System.out.println(val + " not even!");

 generator.cancel(); // Cancels all EvenCheckers

 }

 }

 }

 // Test any type of IntGenerator:

 public static void test(IntGenerator gp, int count) {

 System.out.println("Press Control-C to exit");

 ExecutorService exec = Executors.newCachedThreadPool();

1148 Thinking in Java Bruce Eckel

 for(int i = 0; i < count; i++)

 exec.execute(new EvenChecker(gp, i));

 exec.shutdown();

 }

 // Default value for count:

 public static void test(IntGenerator gp) {

 test(gp, 10);

 }

} ///:~

Note that in this example the class that can be canceled is not Runnable.

Instead, all the EvenChecker tasks that depend on the IntGenerator

object test it to see whether it’s been canceled, as you can see in run(). This

way, the tasks that share the common resource (the IntGenerator) watch

that resource for the signal to terminate. This eliminates the so-called race

condition, where two or more tasks race to respond to a condition and thus

collide or otherwise produce inconsistent results. You must be careful to

think about and protect against all the possible ways a concurrent system can

fail. For example, a task cannot depend on another task, because task

shutdown order is not guaranteed. Here, by making tasks depend on a non-

task object, we eliminate the potential race condition.

The test() method sets up and performs a test of any type of IntGenerator

by starting a number of EvenCheckers that use the same IntGenerator. If

the IntGenerator causes a failure, test() will report it and return;

otherwise, you must press Control-C to terminate it.

EvenChecker tasks constantly read and test the values from their associated

IntGenerator. Note that if generator.isCanceled() is true, run()

returns, which tells the Executor in EvenChecker.test() that the task is

complete. Any EvenChecker task can call cancel() on its associated

IntGenerator, which will cause all other EvenCheckers using that

IntGenerator to gracefully shut down. In later sections, you’ll see that Java

contains more general mechanisms for termination of threads.

The first IntGenerator we’ll look at has a next() that produces a series of

even values:

//: concurrency/EvenGenerator.java

// When threads collide.

public class EvenGenerator extends IntGenerator {

 private int currentEvenValue = 0;

Concurrency 1149

 public int next() {

 ++currentEvenValue; // Danger point here!

 ++currentEvenValue;

 return currentEvenValue;

 }

 public static void main(String[] args) {

 EvenChecker.test(new EvenGenerator());

 }

} /* Output: (Sample)

Press Control-C to exit

89476993 not even!

89476993 not even!

*///:~

It’s possible for one task to call next() after another task has performed the

first increment of currentEvenValue but not the second (at the place in the

code commented “Danger point here!”). This puts the value into an

“incorrect” state. To prove that this can happen, EvenChecker.test()

creates a group of EvenChecker objects to continually read the output of an

EvenGenerator and test to see if each one is even. If not, the error is

reported and the program is shut down.

This program will eventually fail because the EvenChecker tasks are able to

access the information in EvenGenerator while it’s in an “incorrect” state.

However, it may not detect the problem until the EvenGenerator has

completed many cycles, depending on the particulars of your operating

system and other implementation details. If you want to see it fail much

faster, try putting a call to yield() between the first and second increments.

This is part of the problem with multithreaded programs—they can appear to

be correct even when there’s a bug, if the probability for failure is very low.

It’s important to note that the increment operation itself requires multiple

steps, and the task can be suspended by the threading mechanism in the

midst of an increment—that is, increment is not an atomic operation in Java.

So even a single increment isn’t safe to do without protecting the task.

Resolving shared resource contention
The previous example shows a fundamental problem when you are using

threads: You never know when a thread might be run. Imagine sitting at a

table with a fork, about to spear the last piece of food on a platter, and as your

fork reaches for it, the food suddenly vanishes—because your thread was

1150 Thinking in Java Bruce Eckel

suspended and another diner came in and ate the food. That’s the problem

you’re dealing with when writing concurrent programs. For concurrency to

work, you need some way to prevent two tasks from accessing the same

resource, at least during critical periods.

Preventing this kind of collision is simply a matter of putting a lock on a

resource when one task is using it. The first task that accesses a resource

must lock it, and then the other tasks cannot access that resource until it is

unlocked, at which time another task locks and uses it, and so on. If the front

seat of the car is the limited resource, the child who shouts “shotgun!”

acquires the lock (for the duration of that trip).

To solve the problem of thread collision, virtually all concurrency schemes

serialize access to shared resources. This means that only one task at a time

is allowed to access the shared resource. This is ordinarily accomplished by

putting a clause around a piece of code that only allows one task at a time to

pass through that piece of code. Because this clause produces mutual

exclusion, a common name for such a mechanism is mutex.

Consider the bathroom in your house; multiple people (tasks driven by

threads) may each want to have exclusive use of the bathroom (the shared

resource). To access the bathroom, a person knocks on the door to see if it’s

available. If so, they enter and lock the door. Any other task that wants to use

the bathroom is “blocked” from using it, so those tasks wait at the door until

the bathroom is available.

The analogy breaks down a bit when the bathroom is released and it comes

time to give access to another task. There isn’t actually a line of people, and

we don’t know for sure who gets the bathroom next, because the thread

scheduler isn’t deterministic that way. Instead, it’s as if there is a group of

blocked tasks milling about in front of the bathroom, and when the task that

has locked the bathroom unlocks it and emerges, the one that happens to be

nearest the door at the moment goes in. As noted earlier, suggestions can be

made to the thread scheduler via yield() and setPriority(), but these

suggestions may not have much of an effect, depending on your platform and

JVM implementation.

To prevent collisions over resources, Java has built-in support in the form of

the synchronized keyword. When a task wishes to execute a piece of code

guarded by the synchronized keyword, it checks to see if the lock is

available, then acquires it, executes the code, and releases it.

Concurrency 1151

The shared resource is typically just a piece of memory in the form of an

object, but may also be a file, an I/O port, or something like a printer. To

control access to a shared resource, you first put it inside an object. Then any

method that uses the resource can be made synchronized. If a task is in a

call to one of the synchronized methods, all other tasks are blocked from

entering any of the synchronized methods of that object until the first task

returns from its call.

In production code, you’ve already seen that you should make the data

elements of a class private and access that memory only through methods.

You can prevent collisions by declaring those methods synchronized, like

this:

synchronized void f() { /* ... */ }

synchronized void g() { /* ... */ }

All objects automatically contain a single lock (also referred to as a monitor) .

When you call any synchronized method, that object is locked and no other

synchronized method of that object can be called until the first one finishes

and releases the lock. For the preceding methods, if f() is called for an object

by one task, a different task cannot call f() or g() for the same object until

f() is completed and releases the lock. Thus, there is a single lock that is

shared by all the synchronized methods of a particular object, and this lock

can be used to prevent object memory from being written by more than one

task at a time.

Note that it’s especially important to make fields private when working with

concurrency; otherwise the synchronized keyword cannot prevent another

task from accessing a field directly, and thus producing collisions.

One task may acquire an object’s lock multiple times. This happens if one

method calls a second method on the same object, which in turn calls another

method on the same object, etc. The JVM keeps track of the number of times

the object has been locked. If the object is unlocked, it has a count of zero. As

a task acquires the lock for the first time, the count goes to one. Each time the

same task acquires another lock on the same object, the count is incremented.

Naturally, multiple lock acquisition is only allowed for the task that acquired

the lock in the first place. Each time the task leaves a synchronized method,

the count is decremented, until the count goes to zero, releasing the lock

entirely for use by other tasks.

1152 Thinking in Java Bruce Eckel

There’s also a single lock per class (as part of the Class object for the class),

so that synchronized static methods can lock each other out from

simultaneous access of static data on a class-wide basis.

When should you synchronize? Apply Brian’s Rule of Synchronization:10

If you are writing a variable that might next be read by another thread,

or reading a variable that might have last been written by another

thread, you must use synchronization, and further, both the reader and

the writer must synchronize using the same monitor lock.

If you have more than one method in your class that deals with the critical

data, you must synchronize all relevant methods. If you synchronize only one

of the methods, then the others are free to ignore the object lock and can be

called with impunity. This is an important point: Every method that accesses

a critical shared resource must be synchronized or it won’t work right.

Synchronizing the EvenGenerator

By adding synchronized to EvenGenerator.java, we can prevent the

undesirable thread access:

//: concurrency/SynchronizedEvenGenerator.java

// Simplifying mutexes with the synchronized keyword.

// {RunByHand}

public class

SynchronizedEvenGenerator extends IntGenerator {

 private int currentEvenValue = 0;

 public synchronized int next() {

 ++currentEvenValue;

 Thread.yield(); // Cause failure faster

 ++currentEvenValue;

 return currentEvenValue;

 }

 public static void main(String[] args) {

 EvenChecker.test(new SynchronizedEvenGenerator());

 }

} ///:~

10 From Brian Goetz, author of Java Concurrency in Practice, by Brian Goetz, Tim Peierls,
Joshua Bloch, Joseph Bowbeer, David Holmes, and Doug Lea (Addison-Wesley, 2006).

Concurrency 1153

A call to Thread.yield() is inserted between the two increments, to raise

the likelihood of a context switch while currentEvenValue is in an odd

state. Because the mutex prevents more than one task at a time in the critical

section, this will not produce a failure, but calling yield() is a helpful way to

promote a failure if it’s going to happen.

The first task that enters next() acquires the lock, and any further tasks that

try to acquire the lock are blocked from doing so until the first task releases

the lock. At that point, the scheduling mechanism selects another task that is

waiting on the lock. This way, only one task at a time can pass through the

code that is guarded by the mutex.

Exercise 11: (3) Create a class containing two data fields, and a method
that manipulates those fields in a multistep process so that, during the
execution of that method, those fields are in an “improper state” (according
to some definition that you establish). Add methods to read the fields, and
create multiple threads to call the various methods and show that the data is
visible in its “improper state.” Fix the problem using the synchronized
keyword.

Using explicit Lock objects

The Java SE5 java.util.concurrent library also contains an explicit mutex

mechanism defined in java.util.concurrent.locks. The Lock object must

be explicitly created, locked and unlocked; thus, it produces less elegant code

than the built-in form. However, it is more flexible for solving certain types of

problems. Here is SynchronizedEvenGenerator.java rewritten to use

explicit Locks:

//: concurrency/MutexEvenGenerator.java

// Preventing thread collisions with mutexes.

// {RunByHand}

import java.util.concurrent.locks.*;

public class MutexEvenGenerator extends IntGenerator {

 private int currentEvenValue = 0;

 private Lock lock = new ReentrantLock();

 public int next() {

 lock.lock();

 try {

 ++currentEvenValue;

 Thread.yield(); // Cause failure faster

 ++currentEvenValue;

 return currentEvenValue;

1154 Thinking in Java Bruce Eckel

 } finally {

 lock.unlock();

 }

 }

 public static void main(String[] args) {

 EvenChecker.test(new MutexEvenGenerator());

 }

} ///:~

MutexEvenGenerator adds a mutex called lock and uses the lock() and

unlock() methods to create a critical section within next(). When you are

using Lock objects, it is important to internalize the idiom shown here: Right

after the call to lock(), you must place a try-finally statement with

unlock() in the finally clause—this is the only way to guarantee that the

lock is always released. Note that the return statement must occur inside the

try clause to ensure that the unlock() doesn’t happen too early and expose

the data to a second task.

Although the try-finally requires more code than using the synchronized

keyword, it also represents one of the advantages of explicit Lock objects. If

something fails using the synchronized keyword, an exception is thrown,

but you don’t get the chance to do any cleanup in order to maintain your

system in a good state. With explicit Lock objects, you can maintain proper

state in your system using the finally clause.

In general, when you are using synchronized, there is less code to write,

and the opportunity for user error is greatly reduced, so you’ll usually only

use the explicit Lock objects when you’re solving special problems. For

example, with the synchronized keyword, you can’t try and fail to acquire a

lock, or try to acquire a lock for a certain amount of time and then give up—to

do this, you must use the concurrent library:

//: concurrency/AttemptLocking.java

// Locks in the concurrent library allow you

// to give up on trying to acquire a lock.

import java.util.concurrent.*;

import java.util.concurrent.locks.*;

public class AttemptLocking {

 private ReentrantLock lock = new ReentrantLock();

 public void untimed() {

 boolean captured = lock.tryLock();

 try {

Concurrency 1155

 System.out.println("tryLock(): " + captured);

 } finally {

 if(captured)

 lock.unlock();

 }

 }

 public void timed() {

 boolean captured = false;

 try {

 captured = lock.tryLock(2, TimeUnit.SECONDS);

 } catch(InterruptedException e) {

 throw new RuntimeException(e);

 }

 try {

 System.out.println("tryLock(2, TimeUnit.SECONDS): " +

 captured);

 } finally {

 if(captured)

 lock.unlock();

 }

 }

 public static void main(String[] args) {

 final AttemptLocking al = new AttemptLocking();

 al.untimed(); // True -- lock is available

 al.timed(); // True -- lock is available

 // Now create a separate task to grab the lock:

 new Thread() {

 { setDaemon(true); }

 public void run() {

 al.lock.lock();

 System.out.println("acquired");

 }

 }.start();

 Thread.yield(); // Give the 2nd task a chance

 al.untimed(); // False -- lock grabbed by task

 al.timed(); // False -- lock grabbed by task

 }

} /* Output:

tryLock(): true

tryLock(2, TimeUnit.SECONDS): true

acquired

tryLock(): false

tryLock(2, TimeUnit.SECONDS): false

*///:~

1156 Thinking in Java Bruce Eckel

A ReentrantLock allows you to try and fail to acquire the lock, so that if

someone else already has the lock, you can decide to go off and do something

else rather than waiting until it is free, as you can see in the untimed()

method. In timed(), an attempt is made to acquire the lock which can fail

after 2 seconds (note the use of the Java SE5 TimeUnit class to specify

units). In main(), a separate Thread is created as an anonymous class, and

it acquires the lock so that the untimed() and timed() methods have

something to contend with.

The explicit Lock object also gives you finer-grained control over locking and

unlocking than does the built-in synchronized lock. This is useful for

implementing specialized synchronization structures, such as hand-over-

hand locking (also called lock coupling), used for traversing the nodes of a

linked list—the traversal code must capture the lock of the next node before it

releases the current node’s lock.

Atomicity and volatility
An incorrect piece of lore that is often repeated in Java threading discussions

is, “Atomic operations do not need to be synchronized.” An atomic operation

is one that cannot be interrupted by the thread scheduler; if the operation

begins, then it will run to completion before the possibility of a context

switch. Relying on atomicity is tricky and dangerous—you should only try to

use atomicity instead of synchronization if you are a concurrency expert, or

you have help from such an expert. If you think you’re smart enough to play

with this kind of fire, take this test:

The Goetz Test11: If you can write a high-performance JVM for a modern

microprocessor, then you are qualified to think about whether you can

avoid synchronizing.12

It’s useful to know about atomicity, and to know that, along with other

advanced techniques, it was used to implement some of the more clever

11 After the previously mentioned Brian Goetz, a concurrency expert who helped with this
chapter, based on only partially tongue-in-cheek comments from him.

12 A corollary to this test is, “If someone implies that threading is easy and
straightforward, make sure that person is not making important decisions about your
project. If that person already is, then you’ve got trouble.”

Concurrency 1157

java.util.concurrent library components. But strongly resist the urge to

rely on it yourself; see Brian’s Rule of Synchronization, presented earlier.

Atomicity applies to “simple operations” on primitive types except for longs

and doubles. Reading and writing primitive variables other than long and

double is guaranteed to go to and from memory as indivisible (atomic)

operations. However, the JVM is allowed to perform reads and writes of 64-

bit quantities (long and double variables) as two separate 32-bit operations,

raising the possibility that a context switch could happen in the middle of a

read or write, and then different tasks could see incorrect results (this is

sometimes called word tearing, because you might see the value after only

part of it has been changed). However, you do get atomicity (for simple

assignments and returns) if you use the volatile keyword when defining a

long or double variable (note that volatile was not working properly before

Java SE5). Different JVMs are free to provide stronger guarantees, but you

should not rely on platform-specific features.

Atomic operations are thus not interruptible by the threading mechanism.

Expert programmers can take advantage of this to write lock-free code, which

does not need to be synchronized. But even this is an oversimplification.

Sometimes, even when it seems like an atomic operation should be safe, it

may not be. Readers of this book will typically not be able to pass the

aforementioned Goetz Test, and will thus not be qualified to try to replace

synchronization with atomic operations. Trying to remove synchronization is

usually a sign of premature optimization, and will cause you a lot of trouble,

probably without gaining much, or anything.

On multiprocessor systems (which are now appearing in the form of

multicore processors—multiple CPUs on a single chip), visibility rather than

atomicity is much more of an issue than on single-processor systems.

Changes made by one task, even if they’re atomic in the sense of not being

interruptible, might not be visible to other tasks (the changes might be

temporarily stored in a local processor cache, for example), so different tasks

will have a different view of the application’s state. The synchronization

mechanism, on the other hand, forces changes by one task on a

multiprocessor system to be visible across the application. Without

synchronization, it’s indeterminate when changes become visible.

The volatile keyword also ensures visibility across the application. If you

declare a field to be volatile, this means that as soon as a write occurs for

that field, all reads will see the change. This is true even if local caches are

1158 Thinking in Java Bruce Eckel

involved—volatile fields are immediately written through to main memory,

and reads occur from main memory.

It’s important to understand that atomicity and volatility are distinct

concepts. An atomic operation on a non-volatile field will not necessarily be

flushed to main memory, and so another task that reads that field will not

necessarily see the new value. If multiple tasks are accessing a field, that field

should be volatile; otherwise, the field should only be accessed via

synchronization. Synchronization also causes flushing to main memory, so if

a field is completely guarded by synchronized methods or blocks, it is not

necessary to make it volatile.

Any writes that a task makes will be visible to that task, so you don’t need to

make a field volatile if it is only seen within a task.

volatile doesn’t work when the value of a field depends on its previous value

(such as incrementing a counter), nor does it work on fields whose values are

constrained by the values of other fields, such as the lower and upper

bound of a Range class which must obey the constraint lower <= upper.

It’s typically only safe to use volatile instead of synchronized if the class

has only one mutable field. Again, your first choice should be to use the

synchronized keyword—that’s the safest approach, and trying to do

anything else is risky.

What qualifies as an atomic operation? Assignment and returning the value

in a field will usually be atomic. However, in C++ even the following might be

atomic:

i++; // Might be atomic in C++

i += 2; // Might be atomic in C++

But in C++, this depends on the compiler and processor. You’re unable to

write cross-platform code in C++ that relies on atomicity, because C++

doesn’t have a consistent memory model, as Java does (in Java SE5).13

In Java, the above operations are definitely not atomic, as you can see from

the JVM instructions produced by the following methods:

//: concurrency/Atomicity.java

13 This is being remedied in the upcoming C++ standard.

Concurrency 1159

// {Exec: javap -c Atomicity}

public class Atomicity {

 int i;

 void f1() { i++; }

 void f2() { i += 3; }

} /* Output: (Sample)

...

void f1();

 Code:

 0: aload_0

 1: dup

 2: getfield #2; //Field i:I

 5: iconst_1

 6: iadd

 7: putfield #2; //Field i:I

 10: return

void f2();

 Code:

 0: aload_0

 1: dup

 2: getfield #2; //Field i:I

 5: iconst_3

 6: iadd

 7: putfield #2; //Field i:I

 10: return

*///:~

Each instruction produces a “get” and a “put,” with instructions in between.

So in between getting and putting, another task could modify the field, and

thus the operations are not atomic.

If you blindly apply the idea of atomicity, you see that getValue() in the

following program fits the description:

//: concurrency/AtomicityTest.java

import java.util.concurrent.*;

public class AtomicityTest implements Runnable {

 private int i = 0;

 public int getValue() { return i; }

 private synchronized void evenIncrement() { i++; i++; }

 public void run() {

 while(true)

1160 Thinking in Java Bruce Eckel

 evenIncrement();

 }

 public static void main(String[] args) {

 ExecutorService exec = Executors.newCachedThreadPool();

 AtomicityTest at = new AtomicityTest();

 exec.execute(at);

 while(true) {

 int val = at.getValue();

 if(val % 2 != 0) {

 System.out.println(val);

 System.exit(0);

 }

 }

 }

} /* Output: (Sample)

191583767

*///:~

However, the program will find non-even values and terminate. Although

return i is indeed an atomic operation, the lack of synchronization allows

the value to be read while the object is in an unstable intermediate state. On

top of this, since i is also not volatile, there will be visibility problems. Both

getValue() and evenIncrement() must be synchronized. Only

concurrency experts are qualified to attempt optimizations in situations like

this; again, you should apply Brian’s Rule of Synchronization.

As a second example, consider something even simpler: a class that produces

serial numbers.14 Each time nextSerialNumber() is called, it must return

a unique value to the caller:

//: concurrency/SerialNumberGenerator.java

public class SerialNumberGenerator {

 private static volatile int serialNumber = 0;

 public static int nextSerialNumber() {

 return serialNumber++; // Not thread-safe

 }

} ///:~

14 Inspired by Joshua Bloch’s Effective JavaTM Programming Language Guide (Addison-
Wesley, 2001), p. 190.

Concurrency 1161

SerialNumberGenerator is about as simple a class as you can imagine,

and if you’re coming from C++ or some other low-level background, you

might expect the increment to be an atomic operation, because a C++

increment can often be implemented as a microprocessor instruction

(although not in any reliable, cross-platform fashion). As noted before,

however, a Java increment is not atomic and involves both a read and a write,

so there’s room for threading problems even in such a simple operation. As

you shall see, volatility isn’t actually the issue here; the real problem is that

nextSerialNumber() accesses a shared, mutable value without

synchronizing.

The serialNumber field is volatile because it is possible for each thread to

have a local stack and maintain copies of some variables there. If you define a

variable as volatile, it tells the compiler not to do any optimizations that

would remove reads and writes that keep the field in exact synchronization

with the local data in the threads. In effect, reads and writes go directly to

memory, and are not cached. volatile also restricts compiler reordering of

accesses during optimization. However, volatile doesn’t affect the fact that

an increment isn’t an atomic operation.

Basically, you should make a field volatile if that field could be

simultaneously accessed by multiple tasks, and at least one of those accesses

is a write. For example, a field that is used as a flag to stop a task must be

declared volatile; otherwise, that flag could be cached in a register, and

when you make changes to the flag from outside the task, the cached value

wouldn’t be changed and the task wouldn’t know it should stop.

To test SerialNumberGenerator, we need a set that doesn’t run out of

memory, in case it takes a long time to detect a problem. The CircularSet

shown here reuses the memory used to store ints, with the assumption that

by the time you wrap around, the possibility of a collision with the

overwritten values is minimal. The add() and contains() methods are

synchronized to prevent thread collisions:

//: concurrency/SerialNumberChecker.java

// Operations that may seem safe are not,

// when threads are present.

// {Args: 4}

import java.util.concurrent.*;

// Reuses storage so we don't run out of memory:

class CircularSet {

1162 Thinking in Java Bruce Eckel

 private int[] array;

 private int len;

 private int index = 0;

 public CircularSet(int size) {

 array = new int[size];

 len = size;

 // Initialize to a value not produced

 // by the SerialNumberGenerator:

 for(int i = 0; i < size; i++)

 array[i] = -1;

 }

 public synchronized void add(int i) {

 array[index] = i;

 // Wrap index and write over old elements:

 index = ++index % len;

 }

 public synchronized boolean contains(int val) {

 for(int i = 0; i < len; i++)

 if(array[i] == val) return true;

 return false;

 }

}

public class SerialNumberChecker {

 private static final int SIZE = 10;

 private static CircularSet serials =

 new CircularSet(1000);

 private static ExecutorService exec =

 Executors.newCachedThreadPool();

 static class SerialChecker implements Runnable {

 public void run() {

 while(true) {

 int serial =

 SerialNumberGenerator.nextSerialNumber();

 if(serials.contains(serial)) {

 System.out.println("Duplicate: " + serial);

 System.exit(0);

 }

 serials.add(serial);

 }

 }

 }

 public static void main(String[] args) throws Exception {

 for(int i = 0; i < SIZE; i++)

Concurrency 1163

 exec.execute(new SerialChecker());

 // Stop after n seconds if there's an argument:

 if(args.length > 0) {

 TimeUnit.SECONDS.sleep(new Integer(args[0]));

 System.out.println("No duplicates detected");

 System.exit(0);

 }

 }

} /* Output: (Sample)

Duplicate: 8468656

*///:~

SerialNumberChecker contains a static CircularSet that holds all the

serial numbers that have been produced, and a nested SerialChecker class

that ensures the serial numbers are unique. By creating multiple tasks to

contend over serial numbers, you’ll discover that the tasks eventually get a

duplicate serial number, if you let it run long enough. To solve the problem,

add the synchronized keyword to nextSerialNumber().

The atomic operations that are supposed to be safe are the reading and

assignment of primitives. However, as seen in AtomicityTest.java, it’s still

easily possible to use an atomic operation that accesses your object while it’s

in an unstable intermediate state. Making assumptions about this issue is

tricky and dangerous. The most sensible thing to do is just to follow Brian’s

Rule of Synchronization.

Exercise 12: (3) Repair AtomicityTest.java using the synchronized
keyword. Can you demonstrate that it is now correct?

Exercise 13: (1) Repair SerialNumberChecker.java using the
synchronized keyword. Can you demonstrate that it is now correct?

Atomic classes
Java SE5 introduces special atomic variable classes such as AtomicInteger,

AtomicLong, AtomicReference, etc. that provide an atomic conditional

update operation of the form:

boolean compareAndSet(expectedValue, updateValue);

These are for fine-tuning to use machine-level atomicity that is available on

some modern processors, so you generally don’t need to worry about using

them. Occasionally they come in handy for regular coding, but again when

1164 Thinking in Java Bruce Eckel

performance tuning is involved. For example, we can rewrite

AtomicityTest.java to use AtomicInteger:

//: concurrency/AtomicIntegerTest.java

import java.util.concurrent.*;

import java.util.concurrent.atomic.*;

import java.util.*;

public class AtomicIntegerTest implements Runnable {

 private AtomicInteger i = new AtomicInteger(0);

 public int getValue() { return i.get(); }

 private void evenIncrement() { i.addAndGet(2); }

 public void run() {

 while(true)

 evenIncrement();

 }

 public static void main(String[] args) {

 new Timer().schedule(new TimerTask() {

 public void run() {

 System.err.println("Aborting");

 System.exit(0);

 }

 }, 5000); // Terminate after 5 seconds

 ExecutorService exec = Executors.newCachedThreadPool();

 AtomicIntegerTest ait = new AtomicIntegerTest();

 exec.execute(ait);

 while(true) {

 int val = ait.getValue();

 if(val % 2 != 0) {

 System.out.println(val);

 System.exit(0);

 }

 }

 }

} ///:~

Here we’ve eliminated the synchronized keyword by using

AtomicInteger instead. Because the program doesn’t fail, a Timer is added

to automatically abort after 5 seconds.

Here is MutexEvenGenerator.java rewritten to use AtomicInteger:

//: concurrency/AtomicEvenGenerator.java

// Atomic classes are occasionally useful in regular code.

// {RunByHand}

Concurrency 1165

import java.util.concurrent.atomic.*;

public class AtomicEvenGenerator extends IntGenerator {

 private AtomicInteger currentEvenValue =

 new AtomicInteger(0);

 public int next() {

 return currentEvenValue.addAndGet(2);

 }

 public static void main(String[] args) {

 EvenChecker.test(new AtomicEvenGenerator());

 }

} ///:~

Again, all other forms of synchronization have been eliminated by using

AtomicInteger.

It should be emphasized that the Atomic classes were designed to build the

classes in java.util.concurrent, and that you should use them in your own

code only under special circumstances, and even then only when you can

ensure that there are no other possible problems. It’s generally safer to rely

on locks (either the synchronized keyword or explicit Lock objects).

Exercise 14: (4) Demonstrate that java.util.Timer scales to large
numbers by creating a program that generates many Timer objects that
perform some simple task when the timeout completes.

Critical sections
Sometimes, you only want to prevent multiple thread access to part of the

code inside a method instead of the entire method. The section of code you

want to isolate this way is called a critical section and is created using the

synchronized keyword. Here, synchronized is used to specify the object

whose lock is being used to synchronize the enclosed code:

synchronized(syncObject) {

 // This code can be accessed

 // by only one task at a time

}

This is also called a synchronized block; before it can be entered, the lock

must be acquired on syncObject. If some other task already has this lock,

then the critical section cannot be entered until the lock is released.

1166 Thinking in Java Bruce Eckel

The following example compares both synchronization approaches by

showing how the time available for other tasks to access an object is

significantly increased by using a synchronized block instead of

synchronizing an entire method. In addition, it shows how an unprotected

class can be used in a multithreaded situation if it is controlled and protected

by another class:

//: concurrency/CriticalSection.java

// Synchronizing blocks instead of entire methods. Also

// demonstrates protection of a non-thread-safe class

// with a thread-safe one.

package concurrency;

import java.util.concurrent.*;

import java.util.concurrent.atomic.*;

import java.util.*;

class Pair { // Not thread-safe

 private int x, y;

 public Pair(int x, int y) {

 this.x = x;

 this.y = y;

 }

 public Pair() { this(0, 0); }

 public int getX() { return x; }

 public int getY() { return y; }

 public void incrementX() { x++; }

 public void incrementY() { y++; }

 public String toString() {

 return "x: " + x + ", y: " + y;

 }

 public class PairValuesNotEqualException

 extends RuntimeException {

 public PairValuesNotEqualException() {

 super("Pair values not equal: " + Pair.this);

 }

 }

 // Arbitrary invariant -- both variables must be equal:

 public void checkState() {

 if(x != y)

 throw new PairValuesNotEqualException();

 }

}

// Protect a Pair inside a thread-safe class:

Concurrency 1167

abstract class PairManager {

 AtomicInteger checkCounter = new AtomicInteger(0);

 protected Pair p = new Pair();

 private List<Pair> storage =

 Collections.synchronizedList(new ArrayList<Pair>());

 public synchronized Pair getPair() {

 // Make a copy to keep the original safe:

 return new Pair(p.getX(), p.getY());

 }

 // Assume this is a time consuming operation

 protected void store(Pair p) {

 storage.add(p);

 try {

 TimeUnit.MILLISECONDS.sleep(50);

 } catch(InterruptedException ignore) {}

 }

 public abstract void increment();

}

// Synchronize the entire method:

class PairManager1 extends PairManager {

 public synchronized void increment() {

 p.incrementX();

 p.incrementY();

 store(getPair());

 }

}

// Use a critical section:

class PairManager2 extends PairManager {

 public void increment() {

 Pair temp;

 synchronized(this) {

 p.incrementX();

 p.incrementY();

 temp = getPair();

 }

 store(temp);

 }

}

class PairManipulator implements Runnable {

 private PairManager pm;

 public PairManipulator(PairManager pm) {

1168 Thinking in Java Bruce Eckel

 this.pm = pm;

 }

 public void run() {

 while(true)

 pm.increment();

 }

 public String toString() {

 return "Pair: " + pm.getPair() +

 " checkCounter = " + pm.checkCounter.get();

 }

}

class PairChecker implements Runnable {

 private PairManager pm;

 public PairChecker(PairManager pm) {

 this.pm = pm;

 }

 public void run() {

 while(true) {

 pm.checkCounter.incrementAndGet();

 pm.getPair().checkState();

 }

 }

}

public class CriticalSection {

 // Test the two different approaches:

 static void

 testApproaches(PairManager pman1, PairManager pman2) {

 ExecutorService exec = Executors.newCachedThreadPool();

 PairManipulator

 pm1 = new PairManipulator(pman1),

 pm2 = new PairManipulator(pman2);

 PairChecker

 pcheck1 = new PairChecker(pman1),

 pcheck2 = new PairChecker(pman2);

 exec.execute(pm1);

 exec.execute(pm2);

 exec.execute(pcheck1);

 exec.execute(pcheck2);

 try {

 TimeUnit.MILLISECONDS.sleep(500);

 } catch(InterruptedException e) {

 System.out.println("Sleep interrupted");

Concurrency 1169

 }

 System.out.println("pm1: " + pm1 + "\npm2: " + pm2);

 System.exit(0);

 }

 public static void main(String[] args) {

 PairManager

 pman1 = new PairManager1(),

 pman2 = new PairManager2();

 testApproaches(pman1, pman2);

 }

} /* Output: (Sample)

pm1: Pair: x: 15, y: 15 checkCounter = 272565

pm2: Pair: x: 16, y: 16 checkCounter = 3956974

*///:~

As noted, Pair is not thread-safe because its invariant (admittedly arbitrary)

requires that both variables maintain the same values. In addition, as seen

earlier in this chapter, the increment operations are not thread-safe, and

because none of the methods are synchronized, you can’t trust a Pair

object to stay uncorrupted in a threaded program.

You can imagine that someone hands you the non-thread-safe Pair class, and

you need to use it in a threaded environment. You do this by creating the

PairManager class, which holds a Pair object and controls all access to it.

Note that the only public methods are getPair(), which is synchronized,

and the abstract increment(). Synchronization for increment() will be

handled when it is implemented.

The structure of PairManager, where functionality implemented in the base

class uses one or more abstract methods defined in derived classes, is called

a Template Method in Design Patterns parlance.15 Design patterns allow you

to encapsulate change in your code; here, the part that is changing is the

method increment(). In PairManager1 the entire increment() method

is synchronized, but in PairManager2 only part of increment() is

synchronized by using a synchronized block. Note that the

synchronized keyword is not part of the method signature and thus may be

added during overriding.

15 See Design Patterns, by Gamma et al. (Addison-Wesley, 1995).

1170 Thinking in Java Bruce Eckel

The store() method adds a Pair object to a synchronized ArrayList, so

this operation is thread safe. Thus, it doesn’t need to be guarded, and is

placed outside of the synchronized block in PairManager2.

PairManipulator is created to test the two different types of

PairManagers by calling increment() in a task while a PairChecker is

run from another task. To trace how often it is able to run the test,

PairChecker increments checkCounter every time it is successful. In

main(), two PairManipulator objects are created and allowed to run for a

while, after which the results of each PairManipulator are shown.

Although you will probably see a lot of variation in output from one run to the

next, in general you will see that PairManager1.increment() does not

allow the PairChecker nearly as much access as

PairManager2.increment(), which has the synchronized block and

thus provides more unlocked time. This is typically the reason to use a

synchronized block instead of synchronizing the whole method: to allow

other tasks more access (as long as it is safe to do so).

You can also use explicit Lock objects to create critical sections:

//: concurrency/ExplicitCriticalSection.java

// {ThrowsException} on a multiprocessor machine

// Using explicit Lock objects to create critical sections.

package concurrency;

import java.util.concurrent.locks.*;

// Synchronize the entire method:

class ExplicitPairManager1 extends PairManager {

 private Lock lock = new ReentrantLock();

 public void increment() {

 lock.lock();

 try {

 p.incrementX();

 p.incrementY();

 store(getPair());

 } finally {

 lock.unlock();

 }

 }

}

// Use a critical section:

Concurrency 1171

class ExplicitPairManager2 extends PairManager {

 private Lock lock = new ReentrantLock();

 public void increment() {

 Pair temp;

 lock.lock();

 try {

 p.incrementX();

 p.incrementY();

 temp = getPair();

 } finally {

 lock.unlock();

 }

 store(temp);

 }

}

public class ExplicitCriticalSection {

 public static void main(String[] args) throws Exception {

 PairManager

 pman1 = new ExplicitPairManager1(),

 pman2 = new ExplicitPairManager2();

 CriticalSection.testApproaches(pman1, pman2);

 }

} ///:~

This reuses most of CriticalSection.java and creates new PairManager

types that use explicit Lock objects. ExplicitPairManager2 creates a

critical section using a Lock object; the call to store() is outside of the

critical section. But this example fails on a multiprocessor machine – can

you figure out why?

Synchronizing on other objects
A synchronized block must be given an object to synchronize upon, and

usually the most sensible object to use is just the current object that the

method is being called for: synchronized(this), which is the approach

taken in PairManager2. That way, when the lock is acquired for the

synchronized block, other synchronized methods and critical sections in

the object cannot be called. So the effect of the critical section, when

synchronizing on this, is simply to reduce the scope of synchronization.

Sometimes you must synchronize on another object, but if you do this you

must ensure that all relevant tasks are synchronizing on the same object. The

1172 Thinking in Java Bruce Eckel

following example demonstrates that two tasks can enter an object when the

methods in that object synchronize on different locks:

//: concurrency/SyncObject.java

// Synchronizing on another object.

import static net.mindview.util.Print.*;

class DualSynch {

 private Object syncObject = new Object();

 public synchronized void f() {

 for(int i = 0; i < 5; i++) {

 print("f()");

 Thread.yield();

 }

 }

 public void g() {

 synchronized(syncObject) {

 for(int i = 0; i < 5; i++) {

 print("g()");

 Thread.yield();

 }

 }

 }

}

public class SyncObject {

 public static void main(String[] args) {

 final DualSynch ds = new DualSynch();

 new Thread() {

 public void run() {

 ds.f();

 }

 }.start();

 ds.g();

 }

} /* Output: (Sample)

g()

f()

g()

f()

g()

f()

g()

f()

Concurrency 1173

g()

f()

*///:~

DualSync.f() synchronizes on this (by synchronizing the entire method),

and g() has a synchronized block that synchronizes on syncObject. Thus,

the two synchronizations are independent. This is demonstrated in main()

by creating a Thread that calls f(). The main() thread is used to call g().

You can see from the output that both methods are running at the same time,

so neither one is blocked by the synchronization of the other.

Exercise 15: (1) Create a class with three methods containing critical
sections that all synchronize on the same object. Create multiple tasks to
demonstrate that only one of these methods can run at a time. Now modify
the methods so that each one synchronizes on a different object and show
that all three methods can be running at once.

Exercise 16: (1) Modify Exercise 15 to use explicit Lock objects.

Thread local storage
A second way to prevent tasks from colliding over shared resources is to

eliminate the sharing of variables. Thread local storage is a mechanism that

automatically creates different storage for the same variable, for each

different thread that uses an object. Thus, if you have five threads using an

object with a variable x, thread local storage generates five different pieces of

storage for x. Basically, they allow you to associate state with a thread.

The creation and management of thread local storage is taken care of by the

java.lang.ThreadLocal class, as seen here:

//: concurrency/ThreadLocalVariableHolder.java

// Automatically giving each thread its own storage.

import java.util.concurrent.*;

import java.util.*;

class Accessor implements Runnable {

 private final int id;

 public Accessor(int idn) { id = idn; }

 public void run() {

 while(!Thread.currentThread().isInterrupted()) {

 ThreadLocalVariableHolder.increment();

 System.out.println(this);

 Thread.yield();

1174 Thinking in Java Bruce Eckel

 }

 }

 public String toString() {

 return "#" + id + ": " +

 ThreadLocalVariableHolder.get();

 }

}

public class ThreadLocalVariableHolder {

 private static ThreadLocal<Integer> value =

 new ThreadLocal<Integer>() {

 private Random rand = new Random(47);

 protected synchronized Integer initialValue() {

 return rand.nextInt(10000);

 }

 };

 public static void increment() {

 value.set(value.get() + 1);

 }

 public static int get() { return value.get(); }

 public static void main(String[] args) throws Exception {

 ExecutorService exec = Executors.newCachedThreadPool();

 for(int i = 0; i < 5; i++)

 exec.execute(new Accessor(i));

 TimeUnit.SECONDS.sleep(3); // Run for a while

 exec.shutdownNow(); // All Accessors will quit

 }

} /* Output: (Sample)

#0: 9259

#1: 556

#2: 6694

#3: 1862

#4: 962

#0: 9260

#1: 557

#2: 6695

#3: 1863

#4: 963

...

*///:~

ThreadLocal objects are usually stored as static fields. When you create a

ThreadLocal object, you are only able to access the contents of the object

using the get() and set() methods. The get() method returns a copy of the

Concurrency 1175

object that is associated with that thread, and set() inserts its argument into

the object stored for that thread, returning the old object that was in storage.

The increment() and get() methods demonstrate this in

ThreadLocalVariableHolder. Notice that increment() and get() are

not synchronized, because ThreadLocal guarantees that no race

condition can occur.

When you run this program, you’ll see evidence that the individual threads

are each allocated their own storage, since each one keeps its own count even

though there’s only one ThreadLocalVariableHolder object.

Terminating tasks
In some of the previous examples, cancel() and isCanceled() methods are

placed in a class that is seen by all tasks. The tasks check isCanceled() to

determine when to terminate themselves. This is a reasonable approach to

the problem. However, in some situations the task must be terminated more

abruptly. In this section, you’ll learn about the issues and problems of such

termination.

First, let’s look at an example that not only demonstrates the termination

problem but also is an additional example of resource sharing.

The ornamental garden
In this simulation, the garden committee would like to know how many

people enter the garden each day through its multiple gates. Each gate has a

turnstile or some other kind of counter, and after the turnstile count is

incremented, a shared count is incremented that represents the total number

of people in the garden.

//: concurrency/OrnamentalGarden.java

import java.util.concurrent.*;

import java.util.*;

import static net.mindview.util.Print.*;

class Count {

 private int count = 0;

 private Random rand = new Random(47);

 // Remove the synchronized keyword to see counting fail:

 public synchronized int increment() {

 int temp = count;

1176 Thinking in Java Bruce Eckel

 if(rand.nextBoolean()) // Yield half the time

 Thread.yield();

 return (count = ++temp);

 }

 public synchronized int value() { return count; }

}

class Entrance implements Runnable {

 private static Count count = new Count();

 private static List<Entrance> entrances =

 new ArrayList<Entrance>();

 private int number = 0;

 // Doesn't need synchronization to read:

 private final int id;

 private static volatile boolean canceled = false;

 // Atomic operation on a volatile field:

 public static void cancel() { canceled = true; }

 public Entrance(int id) {

 this.id = id;

 // Keep this task in a list. Also prevents

 // garbage collection of dead tasks:

 entrances.add(this);

 }

 public void run() {

 while(!canceled) {

 synchronized(this) {

 ++number;

 }

 print(this + " Total: " + count.increment());

 try {

 TimeUnit.MILLISECONDS.sleep(100);

 } catch(InterruptedException e) {

 print("sleep interrupted");

 }

 }

 print("Stopping " + this);

 }

 public synchronized int getValue() { return number; }

 public String toString() {

 return "Entrance " + id + ": " + getValue();

 }

 public static int getTotalCount() {

 return count.value();

 }

Concurrency 1177

 public static int sumEntrances() {

 int sum = 0;

 for(Entrance entrance : entrances)

 sum += entrance.getValue();

 return sum;

 }

}

public class OrnamentalGarden {

 public static void main(String[] args) throws Exception {

 ExecutorService exec = Executors.newCachedThreadPool();

 for(int i = 0; i < 5; i++)

 exec.execute(new Entrance(i));

 // Run for a while, then stop and collect the data:

 TimeUnit.SECONDS.sleep(3);

 Entrance.cancel();

 exec.shutdown();

 if(!exec.awaitTermination(250, TimeUnit.MILLISECONDS))

 print("Some tasks were not terminated!");

 print("Total: " + Entrance.getTotalCount());

 print("Sum of Entrances: " + Entrance.sumEntrances());

 }

} /* Output: (Sample)

Entrance 0: 1 Total: 1

Entrance 2: 1 Total: 3

Entrance 1: 1 Total: 2

Entrance 4: 1 Total: 5

Entrance 3: 1 Total: 4

Entrance 2: 2 Total: 6

Entrance 4: 2 Total: 7

Entrance 0: 2 Total: 8

...

Entrance 3: 29 Total: 143

Entrance 0: 29 Total: 144

Entrance 4: 29 Total: 145

Entrance 2: 30 Total: 147

Entrance 1: 30 Total: 146

Entrance 0: 30 Total: 149

Entrance 3: 30 Total: 148

Entrance 4: 30 Total: 150

Stopping Entrance 2: 30

Stopping Entrance 1: 30

Stopping Entrance 0: 30

Stopping Entrance 3: 30

1178 Thinking in Java Bruce Eckel

Stopping Entrance 4: 30

Total: 150

Sum of Entrances: 150

*///:~

A single Count object keeps the master count of garden visitors, and is

stored as a static field in the Entrance class. Count.increment() and

Count.value() are synchronized to control access to the count field. The

increment() method uses a Random object to cause a yield() roughly

half the time, in between fetching count into temp and incrementing and

storing temp back into count. If you comment out the synchronized

keyword on increment(), the program breaks because multiple tasks will

be accessing and modifying count simultaneously (the yield() causes the

problem to happen more quickly).

Each Entrance task keeps a local value number containing the number of

visitors that have passed through that particular entrance. This provides a

double check against the count object to make sure that the proper number

of visitors is being recorded. Entrance.run() simply increments number

and the count object and sleeps for 100 milliseconds.

Because Entrance.canceled is a volatile boolean flag which is only read

and assigned (and is never read in combination with other fields), it’s

possible to get away without synchronizing access to it. If you have any

doubts about something like this, it’s always better to use synchronized.

This program goes to quite a bit of extra trouble to shut everything down in a

stable fashion. Part of the reason for this is to show just how careful you must

be when terminating a multithreaded program, and part of the reason is to

demonstrate the value of interrupt(), which you will learn about shortly.

After 3 seconds, main() sends the static cancel() message to Entrance,

then calls shutdown() for the exec object, and then calls

awaitTermination() on exec. ExecutorService.awaitTermination()

waits for each task to complete, and if they all complete before the timeout

value, it returns true, otherwise it returns false to indicate that not all tasks

have completed. Although this causes each task to exit its run() method and

therefore terminate as a task, the Entrance objects are still valid because, in

the constructor, each Entrance object is stored in a static

List<Entrance> called entrances. Thus, sumEntrances() is still

working with valid Entrance objects.

Concurrency 1179

As this program runs, you will see the total count and the count at each

entrance displayed as people walk through a turnstile. If you remove the

synchronized declaration on Count.increment(), you’ll notice that the

total number of people is not what you expect it to be. The number of people

counted by each turnstile will be different from the value in count. As long as

the mutex is there to synchronize access to the Count, things work correctly.

Keep in mind that Count.increment() exaggerates the potential for failure

by using temp and yield(). In real threading problems, the possibility for

failure may be statistically small, so you can easily fall into the trap of

believing that things are working correctly. Just as in the example above,

there are likely to be hidden problems that haven’t occurred to you, so be

exceptionally diligent when reviewing concurrent code.

Exercise 17: (2) Create a radiation counter that can have any number of
remote sensors.

Terminating when blocked
Entrance.run() in the previous example includes a call to sleep() in its

loop. We know that sleep() will eventually wake up and the task will reach

the top of the loop, where it has an opportunity to break out of that loop by

checking the cancelled flag. However, sleep() is just one situation where a

task is blocked from executing, and sometimes you must terminate a task

that’s blocked.

Thread states
A thread can be in any one of four states:

1. New: A thread remains in this state only momentarily, as it is being

created. It allocates any necessary system resources and performs

initialization. At this point it becomes eligible to receive CPU time. The

scheduler will then transition this thread to the runnable or blocked state.

2. Runnable: This means that a thread can be run when the time-slicing

mechanism has CPU cycles available for the thread. Thus, the thread

might or might not be running at any moment, but there’s nothing to

prevent it from being run if the scheduler can arrange it. That is, it’s not

dead or blocked.

3. Blocked: The thread can be run, but something prevents it. While a

thread is in the blocked state, the scheduler will simply skip it and not

1180 Thinking in Java Bruce Eckel

give it any CPU time. Until a thread reenters the runnable state, it won’t

perform any operations.

4. Dead: A thread in the dead or terminated state is no longer schedulable

and will not receive any CPU time. Its task is completed, and it is no

longer runnable. One way for a task to die is by returning from its run()

method, but a task’s thread can also be interrupted, as you’ll see shortly.

Becoming blocked

A task can become blocked for the following reasons:

• You’ve put the task to sleep by calling sleep(milliseconds), in

which case it will not be run for the specified time.

• You’ve suspended the execution of the thread with wait(). It will not

become runnable again until the thread gets the notify() or

notifyAll() message (or the equivalent signal() or signalAll() for

the Java SE5 java.util.concurrent library tools). We’ll examine

these in a later section.

• The task is waiting for some I/O to complete.

• The task is trying to call a synchronized method on another object,

and that object’s lock is not available because it has already been

acquired by another task.

In old code, you may also see suspend() and resume() used to block and

unblock threads, but these are deprecated in modern Java (because they are

deadlock-prone), and so will not be examined in this book. The stop()

method is also deprecated, because it doesn’t release the locks that the thread

has acquired, and if the objects are in an inconsistent state (“damaged”),

other tasks can view and modify them in that state. The resulting problems

can be subtle and difficult to detect.

The problem we need to look at now is this: Sometimes you want to terminate

a task that is in a blocked state. If you can’t wait for it to get to a point in the

code where it can check a state value and decide to terminate on its own, you

have to force the task out of its blocked state.

Concurrency 1181

Interruption
As you might imagine, it’s much messier to break out of the middle of a

Runnable.run() method than it is to wait for that method to get to a test of

a “cancel” flag, or to some other place where the programmer is ready to leave

the method. When you break out of a blocked task, you might need to clean

up resources. Because of this, breaking out of the middle of a task’s run() is

more like throwing an exception than anything else, so in Java threads,

exceptions are used for this kind of abort.16 (This walks the fine edge of being

an inappropriate use of exceptions, because it means you are often using

them for control flow.) To return to a known good state when terminating a

task this way, you must carefully consider the execution paths of your code

and write your catch clause to properly clean everything up.

So that you can terminate a blocked task, the Thread class contains the

interrupt() method. This sets the interrupted status for that thread. A

thread with its interrupted status set will throw an InterruptedException

if it is already blocked or if it attempts a blocking operation. The interrupted

status will be reset when the exception is thrown or if the task calls

Thread.interrupted(). As you’ll see, Thread.interrupted() provides a

second way to leave your run() loop, without throwing an exception.

To call interrupt(), you must hold a Thread object. You may have noticed

that the new concurrent library seems to avoid the direct manipulation of

Thread objects and instead tries to do everything through Executors. If you

call shutdownNow() on an Executor, it will send an interrupt() call to

each of the threads it has started. This makes sense because you’ll usually

want to shut down all the tasks for a particular Executor at once, when

you’ve finished part of a project or a whole program. However, there are

times when you may want to only interrupt a single task. If you’re using

Executors, you can hold on to the context of a task when you start it by

calling submit() instead of execute(). submit() returns a generic

Future<?>, with an unspecified parameter because you won’t ever call

get() on it—the point of holding this kind of Future is that you can call

cancel() on it and thus use it to interrupt a particular task. If you pass true

16 However, exceptions are never delivered asynchronously. Thus, there is no danger of
something aborting mid-instruction/method call. And as long as you use the try-finally
idiom when using object mutexes (vs. the synchronized keyword), those mutexes will be
automatically released if an exception is thrown.

1182 Thinking in Java Bruce Eckel

to cancel(), it has permission to call interrupt() on that thread in order to

stop it; thus cancel() is a way to interrupt individual threads started with an

Executor.

Here’s an example that shows the basics of interrupt() using Executors:

//: concurrency/Interrupting.java

// Interrupting a blocked thread.

import java.util.concurrent.*;

import java.io.*;

import static net.mindview.util.Print.*;

class SleepBlocked implements Runnable {

 public void run() {

 try {

 TimeUnit.SECONDS.sleep(100);

 } catch(InterruptedException e) {

 print("InterruptedException");

 }

 print("Exiting SleepBlocked.run()");

 }

}

class IOBlocked implements Runnable {

 private InputStream in;

 public IOBlocked(InputStream is) { in = is; }

 public void run() {

 try {

 print("Waiting for read():");

 in.read();

 } catch(IOException e) {

 if(Thread.currentThread().isInterrupted()) {

 print("Interrupted from blocked I/O");

 } else {

 throw new RuntimeException(e);

 }

 }

 print("Exiting IOBlocked.run()");

 }

}

class SynchronizedBlocked implements Runnable {

 public synchronized void f() {

 while(true) // Never releases lock

Concurrency 1183

 Thread.yield();

 }

 public SynchronizedBlocked() {

 new Thread() {

 public void run() {

 f(); // Lock acquired by this thread

 }

 }.start();

 }

 public void run() {

 print("Trying to call f()");

 f();

 print("Exiting SynchronizedBlocked.run()");

 }

}

public class Interrupting {

 private static ExecutorService exec =

 Executors.newCachedThreadPool();

 static void test(Runnable r) throws InterruptedException{

 Future<?> f = exec.submit(r);

 TimeUnit.MILLISECONDS.sleep(100);

 print("Interrupting " + r.getClass().getName());

 f.cancel(true); // Interrupts if running

 print("Interrupt sent to " + r.getClass().getName());

 }

 public static void main(String[] args) throws Exception {

 test(new SleepBlocked());

 test(new IOBlocked(System.in));

 test(new SynchronizedBlocked());

 TimeUnit.SECONDS.sleep(3);

 print("Aborting with System.exit(0)");

 System.exit(0); // ... since last 2 interrupts failed

 }

} /* Output: (95% match)

Interrupting SleepBlocked

InterruptedException

Exiting SleepBlocked.run()

Interrupt sent to SleepBlocked

Waiting for read():

Interrupting IOBlocked

Interrupt sent to IOBlocked

Trying to call f()

Interrupting SynchronizedBlocked

1184 Thinking in Java Bruce Eckel

Interrupt sent to SynchronizedBlocked

Aborting with System.exit(0)

*///:~

Each task represents a different kind of blocking. SleepBlock is an example

of interruptible blocking, whereas IOBlocked and SynchronizedBlocked

are uninterruptible blocking.17 The program proves that I/O and waiting on a

synchronized lock are not interruptible, but you can also anticipate this by

looking at the code—no InterruptedException handler is required for

either I/O or attempting to call a synchronized method.

The first two classes are straightforward: The run() method calls sleep() in

the first class and read() in the second. To demonstrate

SynchronizedBlocked, however, we must first acquire the lock. This is

accomplished in the constructor by creating an instance of an anonymous

Thread class that acquires the object lock by calling f() (the thread must be

different from the one driving run() for SynchronizedBlock because one

thread can acquire an object lock multiple times). Since f() never returns,

that lock is never released. SynchronizedBlock.run() attempts to call f()

and is blocked waiting for the lock to be released.

You’ll see from the output that you can interrupt a call to sleep() (or any call

that requires you to catch InterruptedException). However, you cannot

interrupt a task that is trying to acquire a synchronized lock or one that is

trying to perform I/O. This is a little disconcerting, especially if you’re

creating a task that performs I/O, because it means that I/O has the potential

of locking your multithreaded program. Especially for Web-based programs,

this is a concern.

A heavy-handed but sometimes effective solution to this problem is to close

the underlying resource on which the task is blocked:

//: concurrency/CloseResource.java

// Interrupting a blocked task by

// closing the underlying resource.

// {RunByHand}

import java.net.*;

17 Some releases of the JDK also provided support for InterruptedIOException.
However, this was only partially implemented, and only on some platforms. If this
exception is thrown, it causes IO objects to be unusable. Future releases are unlikely to
continue support for this exception.

Concurrency 1185

import java.util.concurrent.*;

import java.io.*;

import static net.mindview.util.Print.*;

public class CloseResource {

 public static void main(String[] args) throws Exception {

 ExecutorService exec = Executors.newCachedThreadPool();

 ServerSocket server = new ServerSocket(8080);

 InputStream socketInput =

 new Socket("localhost", 8080).getInputStream();

 exec.execute(new IOBlocked(socketInput));

 exec.execute(new IOBlocked(System.in));

 TimeUnit.MILLISECONDS.sleep(100);

 print("Shutting down all threads");

 exec.shutdownNow();

 TimeUnit.SECONDS.sleep(1);

 print("Closing " + socketInput.getClass().getName());

 socketInput.close(); // Releases blocked thread

 TimeUnit.SECONDS.sleep(1);

 print("Closing " + System.in.getClass().getName());

 System.in.close(); // Releases blocked thread

 }

} /* Output: (85% match)

Waiting for read():

Waiting for read():

Shutting down all threads

Closing java.net.SocketInputStream

Interrupted from blocked I/O

Exiting IOBlocked.run()

Closing java.io.BufferedInputStream

Exiting IOBlocked.run()

*///:~

After shutdownNow() is called, the delays before calling close() on the

two input streams emphasize that the tasks unblock once the underlying

resource is closed. It’s interesting to note that the interrupt() appears when

you are closing the Socket but not when closing System.in.

Fortunately, the nio classes introduced in the I/O chapter provide for more

civilized interruption of I/O. Blocked nio channels automatically respond to

interrupts:

//: concurrency/NIOInterruption.java

// Interrupting a blocked NIO channel.

1186 Thinking in Java Bruce Eckel

import java.net.*;

import java.nio.*;

import java.nio.channels.*;

import java.util.concurrent.*;

import java.io.*;

import static net.mindview.util.Print.*;

class NIOBlocked implements Runnable {

 private final SocketChannel sc;

 public NIOBlocked(SocketChannel sc) { this.sc = sc; }

 public void run() {

 try {

 print("Waiting for read() in " + this);

 sc.read(ByteBuffer.allocate(1));

 } catch(ClosedByInterruptException e) {

 print("ClosedByInterruptException");

 } catch(AsynchronousCloseException e) {

 print("AsynchronousCloseException");

 } catch(IOException e) {

 throw new RuntimeException(e);

 }

 print("Exiting NIOBlocked.run() " + this);

 }

}

public class NIOInterruption {

 public static void main(String[] args) throws Exception {

 ExecutorService exec = Executors.newCachedThreadPool();

 ServerSocket server = new ServerSocket(8080);

 InetSocketAddress isa =

 new InetSocketAddress("localhost", 8080);

 SocketChannel sc1 = SocketChannel.open(isa);

 SocketChannel sc2 = SocketChannel.open(isa);

 Future<?> f = exec.submit(new NIOBlocked(sc1));

 exec.execute(new NIOBlocked(sc2));

 exec.shutdown();

 TimeUnit.SECONDS.sleep(1);

 // Produce an interrupt via cancel:

 f.cancel(true);

 TimeUnit.SECONDS.sleep(1);

 // Release the block by closing the channel:

 sc2.close();

 }

} /* Output: (Sample)

Concurrency 1187

Waiting for read() in NIOBlocked@7a84e4

Waiting for read() in NIOBlocked@15c7850

ClosedByInterruptException

Exiting NIOBlocked.run() NIOBlocked@15c7850

AsynchronousCloseException

Exiting NIOBlocked.run() NIOBlocked@7a84e4

*///:~

As shown, you can also close the underlying channel to release the block,

although this should rarely be necessary. Note that using execute() to start

both tasks and calling e.shutdownNow() will easily terminate everything;

capturing the Future in the example above was only necessary to send the

interrupt to one thread and not the other.18

Exercise 18: (2) Create a non-task class with a method that calls sleep()
for a long interval. Create a task that calls the method in the non-task class.
In main(), start the task, then call interrupt() to terminate it. Make sure
that the task shuts down safely.

Exercise 19: (4) Modify OrnamentalGarden.java so that it uses
interrupt().

Exercise 20: (1) Modify CachedThreadPool.java so that all tasks
receive an interrupt() before they are completed.

Blocked by a mutex
As you saw in Interrupting.java, if you try to call a synchronized method

on an object whose lock has already been acquired, the calling task will be

suspended (blocked) until the lock becomes available. The following example

shows how the same mutex can be multiply acquired by the same task:

//: concurrency/MultiLock.java

// One thread can reacquire the same lock.

import static net.mindview.util.Print.*;

public class MultiLock {

 public synchronized void f1(int count) {

 if(count-- > 0) {

 print("f1() calling f2() with count " + count);

 f2(count);

18 Ervin Varga helped research this section.

1188 Thinking in Java Bruce Eckel

 }

 }

 public synchronized void f2(int count) {

 if(count-- > 0) {

 print("f2() calling f1() with count " + count);

 f1(count);

 }

 }

 public static void main(String[] args) throws Exception {

 final MultiLock multiLock = new MultiLock();

 new Thread() {

 public void run() {

 multiLock.f1(10);

 }

 }.start();

 }

} /* Output:

f1() calling f2() with count 9

f2() calling f1() with count 8

f1() calling f2() with count 7

f2() calling f1() with count 6

f1() calling f2() with count 5

f2() calling f1() with count 4

f1() calling f2() with count 3

f2() calling f1() with count 2

f1() calling f2() with count 1

f2() calling f1() with count 0

*///:~

In main(), a Thread is created to call f1(), then f1() and f2() call each

other until the count becomes zero. Since the task has already acquired the

multiLock object lock inside the first call to f1(), that same task is

reacquiring it in the call to f2(), and so on. This makes sense because one

task should be able to call other synchronized methods within the same

object; that task already holds the lock.

As observed previously with uninterruptible I/O, anytime that a task can be

blocked in such a way that it cannot be interrupted, you have the potential to

lock up a program. One of the features added in the Java SE5 concurrency

libraries is the ability for tasks blocked on ReentrantLocks to be

interrupted, unlike tasks blocked on synchronized methods or critical

sections:

//: concurrency/Interrupting2.java

Concurrency 1189

// Interrupting a task blocked with a ReentrantLock.

import java.util.concurrent.*;

import java.util.concurrent.locks.*;

import static net.mindview.util.Print.*;

class BlockedMutex {

 private Lock lock = new ReentrantLock();

 public BlockedMutex() {

 // Acquire it right away, to demonstrate interruption

 // of a task blocked on a ReentrantLock:

 lock.lock();

 }

 public void f() {

 try {

 // This will never be available to a second task

 lock.lockInterruptibly(); // Special call

 print("lock acquired in f()");

 } catch(InterruptedException e) {

 print("Interrupted from lock acquisition in f()");

 }

 }

}

class Blocked2 implements Runnable {

 BlockedMutex blocked = new BlockedMutex();

 public void run() {

 print("Waiting for f() in BlockedMutex");

 blocked.f();

 print("Broken out of blocked call");

 }

}

public class Interrupting2 {

 public static void main(String[] args) throws Exception {

 Thread t = new Thread(new Blocked2());

 t.start();

 TimeUnit.SECONDS.sleep(1);

 System.out.println("Issuing t.interrupt()");

 t.interrupt();

 }

} /* Output:

Waiting for f() in BlockedMutex

Issuing t.interrupt()

Interrupted from lock acquisition in f()

1190 Thinking in Java Bruce Eckel

Broken out of blocked call

*///:~

The class BlockedMutex has a constructor that acquires the object’s own

Lock and never releases it. For that reason, if you try to call f() from a

second task (different from the one that created the BlockedMutex), you

will always be blocked because the Mutex cannot be acquired. In Blocked2,

the run() method will be stopped at the call to blocked.f(). When you run

the program, you’ll see that, unlike an I/O call, interrupt() can break out of

a call that’s blocked by a mutex.19

Checking for an interrupt
Note that when you call interrupt() on a thread, the only time that the

interrupt occurs is when the task enters, or is already inside, a blocking

operation (except, as you’ve seen, in the case of uninterruptible I/O or

blocked synchronized methods, in which case there’s nothing you can do).

But what if you’ve written code that may or may not make such a blocking

call, depending on the conditions in which it is run? If you can only exit by

throwing an exception on a blocking call, you won’t always be able to leave

the run() loop. Thus, if you call interrupt() to stop a task, your task needs

a second way to exit in the event that your run() loop doesn’t happen to be

making any blocking calls.

This opportunity is presented by the interrupted status, which is set by the

call to interrupt(). You check for the interrupted status by calling

interrupted(). This not only tells you whether interrupt() has been

called, it also clears the interrupted status. Clearing the interrupted status

ensures that the framework will not notify you twice about a task being

interrupted. You will be notified via either a single InterruptedException

or a single successful Thread.interrupted() test. If you want to check

again to see whether you were interrupted, you can store the result when you

call Thread.interrupted().

The following example shows the typical idiom that you should use in your

run() method to handle both blocked and non-blocked possibilities when

the interrupted status is set:

19 Note that, although it’s unlikely, the call to t.interrupt() could actually happen before
the call to blocked.f().

Concurrency 1191

//: concurrency/InterruptingIdiom.java

// General idiom for interrupting a task.

// {Args: 1100}

import java.util.concurrent.*;

import static net.mindview.util.Print.*;

class NeedsCleanup {

 private final int id;

 public NeedsCleanup(int ident) {

 id = ident;

 print("NeedsCleanup " + id);

 }

 public void cleanup() {

 print("Cleaning up " + id);

 }

}

class Blocked3 implements Runnable {

 private volatile double d = 0.0;

 public void run() {

 try {

 while(!Thread.interrupted()) {

 // point1

 NeedsCleanup n1 = new NeedsCleanup(1);

 // Start try-finally immediately after definition

 // of n1, to guarantee proper cleanup of n1:

 try {

 print("Sleeping");

 TimeUnit.SECONDS.sleep(1);

 // point2

 NeedsCleanup n2 = new NeedsCleanup(2);

 // Guarantee proper cleanup of n2:

 try {

 print("Calculating");

 // A time-consuming, non-blocking operation:

 for(int i = 1; i < 2500000; i++)

 d = d + (Math.PI + Math.E) / d;

 print("Finished time-consuming operation");

 } finally {

 n2.cleanup();

 }

 } finally {

 n1.cleanup();

 }

1192 Thinking in Java Bruce Eckel

 }

 print("Exiting via while() test");

 } catch(InterruptedException e) {

 print("Exiting via InterruptedException");

 }

 }

}

public class InterruptingIdiom {

 public static void main(String[] args) throws Exception {

 if(args.length != 1) {

 print("usage: java InterruptingIdiom delay-in-mS");

 System.exit(1);

 }

 Thread t = new Thread(new Blocked3());

 t.start();

 TimeUnit.MILLISECONDS.sleep(new Integer(args[0]));

 t.interrupt();

 }

} /* Output: (Sample)

NeedsCleanup 1

Sleeping

NeedsCleanup 2

Calculating

Finished time-consuming operation

Cleaning up 2

Cleaning up 1

NeedsCleanup 1

Sleeping

Cleaning up 1

Exiting via InterruptedException

*///:~

The NeedsCleanup class emphasizes the necessity of proper resource

cleanup if you leave the loop via an exception. Note that all NeedsCleanup

resources created in Blocked3.run() must be immediately followed by try-

finally clauses to guarantee that the cleanup() method is always called.

You must give the program a command-line argument which is the delay time

in milliseconds before it calls interrupt(). By using different delays, you can

exit Blocked3.run() at different points in the loop: in the blocking sleep()

call, and in the non-blocking mathematical calculation. You’ll see that if

interrupt() is called after the comment “point2” (during the non-blocking

operation), first the loop is completed, then all the local objects are destroyed,

Concurrency 1193

and finally the loop is exited at the top via the while statement. However, if

interrupt() is called between “point1” and “point2” (after the while

statement but before or during the blocking operation sleep()), the task

exits via the InterruptedException, the first time a blocking operation is

attempted. In that case, only the NeedsCleanup objects that have been

created up to the point where the exception is thrown are cleaned up, and you

have the opportunity to perform any other cleanup in the catch clause.

A class designed to respond to an interrupt() must establish a policy to

ensure that it will remain in a consistent state. This generally means that the

creation of all objects that require cleanup must be followed by try-finally

clauses so that cleanup will occur regardless of how the run() loop exits.

Code like this can work well, but alas, due to the lack of automatic destructor

calls in Java, it relies on the client programmer to write the proper try-

finally clauses.

Cooperation between tasks
As you’ve seen, when you use threads to run more than one task at a time,

you can keep one task from interfering with another task’s resources by using

a lock (mutex) to synchronize the behavior of the two tasks. That is, if two

tasks are stepping on each other over a shared resource (usually memory),

you use a mutex to allow only one task at a time to access that resource.

With that problem solved, the next step is to learn how to make tasks

cooperate with each other, so that multiple tasks can work together to solve a

problem. Now the issue is not about interfering with one another, but rather

about working in unison, since portions of such problems must be solved

before other portions can be solved. It’s much like project planning: The

footings for the house must be dug first, but the steel can be laid and the

concrete forms can be built in parallel, and both of those tasks must be

finished before the concrete foundation can be poured. The plumbing must

be in place before the concrete slab can be poured, the concrete slab must be

in place before you start framing, and so on. Some of these tasks can be done

in parallel, but certain steps require all tasks to be completed before you can

move ahead.

The key issue when tasks are cooperating is handshaking between those

tasks. To accomplish this handshaking, we use the same foundation: the

mutex, which in this case guarantees that only one task can respond to a

signal. This eliminates any possible race conditions. On top of the mutex, we

1194 Thinking in Java Bruce Eckel

add a way for a task to suspend itself until some external state changes (e.g.,

“The plumbing is now in place”), indicating that it’s time for that task to move

forward. In this section, we’ll look at the issues of handshaking between

tasks, which is safely implemented using the Object methods wait() and

notifyAll(). The Java SE5 concurrency library also provides Condition

objects with await() and signal() methods. We’ll see the problems that can

arise, and their solutions.

wait() and notifyAll()
wait() allows you to wait for a change in some condition that is outside the

control of the forces in the current method. Often, this condition will be

changed by another task. You don’t want to idly loop while testing the

condition inside your task; this is called busy waiting, and it’s usually a bad

use of CPU cycles. So wait() suspends the task while waiting for the world to

change, and only when a notify() or notifyAll() occurs—suggesting that

something of interest may have happened—does the task wake up and check

for changes. Thus, wait() provides a way to synchronize activities between

tasks.

It’s important to understand that sleep() does not release the object lock

when it is called, and neither does yield(). On the other hand, when a task

enters a call to wait() inside a method, that thread’s execution is suspended,

and the lock on that object is released. Because wait() releases the lock, it

means that the lock can be acquired by another task, so other synchronized

methods in the (now unlocked) object can be called during a wait(). This is

essential, because those other methods are typically what cause the change

that makes it interesting for the suspended task to reawaken. Thus, when you

call wait(), you’re saying, “I’ve done all I can right now, so I’m going to wait

right here, but I want to allow other synchronized operations to take place

if they can.”

There are two forms of wait(). One version takes an argument in

milliseconds that has the same meaning as in sleep(): “Pause for this period

of time.” But unlike with sleep(), with wait(pause):

1. The object lock is released during the wait().

2. You can also come out of the wait() due to a notify() or notifyAll(),

in addition to letting the clock run out.

Concurrency 1195

The second, more commonly used form of wait() takes no arguments. This

wait() continues indefinitely until the thread receives a notify() or

notifyAll().

One fairly unique aspect of wait(), notify(), and notifyAll() is that these

methods are part of the base class Object and not part of Thread. Although

this seems a bit strange at first—to have something that’s exclusively for

threading as part of the universal base class—it’s essential because these

methods manipulate the lock that’s also part of every object. As a result, you

can put a wait() inside any synchronized method, regardless of whether

that class extends Thread or implements Runnable. In fact, the only place

you can call wait(), notify(), or notifyAll() is within a synchronized

method or block (sleep() can be called within non-synchronized methods

since it doesn’t manipulate the lock). If you call any of these within a method

that’s not synchronized, the program will compile, but when you run it,

you’ll get an IllegalMonitorStateException with the somewhat

nonintuitive message “current thread not owner.” This message means that

the task calling wait(), notify(), or notifyAll() must “own” (acquire) the

lock for the object before it can call any of those methods.

You can ask another object to perform an operation that manipulates its own

lock. To do this, you must first capture that object’s lock. For example, if you

want to send notifyAll() to an object x, you must do so inside a

synchronized block that acquires the lock for x:

synchronized(x) {

 x.notifyAll();

}

Let’s look at a simple example. WaxOMatic.java has two processes: one to

apply wax to a Car and one to polish it. The polishing task cannot do its job

until the application task is finished, and the application task must wait until

the polishing task is finished before it can put on another coat of wax. Both

WaxOn and WaxOff use the Car object, which uses wait() and

notifyAll() to suspend and restart tasks while they’re waiting for a

condition to change:

//: concurrency/waxomatic/WaxOMatic.java

// Basic task cooperation.

package concurrency.waxomatic;

import java.util.concurrent.*;

import static net.mindview.util.Print.*;

1196 Thinking in Java Bruce Eckel

class Car {

 private boolean waxOn = false;

 public synchronized void waxed() {

 waxOn = true; // Ready to buff

 notifyAll();

 }

 public synchronized void buffed() {

 waxOn = false; // Ready for another coat of wax

 notifyAll();

 }

 public synchronized void waitForWaxing()

 throws InterruptedException {

 while(waxOn == false)

 wait();

 }

 public synchronized void waitForBuffing()

 throws InterruptedException {

 while(waxOn == true)

 wait();

 }

}

class WaxOn implements Runnable {

 private Car car;

 public WaxOn(Car c) { car = c; }

 public void run() {

 try {

 while(!Thread.interrupted()) {

 printnb("Wax On! ");

 TimeUnit.MILLISECONDS.sleep(200);

 car.waxed();

 car.waitForBuffing();

 }

 } catch(InterruptedException e) {

 print("Exiting via interrupt");

 }

 print("Ending Wax On task");

 }

}

class WaxOff implements Runnable {

 private Car car;

 public WaxOff(Car c) { car = c; }

Concurrency 1197

 public void run() {

 try {

 while(!Thread.interrupted()) {

 car.waitForWaxing();

 printnb("Wax Off! ");

 TimeUnit.MILLISECONDS.sleep(200);

 car.buffed();

 }

 } catch(InterruptedException e) {

 print("Exiting via interrupt");

 }

 print("Ending Wax Off task");

 }

}

public class WaxOMatic {

 public static void main(String[] args) throws Exception {

 Car car = new Car();

 ExecutorService exec = Executors.newCachedThreadPool();

 exec.execute(new WaxOff(car));

 exec.execute(new WaxOn(car));

 TimeUnit.SECONDS.sleep(5); // Run for a while...

 exec.shutdownNow(); // Interrupt all tasks

 }

} /* Output: (95% match)

Wax On! Wax Off! Wax On! Wax Off! Wax On! Wax Off! Wax On!

Wax Off! Wax On! Wax Off! Wax On! Wax Off! Wax On! Wax Off!

Wax On! Wax Off! Wax On! Wax Off! Wax On! Wax Off! Wax On!

Wax Off! Wax On! Wax Off! Wax On! Exiting via interrupt

Ending Wax On task

Exiting via interrupt

Ending Wax Off task

*///:~

Here, Car has a single boolean waxOn, which indicates the state of the

waxing-polishing process.

In waitForWaxing(), the waxOn flag is checked, and if it is false, the

calling task is suspended by calling wait(). It’s important that this occur in a

synchronized method, where the task has acquired the lock. When you call

wait(), the thread is suspended and the lock is released. It is essential that

the lock be released because, to safely change the state of the object (for

example, to change waxOn to true, which must happen if the suspended

task is to ever continue), that lock must be available to be acquired by some

1198 Thinking in Java Bruce Eckel

other task. In this example, when another task calls waxed() to indicate that

it’s time to do something, the lock must be acquired in order to change

waxOn to true. Afterward, waxed() calls notifyAll(), which wakes up the

task that was suspended in the call to wait(). In order for the task to wake

up from a wait(), it must first reacquire the lock that it released when it

entered the wait(). The task will not wake up until that lock becomes

available.20

WaxOn.run() represents the first step in the process of waxing the car, so it

performs its operation: a call to sleep() to simulate the time necessary for

waxing. It then tells the car that waxing is complete, and calls

waitForBuffing(), which suspends this task with a wait() until the

WaxOff task calls buffed() for the car, changing the state and calling

notifyAll(). WaxOff.run(), on the other hand, immediately moves into

waitForWaxing() and is thus suspended until the wax has been applied by

WaxOn and waxed() is called. When you run this program, you can watch

this two-step process repeat itself as control is handed back and forth

between the two tasks. After five seconds, interrupt() halts both threads;

when you call shutdownNow() for an ExecutorService, it calls

interrupt() for all the tasks it is controlling.

The previous example emphasizes that you must surround a wait() with a

while loop that checks the condition(s) of interest. This is important

because:

• You may have multiple tasks waiting on the same lock for the same

reason, and the first task that wakes up might change the situation

(even if you don’t do this someone might inherit from your class and

do it). If that is the case, this task should be suspended again until its

condition of interest changes.

20 On some platforms there’s a third way to come out of a wait(): the so-called spurious
wake-up. A spurious wake-up essentially means that a thread may prematurely stop
blocking (while waiting on a condition variable or semaphore) without being prompted by
a notify() or notifyAll() (or their equivalents for the new Condition objects). The
thread just wakes up, seemingly by itself. Spurious wake-ups exist because implementing
POSIX threads, or the equivalent, isn’t always as straightforward as it should be on some
platforms. Allowing spurious wake-ups makes the job of building a library like pthreads
easier for those platforms.

Concurrency 1199

• By the time this task awakens from its wait(), it’s possible that some

other task will have changed things such that this task is unable to

perform or is uninterested in performing its operation at this time.

Again, it should be resuspended by calling wait() again.

• It’s also possible that tasks could be waiting on your object’s lock for

different reasons (in which case you must use notifyAll()). In this

case, you need to check whether you’ve been woken up for the right

reason, and if not, call wait() again.

Thus, it’s essential that you check for your particular condition of interest,

and go back into wait() if that condition is not met. This is idiomatically

written using a while.

Exercise 21: (2) Create two Runnables, one with a run() that starts
and calls wait(). The second class should capture the reference of the first
Runnable object. Its run() should call notifyAll() for the first task after
some number of seconds have passed so that the first task can display a
message. Test your classes using an Executor.

Exercise 22: (4) Create an example of a busy wait. One task sleeps for a
while and then sets a flag to true. The second task watches that flag inside a
while loop (this is the busy wait) and when the flag becomes true, sets it
back to false and reports the change to the console. Note how much wasted
time the program spends inside the busy wait, and create a second version of
the program that uses wait() instead of the busy wait.

Missed Signals
When two threads are coordinated using notify()/wait() or

notifyAll()/wait(), it’s possible to miss a signal. Suppose T1 is a thread

that notifies T2, and that the two threads are implemented using the

following (flawed) approach:

T1:

synchronized(sharedMonitor) {

 <setup condition for T2>

 sharedMonitor.notify();

}

T2:

while(someCondition) {

 // Point 1

 synchronized(sharedMonitor) {

1200 Thinking in Java Bruce Eckel

 sharedMonitor.wait();

 }

}

 The <setup condition for T2> is an action to prevent T2 from calling

wait(), if it hasn’t already.

Assume that T2 evaluates someCondition and finds it true. At Point 1, the

thread scheduler might switch to T1. T1 executes its setup, and then calls

notify(). When T2 continues executing, it is too late for T2 to realize that

the condition has been changed in the meantime, and it will blindly enter

wait(). The notify() will be missed and T2 will wait indefinitely for the

signal that was already sent, producing deadlock.

The solution is to prevent the race condition over the someCondition

variable. Here is the correct approach for T2:

synchronized(sharedMonitor) {

 while(someCondition)

 sharedMonitor.wait();

}

Now, if T1 executes first, when control returns back to T2 it will figure out

that the condition has changed, and will not enter wait(). Conversely, if T2

executes first, it will enter wait() and later be awakened by T1. Thus, the

signal cannot be missed.

notify() vs. notifyAll()
Because more than one task could technically be in a wait() on a single Car

object, it is safer to call notifyAll() rather than just notify(). However, the

structure of the above program is such that only one task will actually be in a

wait(), so you could use notify() instead of notifyAll().

Using notify() instead of notifyAll() is an optimization. Only one task of

the possible many that are waiting on a lock will be awoken with notify(), so

you must be certain that the right task will wake up if you try to use notify().

In addition, all tasks must be waiting on the same condition in order for you

to use notify(), because if you have tasks that are waiting on different

conditions, you don’t know if the right one will wake up. If you use notify(),

only one task must benefit when the condition changes. Finally, these

constraints must always be true for all possible subclasses. If any of these

rules cannot be met, you must use notifyAll() rather than notify().

Concurrency 1201

One of the confusing statements often made in discussions of Java threading

is that notifyAll() wakes up “all waiting tasks.” Does this mean that any task

that is in a wait(), anywhere in the program, is awoken by any call to

notifyAll()? In the following example, the code associated with Task2

shows that this is not true—in fact, only the tasks that are waiting on a

particular lock are awoken when notifyAll() is called for that lock:

//: concurrency/NotifyVsNotifyAll.java

import java.util.concurrent.*;

import java.util.*;

class Blocker {

 synchronized void waitingCall() {

 try {

 while(!Thread.interrupted()) {

 wait();

 System.out.print(Thread.currentThread() + " ");

 }

 } catch(InterruptedException e) {

 // OK to exit this way

 }

 }

 synchronized void prod() { notify(); }

 synchronized void prodAll() { notifyAll(); }

}

class Task implements Runnable {

 static Blocker blocker = new Blocker();

 public void run() { blocker.waitingCall(); }

}

class Task2 implements Runnable {

 // A separate Blocker object:

 static Blocker blocker = new Blocker();

 public void run() { blocker.waitingCall(); }

}

public class NotifyVsNotifyAll {

 public static void main(String[] args) throws Exception {

 ExecutorService exec = Executors.newCachedThreadPool();

 for(int i = 0; i < 5; i++)

 exec.execute(new Task());

 exec.execute(new Task2());

 Timer timer = new Timer();

1202 Thinking in Java Bruce Eckel

 timer.scheduleAtFixedRate(new TimerTask() {

 boolean prod = true;

 public void run() {

 if(prod) {

 System.out.print("\nnotify() ");

 Task.blocker.prod();

 prod = false;

 } else {

 System.out.print("\nnotifyAll() ");

 Task.blocker.prodAll();

 prod = true;

 }

 }

 }, 400, 400); // Run every .4 second

 TimeUnit.SECONDS.sleep(5); // Run for a while...

 timer.cancel();

 System.out.println("\nTimer canceled");

 TimeUnit.MILLISECONDS.sleep(500);

 System.out.print("Task2.blocker.prodAll() ");

 Task2.blocker.prodAll();

 TimeUnit.MILLISECONDS.sleep(500);

 System.out.println("\nShutting down");

 exec.shutdownNow(); // Interrupt all tasks

 }

} /* Output: (Sample)

notify() Thread[pool-1-thread-1,5,main]

notifyAll() Thread[pool-1-thread-1,5,main] Thread[pool-1-

thread-5,5,main] Thread[pool-1-thread-4,5,main] Thread[pool-

1-thread-3,5,main] Thread[pool-1-thread-2,5,main]

notify() Thread[pool-1-thread-1,5,main]

notifyAll() Thread[pool-1-thread-1,5,main] Thread[pool-1-

thread-2,5,main] Thread[pool-1-thread-3,5,main] Thread[pool-

1-thread-4,5,main] Thread[pool-1-thread-5,5,main]

notify() Thread[pool-1-thread-1,5,main]

notifyAll() Thread[pool-1-thread-1,5,main] Thread[pool-1-

thread-5,5,main] Thread[pool-1-thread-4,5,main] Thread[pool-

1-thread-3,5,main] Thread[pool-1-thread-2,5,main]

notify() Thread[pool-1-thread-1,5,main]

notifyAll() Thread[pool-1-thread-1,5,main] Thread[pool-1-

thread-2,5,main] Thread[pool-1-thread-3,5,main] Thread[pool-

1-thread-4,5,main] Thread[pool-1-thread-5,5,main]

notify() Thread[pool-1-thread-1,5,main]

Concurrency 1203

notifyAll() Thread[pool-1-thread-1,5,main] Thread[pool-1-

thread-5,5,main] Thread[pool-1-thread-4,5,main] Thread[pool-

1-thread-3,5,main] Thread[pool-1-thread-2,5,main]

notify() Thread[pool-1-thread-1,5,main]

notifyAll() Thread[pool-1-thread-1,5,main] Thread[pool-1-

thread-2,5,main] Thread[pool-1-thread-3,5,main] Thread[pool-

1-thread-4,5,main] Thread[pool-1-thread-5,5,main]

Timer canceled

Task2.blocker.prodAll() Thread[pool-1-thread-6,5,main]

Shutting down

*///:~

Task and Task2 each have their own Blocker object, so each Task object

blocks on Task.blocker, and each Task2 object blocks on Task2.blocker.

In main(), a java.util.Timer object is set up to execute its run() method

every 4/10 of a second, and that run() alternates between calling notify()

and notifyAll() on Task.blocker via the “prod” methods.

From the output, you can see that even though a Task2 object exists and is

blocked on Task2.blocker, none of the notify() or notifyAll() calls on

Task.blocker causes the Task2 object to wake up. Similarly, at the end of

main(), cancel() is called for the timer, and even though the timer is

canceled, the first five tasks are still running and still blocked in their calls to

Task.blocker.waitingCall(). The output from the call to

Task2.blocker.prodAll() does not include any of the tasks waiting on the

lock in Task.blocker.

This also makes sense if you look at prod() and prodAll() in Blocker.

These methods are synchronized, which means that they acquire their own

lock, so when they call notify() or notifyAll(), it’s logical that they are only

calling it for that lock—and thus only wake up tasks that are waiting on that

particular lock.

Blocker.waitingCall() is simple enough that you could just say for(;;)

instead of while(!Thread.interrupted()), and achieve the same effect in

this case, because in this example there’s no difference between leaving the

loop with an exception and leaving it by checking the interrupted() flag—

the same code is executed in both cases. As a matter of form, however, this

example checks interrupted(), because there are two different ways of

leaving the loop. If, sometime later, you decide to add more code to the loop,

you risk introducing an error if you don’t cover both paths of exit from the

loop.

1204 Thinking in Java Bruce Eckel

Exercise 23: (7) Demonstrate that WaxOMatic.java works successfully
when you use notify() instead of notifyAll().

Producers and consumers
Consider a restaurant that has one chef and one waitperson. The waitperson

must wait for the chef to prepare a meal. When the chef has a meal ready, the

chef notifies the waitperson, who then gets and delivers the meal and goes

back to waiting. This is an example of task cooperation: The chef represents

the producer, and the waitperson represents the consumer. Both tasks must

handshake with each other as meals are produced and consumed, and the

system must shut down in an orderly fashion. Here is the story modeled in

code:

//: concurrency/Restaurant.java

// The producer-consumer approach to task cooperation.

import java.util.concurrent.*;

import static net.mindview.util.Print.*;

class Meal {

 private final int orderNum;

 public Meal(int orderNum) { this.orderNum = orderNum; }

 public String toString() { return "Meal " + orderNum; }

}

class WaitPerson implements Runnable {

 private Restaurant restaurant;

 public WaitPerson(Restaurant r) { restaurant = r; }

 public void run() {

 try {

 while(!Thread.interrupted()) {

 synchronized(this) {

 while(restaurant.meal == null)

 wait(); // ... for the chef to produce a meal

 }

 print("Waitperson got " + restaurant.meal);

 synchronized(restaurant.chef) {

 restaurant.meal = null;

 restaurant.chef.notifyAll(); // Ready for another

 }

 }

 } catch(InterruptedException e) {

 print("WaitPerson interrupted");

 }

Concurrency 1205

 }

}

class Chef implements Runnable {

 private Restaurant restaurant;

 private int count = 0;

 public Chef(Restaurant r) { restaurant = r; }

 public void run() {

 try {

 while(!Thread.interrupted()) {

 synchronized(this) {

 while(restaurant.meal != null)

 wait(); // ... for the meal to be taken

 }

 if(++count == 10) {

 print("Out of food, closing");

 restaurant.exec.shutdownNow();

 }

 printnb("Order up! ");

 synchronized(restaurant.waitPerson) {

 restaurant.meal = new Meal(count);

 restaurant.waitPerson.notifyAll();

 }

 TimeUnit.MILLISECONDS.sleep(100);

 }

 } catch(InterruptedException e) {

 print("Chef interrupted");

 }

 }

}

public class Restaurant {

 Meal meal;

 ExecutorService exec = Executors.newCachedThreadPool();

 WaitPerson waitPerson = new WaitPerson(this);

 Chef chef = new Chef(this);

 public Restaurant() {

 exec.execute(chef);

 exec.execute(waitPerson);

 }

 public static void main(String[] args) {

 new Restaurant();

 }

} /* Output:

1206 Thinking in Java Bruce Eckel

Order up! Waitperson got Meal 1

Order up! Waitperson got Meal 2

Order up! Waitperson got Meal 3

Order up! Waitperson got Meal 4

Order up! Waitperson got Meal 5

Order up! Waitperson got Meal 6

Order up! Waitperson got Meal 7

Order up! Waitperson got Meal 8

Order up! Waitperson got Meal 9

Out of food, closing

WaitPerson interrupted

Order up! Chef interrupted

*///:~

The Restaurant is the focal point for both the WaitPerson and the Chef.

Both must know what Restaurant they are working for because they must

place or fetch the meal from the restaurant’s “meal window,”

restaurant.meal. In run(), the WaitPerson goes into wait() mode,

stopping that task until it is woken up with a notifyAll() from the Chef.

Since this is a very simple program, we know that only one task will be

waiting on the WaitPerson’s lock: the WaitPerson task itself. For this

reason, it’s theoretically possible to call notify() instead of notifyAll().

However, in more complex situations, multiple tasks may be waiting on a

particular object lock, so you don’t know which task should be awakened.

Thus, it’s safer to call notifyAll(), which wakes up all the tasks waiting on

that lock. Each task must then decide whether the notification is relevant.

Once the Chef delivers a Meal and notifies the WaitPerson, the Chef waits

until the WaitPerson collects the meal and notifies the Chef, who can then

produce the next Meal.

Notice that the wait() is wrapped in a while() statement that is testing for

the same thing that is being waited for. This seems a bit strange at first—if

you’re waiting for an order, once you wake up, the order must be available,

right? As noted earlier, the problem is that in a concurrent application, some

other task might swoop in and grab the order while the WaitPerson is

waking up. The only safe approach is to always use the following idiom for a

wait() (within proper synchronization, of course, and programming against

the possibility of missed signals):

while(conditionIsNotMet)

 wait();

Concurrency 1207

This guarantees that the condition will be met before you get out of the wait

loop, and if you have been notified of something that doesn’t concern the

condition (as can happen with notifyAll()), or the condition changes before

you get fully out of the wait loop, you are guaranteed to go back into waiting.

Observe that the call to notifyAll() must first capture the lock on

waitPerson. The call to wait() in WaitPerson.run() automatically

releases the lock, so this is possible. Because the lock must be owned in order

for notifyAll() to be called, it’s guaranteed that two tasks trying to call

notifyAll() on one object won’t step on each other’s toes.

Both run() methods are designed for orderly shutdown by enclosing the

entire run() with a try block. The catch clause closes right before the

closing brace of the run() method, so if the task receives an

InterruptedException, it ends immediately after catching the exception.

In Chef, note that after calling shutdownNow() you could simply return

from run(), and normally that’s what you should do. However, it’s a little

more interesting to do it this way. Remember that shutdownNow() sends

an interrupt() to all the tasks that the ExecutorService started. But in

the case of the Chef, the task doesn’t shut down immediately upon getting

the interrupt(), because the interrupt only throws

InterruptedException as the task attempts to enter an (interruptible)

blocking operation. Thus, you’ll see “Order up!” displayed first, and then the

InterruptedException is thrown when the Chef attempts to call sleep().

If you remove the call to sleep(), the task will get to the top of the run()

loop and exit because of the Thread.interrupted() test, without throwing

an exception.

The preceding example has only a single spot for one task to store an object

so that another task can later use that object. However, in a typical producer-

consumer implementation, you use a first-in, first-out queue in order to store

the objects being produced and consumed. You’ll learn more about such

queues later in this chapter.

Exercise 24: (1) Solve a single-producer, single-consumer problem using
wait() and notifyAll(). The producer must not overflow the receiver’s
buffer, which can happen if the producer is faster than the consumer. If the
consumer is faster than the producer, then it must not read the same data
more than once. Do not assume anything about the relative speeds of the
producer or consumer.

1208 Thinking in Java Bruce Eckel

Exercise 25: (1) In the Chef class in Restaurant.java, return from
run() after calling shutdownNow() and observe the difference in
behavior.

Exercise 26: (8) Add a BusBoy class to Restaurant.java. After the
meal is delivered, the WaitPerson should notify the BusBoy to clean up.

Using explicit Lock and Condition objects
There are additional, explicit tools in the Java SE5 java.util.concurrent

library that can be used to rewrite WaxOMatic.java. The basic class that

uses a mutex and allows task suspension is the Condition, and you can

suspend a task by calling await() on a Condition. When external state

changes take place that might mean that a task should continue processing,

you notify the task by calling signal(), to wake up one task, or signalAll(),

to wake up all tasks that have suspended themselves on that Condition

object (as with notifyAll(), signalAll() is the safer approach).

Here’s WaxOMatic.java rewritten to contain a Condition that it uses to

suspend a task inside waitForWaxing() or waitForBuffing():

//: concurrency/waxomatic2/WaxOMatic2.java

// Using Lock and Condition objects.

package concurrency.waxomatic2;

import java.util.concurrent.*;

import java.util.concurrent.locks.*;

import static net.mindview.util.Print.*;

class Car {

 private Lock lock = new ReentrantLock();

 private Condition condition = lock.newCondition();

 private boolean waxOn = false;

 public void waxed() {

 lock.lock();

 try {

 waxOn = true; // Ready to buff

 condition.signalAll();

 } finally {

 lock.unlock();

 }

 }

 public void buffed() {

 lock.lock();

 try {

Concurrency 1209

 waxOn = false; // Ready for another coat of wax

 condition.signalAll();

 } finally {

 lock.unlock();

 }

 }

 public void waitForWaxing() throws InterruptedException {

 lock.lock();

 try {

 while(waxOn == false)

 condition.await();

 } finally {

 lock.unlock();

 }

 }

 public void waitForBuffing() throws InterruptedException{

 lock.lock();

 try {

 while(waxOn == true)

 condition.await();

 } finally {

 lock.unlock();

 }

 }

}

class WaxOn implements Runnable {

 private Car car;

 public WaxOn(Car c) { car = c; }

 public void run() {

 try {

 while(!Thread.interrupted()) {

 printnb("Wax On! ");

 TimeUnit.MILLISECONDS.sleep(200);

 car.waxed();

 car.waitForBuffing();

 }

 } catch(InterruptedException e) {

 print("Exiting via interrupt");

 }

 print("Ending Wax On task");

 }

}

1210 Thinking in Java Bruce Eckel

class WaxOff implements Runnable {

 private Car car;

 public WaxOff(Car c) { car = c; }

 public void run() {

 try {

 while(!Thread.interrupted()) {

 car.waitForWaxing();

 printnb("Wax Off! ");

 TimeUnit.MILLISECONDS.sleep(200);

 car.buffed();

 }

 } catch(InterruptedException e) {

 print("Exiting via interrupt");

 }

 print("Ending Wax Off task");

 }

}

public class WaxOMatic2 {

 public static void main(String[] args) throws Exception {

 Car car = new Car();

 ExecutorService exec = Executors.newCachedThreadPool();

 exec.execute(new WaxOff(car));

 exec.execute(new WaxOn(car));

 TimeUnit.SECONDS.sleep(5);

 exec.shutdownNow();

 }

} /* Output: (90% match)

Wax On! Wax Off! Wax On! Wax Off! Wax On! Wax Off! Wax On!

Wax Off! Wax On! Wax Off! Wax On! Wax Off! Wax On! Wax Off!

Wax On! Wax Off! Wax On! Wax Off! Wax On! Wax Off! Wax On!

Wax Off! Wax On! Wax Off! Wax On! Exiting via interrupt

Ending Wax Off task

Exiting via interrupt

Ending Wax On task

*///:~

In Car’s constructor, a single Lock produces a Condition object which is

used to manage inter-task communication. However, the Condition object

contains no information about the state of the process, so you need to

manage additional information to indicate process state, which is the

boolean waxOn.

Concurrency 1211

Each call to lock() must immediately be followed by a try-finally clause to

guarantee that unlocking happens in all cases. As with the built-in versions, a

task must own the lock before it can call await(), signal() or signalAll().

Notice that this solution is more complex than the previous one, and the

complexity doesn’t gain you anything in this case. The Lock and Condition

objects are only necessary for more difficult threading problems.

Exercise 27: (2) Modify Restaurant.java to use explicit Lock and
Condition objects.

Producer-consumers and queues
The wait() and notifyAll() methods solve the problem of task cooperation

in a rather low-level fashion, handshaking every interaction. In many cases,

you can move up a level of abstraction and solve task cooperation problems

using a synchronized queue, which only allows one task at a time to insert or

remove an element. This is provided for you in the

java.util.concurrent.BlockingQueue interface, which has a number of

standard implementations. You’ll usually use the LinkedBlockingQueue,

which is an unbounded queue; the ArrayBlockingQueue has a fixed size,

so you can only put so many elements in it before it blocks.

These queues also suspend a consumer task if that task tries to get an object

from the queue and the queue is empty, and resume when more elements

become available. Blocking queues can solve a remarkable number of

problems in a much simpler and more reliable fashion than wait() and

notifyAll().

Here’s a simple test that serializes the execution of LiftOff objects. The

consumer is LiftOffRunner, which pulls each LiftOff object off the

BlockingQueue and runs it directly. (That is, it uses its own thread by

calling run() explicitly rather than starting up a new thread for each task.)

//: concurrency/TestBlockingQueues.java

// {RunByHand}

import java.util.concurrent.*;

import java.io.*;

import static net.mindview.util.Print.*;

class LiftOffRunner implements Runnable {

 private BlockingQueue<LiftOff> rockets;

 public LiftOffRunner(BlockingQueue<LiftOff> queue) {

1212 Thinking in Java Bruce Eckel

 rockets = queue;

 }

 public void add(LiftOff lo) {

 try {

 rockets.put(lo);

 } catch(InterruptedException e) {

 print("Interrupted during put()");

 }

 }

 public void run() {

 try {

 while(!Thread.interrupted()) {

 LiftOff rocket = rockets.take();

 rocket.run(); // Use this thread

 }

 } catch(InterruptedException e) {

 print("Waking from take()");

 }

 print("Exiting LiftOffRunner");

 }

}

public class TestBlockingQueues {

 static void getkey() {

 try {

 // Compensate for Windows/Linux difference in the

 // length of the result produced by the Enter key:

 new BufferedReader(

 new InputStreamReader(System.in)).readLine();

 } catch(java.io.IOException e) {

 throw new RuntimeException(e);

 }

 }

 static void getkey(String message) {

 print(message);

 getkey();

 }

 static void

 test(String msg, BlockingQueue<LiftOff> queue) {

 print(msg);

 LiftOffRunner runner = new LiftOffRunner(queue);

 Thread t = new Thread(runner);

 t.start();

 for(int i = 0; i < 5; i++)

Concurrency 1213

 runner.add(new LiftOff(5));

 getkey("Press 'Enter' (" + msg + ")");

 t.interrupt();

 print("Finished " + msg + " test");

 }

 public static void main(String[] args) {

 test("LinkedBlockingQueue", // Unlimited size

 new LinkedBlockingQueue<LiftOff>());

 test("ArrayBlockingQueue", // Fixed size

 new ArrayBlockingQueue<LiftOff>(3));

 test("SynchronousQueue", // Size of 1

 new SynchronousQueue<LiftOff>());

 }

} ///:~

The tasks are placed on the BlockingQueue by main() and are taken off

the BlockingQueue by the LiftOffRunner. Notice that LiftOffRunner

can ignore synchronization issues because they are solved by the

BlockingQueue.

Exercise 28: (3) Modify TestBlockingQueues.java by adding a new
task that places LiftOff on the BlockingQueue, instead of doing it in
main().

BlockingQueues of toast

As an example of the use of BlockingQueues, consider a machine that has

three tasks: one to make toast, one to butter the toast, and one to put jam on

the buttered toast. We can run the toast through BlockingQueues between

processes:

//: concurrency/ToastOMatic.java

// A toaster that uses queues.

import java.util.concurrent.*;

import java.util.*;

import static net.mindview.util.Print.*;

class Toast {

 public enum Status { DRY, BUTTERED, JAMMED }

 private Status status = Status.DRY;

 private final int id;

 public Toast(int idn) { id = idn; }

 public void butter() { status = Status.BUTTERED; }

 public void jam() { status = Status.JAMMED; }

 public Status getStatus() { return status; }

1214 Thinking in Java Bruce Eckel

 public int getId() { return id; }

 public String toString() {

 return "Toast " + id + ": " + status;

 }

}

class ToastQueue extends LinkedBlockingQueue<Toast> {}

class Toaster implements Runnable {

 private ToastQueue toastQueue;

 private int count = 0;

 private Random rand = new Random(47);

 public Toaster(ToastQueue tq) { toastQueue = tq; }

 public void run() {

 try {

 while(!Thread.interrupted()) {

 TimeUnit.MILLISECONDS.sleep(

 100 + rand.nextInt(500));

 // Make toast

 Toast t = new Toast(count++);

 print(t);

 // Insert into queue

 toastQueue.put(t);

 }

 } catch(InterruptedException e) {

 print("Toaster interrupted");

 }

 print("Toaster off");

 }

}

// Apply butter to toast:

class Butterer implements Runnable {

 private ToastQueue dryQueue, butteredQueue;

 public Butterer(ToastQueue dry, ToastQueue buttered) {

 dryQueue = dry;

 butteredQueue = buttered;

 }

 public void run() {

 try {

 while(!Thread.interrupted()) {

 // Blocks until next piece of toast is available:

 Toast t = dryQueue.take();

 t.butter();

Concurrency 1215

 print(t);

 butteredQueue.put(t);

 }

 } catch(InterruptedException e) {

 print("Butterer interrupted");

 }

 print("Butterer off");

 }

}

// Apply jam to buttered toast:

class Jammer implements Runnable {

 private ToastQueue butteredQueue, finishedQueue;

 public Jammer(ToastQueue buttered, ToastQueue finished) {

 butteredQueue = buttered;

 finishedQueue = finished;

 }

 public void run() {

 try {

 while(!Thread.interrupted()) {

 // Blocks until next piece of toast is available:

 Toast t = butteredQueue.take();

 t.jam();

 print(t);

 finishedQueue.put(t);

 }

 } catch(InterruptedException e) {

 print("Jammer interrupted");

 }

 print("Jammer off");

 }

}

// Consume the toast:

class Eater implements Runnable {

 private ToastQueue finishedQueue;

 private int counter = 0;

 public Eater(ToastQueue finished) {

 finishedQueue = finished;

 }

 public void run() {

 try {

 while(!Thread.interrupted()) {

 // Blocks until next piece of toast is available:

1216 Thinking in Java Bruce Eckel

 Toast t = finishedQueue.take();

 // Verify that the toast is coming in order,

 // and that all pieces are getting jammed:

 if(t.getId() != counter++ ||

 t.getStatus() != Toast.Status.JAMMED) {

 print(">>>> Error: " + t);

 System.exit(1);

 } else

 print("Chomp! " + t);

 }

 } catch(InterruptedException e) {

 print("Eater interrupted");

 }

 print("Eater off");

 }

}

public class ToastOMatic {

 public static void main(String[] args) throws Exception {

 ToastQueue dryQueue = new ToastQueue(),

 butteredQueue = new ToastQueue(),

 finishedQueue = new ToastQueue();

 ExecutorService exec = Executors.newCachedThreadPool();

 exec.execute(new Toaster(dryQueue));

 exec.execute(new Butterer(dryQueue, butteredQueue));

 exec.execute(new Jammer(butteredQueue, finishedQueue));

 exec.execute(new Eater(finishedQueue));

 TimeUnit.SECONDS.sleep(5);

 exec.shutdownNow();

 }

} /* (Execute to see output) *///:~

Toast is an excellent example of the value of enums. Note that there is no

explicit synchronization (using Lock objects or the synchronized keyword)

because the synchronization is implicitly managed by the queues (which

synchronize internally) and by the design of the system—each piece of Toast

is only operated on by one task at a time. Because the queues block, processes

suspend and resume automatically. You can see that the simplification

produced by BlockingQueues can be quite dramatic. The coupling between

the classes that would exist with explicit wait() and notifyAll() statements

is eliminated because each class communicates only with its

BlockingQueues.

Concurrency 1217

Exercise 29: (8) Modify ToastOMatic.java to create peanut butter and
jelly on toast sandwiches using two separate assembly lines (one for peanut
butter, the second for jelly, then merging the two lines).

Using pipes for I/O between tasks
It’s often useful for tasks to communicate with each other using I/O.

Threading libraries may provide support for inter-task I/O in the form of

pipes. These exist in the Java I/O library as the classes PipedWriter (which

allows a task to write into a pipe) and PipedReader (which allows a

different task to read from the same pipe). This can be thought of as a

variation of the producer-consumer problem, where the pipe is the canned

solution. The pipe is basically a blocking queue, which existed in versions of

Java before BlockingQueue was introduced.

Here’s a simple example in which two tasks use a pipe to communicate:

//: concurrency/PipedIO.java

// Using pipes for inter-task I/O

import java.util.concurrent.*;

import java.io.*;

import java.util.*;

import static net.mindview.util.Print.*;

class Sender implements Runnable {

 private Random rand = new Random(47);

 private PipedWriter out = new PipedWriter();

 public PipedWriter getPipedWriter() { return out; }

 public void run() {

 try {

 while(true)

 for(char c = 'A'; c <= 'z'; c++) {

 out.write(c);

 TimeUnit.MILLISECONDS.sleep(rand.nextInt(500));

 }

 } catch(IOException e) {

 print(e + " Sender write exception");

 } catch(InterruptedException e) {

 print(e + " Sender sleep interrupted");

 }

 }

}

class Receiver implements Runnable {

1218 Thinking in Java Bruce Eckel

 private PipedReader in;

 public Receiver(Sender sender) throws IOException {

 in = new PipedReader(sender.getPipedWriter());

 }

 public void run() {

 try {

 while(true) {

 // Blocks until characters are there:

 printnb("Read: " + (char)in.read() + ", ");

 }

 } catch(IOException e) {

 print(e + " Receiver read exception");

 }

 }

}

public class PipedIO {

 public static void main(String[] args) throws Exception {

 Sender sender = new Sender();

 Receiver receiver = new Receiver(sender);

 ExecutorService exec = Executors.newCachedThreadPool();

 exec.execute(sender);

 exec.execute(receiver);

 TimeUnit.SECONDS.sleep(4);

 exec.shutdownNow();

 }

} /* Output: (65% match)

Read: A, Read: B, Read: C, Read: D, Read: E, Read: F, Read:

G, Read: H, Read: I, Read: J, Read: K, Read: L, Read: M,

java.lang.InterruptedException: sleep interrupted Sender

sleep interrupted

java.io.InterruptedIOException Receiver read exception

*///:~

Sender and Receiver represent tasks that need to communicate with each

other. Sender creates a PipedWriter, which is a standalone object, but

inside Receiver the creation of PipedReader must be associated with a

PipedWriter in the constructor. The Sender puts data into the Writer

and sleeps for a random amount of time. However, Receiver has no sleep()

or wait(). But when it does a read(), the pipe automatically blocks when

there is no more data.

Notice that the sender and receiver are started in main(), after the

objects are completely constructed. If you don’t start completely constructed

Concurrency 1219

objects, the pipe can produce inconsistent behavior on different platforms.

(Note that BlockingQueues are more robust and easier to use.)

An important difference between a PipedReader and normal I/O is seen

when shutdownNow() is called—the PipedReader is interruptible,

whereas if you changed, for example, the in.read() call to

System.in.read(), the interrupt() would fail to break out of the read()

call.

Exercise 30: (1) Modify PipedIO.java to use a BlockingQueue
instead of a pipe.

Deadlock
Now you understand an object can have synchronized methods or other

forms of locking that prevent tasks from accessing that object until the mutex

is released. You’ve also learned that tasks can become blocked. Thus it’s

possible for one task to get stuck waiting for another task, which in turn waits

for another task, and so on, until the chain leads back to a task waiting on the

first one. You get a continuous loop of tasks waiting on each other, and no

one can move. This is called deadlock.21

If you try running a program and it deadlocks right away, you can

immediately track down the bug. The real problem is when your program

seems to be working fine but has the hidden potential to deadlock. In this

case, you may get no indication that deadlocking is a possibility, so the flaw

will be latent in your program until it unexpectedly happens to a customer (in

a way that will almost certainly be difficult to reproduce). Thus, preventing

deadlock through careful program design is a critical part of developing

concurrent systems.

The dining philosophers problem, invented by Edsger Dijkstra, is the classic

demonstration of deadlock. The basic description specifies five philosophers

(but the example shown here will allow any number). These philosophers

spend part of their time thinking and part of their time eating. While they are

thinking, they don’t need any shared resources, but they eat using a limited

number of utensils. In the original problem description, the utensils are forks,

21 You can also have livelock when two tasks are able to change their state (they don’t
block) but they never make any useful progress.

1220 Thinking in Java Bruce Eckel

and two forks are required to get spaghetti from a bowl in the middle of the

table, but it seems to make more sense to say that the utensils are chopsticks.

Clearly, each philosopher will require two chopsticks in order to eat.

A difficulty is introduced into the problem: As philosophers, they have very

little money, so they can only afford five chopsticks (more generally, the same

number of chopsticks as philosophers). These are spaced around the table

between them. When a philosopher wants to eat, that philosopher must pick

up the chopstick to the left and the one to the right. If the philosopher on

either side is using a desired chopstick, our philosopher must wait until the

necessary chopsticks become available.

//: concurrency/Chopstick.java

// Chopsticks for dining philosophers.

public class Chopstick {

 private boolean taken = false;

 public synchronized

 void take() throws InterruptedException {

 while(taken)

 wait();

 taken = true;

 }

 public synchronized void drop() {

 taken = false;

 notifyAll();

 }

} ///:~

No two Philosophers can successfully take() the same Chopstick at the

same time. In addition, if the Chopstick has already been taken by one

Philosopher, another can wait() until the Chopstick becomes available

when the current holder calls drop().

When a Philosopher task calls take(), that Philosopher waits until the

taken flag is false (until the Philosopher currently holding the Chopstick

releases it). Then the task sets the taken flag to true to indicate that the new

Philosopher now holds the Chopstick. When this Philosopher is

finished with the Chopstick, it calls drop() to change the flag and

notifyAll() any other Philosophers that may be wait()ing for the

Chopstick.

//: concurrency/Philosopher.java

Concurrency 1221

// A dining philosopher

import java.util.concurrent.*;

import java.util.*;

import static net.mindview.util.Print.*;

public class Philosopher implements Runnable {

 private Chopstick left;

 private Chopstick right;

 private final int id;

 private final int ponderFactor;

 private Random rand = new Random(47);

 private void pause() throws InterruptedException {

 if(ponderFactor == 0) return;

 TimeUnit.MILLISECONDS.sleep(

 rand.nextInt(ponderFactor * 250));

 }

 public Philosopher(Chopstick left, Chopstick right,

 int ident, int ponder) {

 this.left = left;

 this.right = right;

 id = ident;

 ponderFactor = ponder;

 }

 public void run() {

 try {

 while(!Thread.interrupted()) {

 print(this + " " + "thinking");

 pause();

 // Philosopher becomes hungry

 print(this + " " + "grabbing right");

 right.take();

 print(this + " " + "grabbing left");

 left.take();

 print(this + " " + "eating");

 pause();

 right.drop();

 left.drop();

 }

 } catch(InterruptedException e) {

 print(this + " " + "exiting via interrupt");

 }

 }

 public String toString() { return "Philosopher " + id; }

} ///:~

1222 Thinking in Java Bruce Eckel

In Philosopher.run(), each Philosopher just thinks and eats

continuously. The pause() method sleeps() for a random period if the

ponderFactor is nonzero. Using this, you see the Philosopher thinking

for a randomized amount of time, then trying to take() the right and left

Chopsticks, eating for a randomized amount of time, and then doing it

again.

Now we can set up a version of the program that will deadlock:

//: concurrency/DeadlockingDiningPhilosophers.java

// Demonstrates how deadlock can be hidden in a program.

// {Args: 0 5 timeout}

import java.util.concurrent.*;

public class DeadlockingDiningPhilosophers {

 public static void main(String[] args) throws Exception {

 int ponder = 5;

 if(args.length > 0)

 ponder = Integer.parseInt(args[0]);

 int size = 5;

 if(args.length > 1)

 size = Integer.parseInt(args[1]);

 ExecutorService exec = Executors.newCachedThreadPool();

 Chopstick[] sticks = new Chopstick[size];

 for(int i = 0; i < size; i++)

 sticks[i] = new Chopstick();

 for(int i = 0; i < size; i++)

 exec.execute(new Philosopher(

 sticks[i], sticks[(i+1) % size], i, ponder));

 if(args.length == 3 && args[2].equals("timeout"))

 TimeUnit.SECONDS.sleep(5);

 else {

 System.out.println("Press 'Enter' to quit");

 System.in.read();

 }

 exec.shutdownNow();

 }

} /* (Execute to see output) *///:~

You will observe that if the Philosophers spend very little time thinking,

they will all be competing for the Chopsticks while they try to eat, and

deadlock will happen much more quickly.

Concurrency 1223

The first command-line argument adjusts the ponder factor, to affect the

amount of time each Philosopher spends thinking. If you have lots of

Philosophers or they spend a lot of time thinking, you may never see

deadlock even though it remains a possibility. A command-line argument of

zero tends to make the program deadlock fairly quickly.

Note that the Chopstick objects do not need internal identifiers; they are

identified by their position in the array sticks. Each Philosopher

constructor is given a reference to a left and right Chopstick object. Every

Philosopher except the last one is initialized by situating that Philosopher

between the next pair of Chopstick objects. The last Philosopher is given

the zeroth Chopstick for its right Chopstick, so the round table is

completed. That’s because the last Philosopher is sitting right next to the

first one, and they both share that zeroth Chopstick. Now it’s possible for all

the Philosophers to be trying to eat, waiting on the Philosopher next to

them to put down its Chopstick. This will make the program deadlock.

If your Philosophers are spending more time thinking than eating, then

they have a much lower probability of requiring the shared resources

(Chopsticks), and thus you can convince yourself that the program is

deadlock free (using a nonzero ponder value, or a large number of

Philosophers), even though it isn’t. This example is interesting precisely

because it demonstrates that a program can appear to run correctly but

actually be able to deadlock.

To repair the problem, you must understand that deadlock can occur if four

conditions are simultaneously met:

1. Mutual exclusion. At least one resource used by the tasks must not be

shareable. In this case, a Chopstick can be used by only one

Philosopher at a time.

2. At least one task must be holding a resource and waiting to acquire a

resource currently held by another task. That is, for deadlock to occur, a

Philosopher must be holding one Chopstick and waiting for another

one.

3. A resource cannot be preemptively taken away from a task. Tasks only

release resources as a normal event. Our Philosophers are polite and

they don’t grab Chopsticks from other Philosophers.

1224 Thinking in Java Bruce Eckel

4. A circular wait can happen, whereby a task waits on a resource held by

another task, which in turn is waiting on a resource held by another task,

and so on, until one of the tasks is waiting on a resource held by the first

task, thus gridlocking everything. In

DeadlockingDiningPhilosophers.java, the circular wait happens

because each Philosopher tries to get the right Chopstick first and

then the left.

Because all these conditions must be met to cause deadlock, you only need to

prevent one of them from occurring to prohibit deadlock. In this program, the

easiest way to prevent deadlock is to break the fourth condition. This

condition happens because each Philosopher is trying to pick up its

Chopsticks in a particular sequence: first right, then left. Because of that, it’s

possible to get into a situation where each of them is holding its right

Chopstick and waiting to get the left, causing the circular wait condition.

However, if the last Philosopher is initialized to try to get the left chopstick

first and then the right, that Philosopher will never prevent the

Philosopher on the immediate right from picking up their its chopstick. In

this case, the circular wait is prevented. This is only one solution to the

problem, but you could also solve it by preventing one of the other conditions

(see advanced threading books for more details):

//: concurrency/FixedDiningPhilosophers.java

// Dining philosophers without deadlock.

// {Args: 5 5 timeout}

import java.util.concurrent.*;

public class FixedDiningPhilosophers {

 public static void main(String[] args) throws Exception {

 int ponder = 5;

 if(args.length > 0)

 ponder = Integer.parseInt(args[0]);

 int size = 5;

 if(args.length > 1)

 size = Integer.parseInt(args[1]);

 ExecutorService exec = Executors.newCachedThreadPool();

 Chopstick[] sticks = new Chopstick[size];

 for(int i = 0; i < size; i++)

 sticks[i] = new Chopstick();

 for(int i = 0; i < size; i++)

 if(i < (size-1))

 exec.execute(new Philosopher(

Concurrency 1225

 sticks[i], sticks[i+1], i, ponder));

 else

 exec.execute(new Philosopher(

 sticks[0], sticks[i], i, ponder));

 if(args.length == 3 && args[2].equals("timeout"))

 TimeUnit.SECONDS.sleep(5);

 else {

 System.out.println("Press 'Enter' to quit");

 System.in.read();

 }

 exec.shutdownNow();

 }

} /* (Execute to see output) *///:~

By ensuring that the last Philosopher picks up and puts down the left

Chopstick before the right, we remove the deadlock, and the program will

run smoothly.

There is no language support to help prevent deadlock; it’s up to you to avoid

it by careful design. These are not comforting words to the person who’s

trying to debug a deadlocking program.

Exercise 31: (8) Change DeadlockingDiningPhilosophers.java so
that when a philosopher is done with its chopsticks, it drops them into a bin.
When a philosopher wants to eat, it takes the next two available chopsticks
from the bin. Does this eliminate the possibility of deadlock? Can you
reintroduce deadlock by simply reducing the number of available chopsticks?

New library components
The java.util.concurrent library in Java SE5 introduces a significant

number of new classes designed to solve concurrency problems. Learning to

use these can help you produce simpler and more robust concurrent

programs.

This section includes a representative set of examples of various components,

but a few of the components—ones that you may be less likely to use and

encounter—are not discussed here.

Because these components solve various problems, there is no clear way to

organize them, so I shall attempt to start with simpler examples and proceed

through examples of increasing complexity.

1226 Thinking in Java Bruce Eckel

CountDownLatch
This is used to synchronize one or more tasks by forcing them to wait for the

completion of a set of operations being performed by other tasks.

You give an initial count to a CountDownLatch object, and any task that

calls await() on that object will block until the count reaches zero. Other

tasks may call countDown() on the object to reduce the count, presumably

when a task finishes its job. A CountDownLatch is designed to be used in a

one-shot fashion; the count cannot be reset. If you need a version that resets

the count, you can use a CyclicBarrier instead.

The tasks that call countDown() are not blocked when they make that call.

Only the call to await() is blocked until the count reaches zero.

A typical use is to divide a problem into n independently solvable tasks and

create a CountDownLatch with a value of n. When each task is finished it

calls countDown() on the latch. Tasks waiting for the problem to be solved

call await() on the latch to hold themselves back until it is completed.

Here’s a skeleton example that demonstrates this technique:

//: concurrency/CountDownLatchDemo.java

import java.util.concurrent.*;

import java.util.*;

import static net.mindview.util.Print.*;

// Performs some portion of a task:

class TaskPortion implements Runnable {

 private static int counter = 0;

 private final int id = counter++;

 private static Random rand = new Random(47);

 private final CountDownLatch latch;

 TaskPortion(CountDownLatch latch) {

 this.latch = latch;

 }

 public void run() {

 try {

 doWork();

 latch.countDown();

 } catch(InterruptedException ex) {

 // Acceptable way to exit

 }

 }

Concurrency 1227

 public void doWork() throws InterruptedException {

 TimeUnit.MILLISECONDS.sleep(rand.nextInt(2000));

 print(this + "completed");

 }

 public String toString() {

 return String.format("%1$-3d ", id);

 }

}

// Waits on the CountDownLatch:

class WaitingTask implements Runnable {

 private static int counter = 0;

 private final int id = counter++;

 private final CountDownLatch latch;

 WaitingTask(CountDownLatch latch) {

 this.latch = latch;

 }

 public void run() {

 try {

 latch.await();

 print("Latch barrier passed for " + this);

 } catch(InterruptedException ex) {

 print(this + " interrupted");

 }

 }

 public String toString() {

 return String.format("WaitingTask %1$-3d ", id);

 }

}

public class CountDownLatchDemo {

 static final int SIZE = 100;

 public static void main(String[] args) throws Exception {

 ExecutorService exec = Executors.newCachedThreadPool();

 // All must share a single CountDownLatch object:

 CountDownLatch latch = new CountDownLatch(SIZE);

 for(int i = 0; i < 10; i++)

 exec.execute(new WaitingTask(latch));

 for(int i = 0; i < SIZE; i++)

 exec.execute(new TaskPortion(latch));

 print("Launched all tasks");

 exec.shutdown(); // Quit when all tasks complete

 }

} /* (Execute to see output) *///:~

1228 Thinking in Java Bruce Eckel

TaskPortion sleeps for a random period to simulate the completion of part

of the task, and WaitingTask indicates a part of the system that must wait

until the initial portion of the problem is complete. All tasks work with the

same single CountDownLatch, which is defined in main().

Exercise 32: (7) Use a CountDownLatch to solve the problem of
correlating the results from the Entrances in OrnamentalGarden.java.
Remove the unnecessary code from the new version of the example.

Library thread safety

Notice that TaskPortion contains a static Random object, which means

that multiple tasks may be calling Random.nextInt() at the same time. Is

this safe?

If there is a problem, it can be solved in this case by giving TaskPortion its

own Random object—that is, by removing the static specifier. But the

question remains for Java standard library methods in general: Which ones

are thread-safe and which ones aren’t?

Unfortunately, the JDK documentation is not forthcoming on this point. It

happens that Random.nextInt() is thread-safe, but alas, you shall have to

discover this on a case-by-case basis, using either a Web search or by

inspecting the Java library code. This is not a particularly good situation for a

programming language that was, at least in theory, designed to support

concurrency.

CyclicBarrier
A CyclicBarrier is used in situations where you want to create a group of

tasks to perform work in parallel, and then wait until they are all finished

before moving on to the next step (something like join(), it would seem). It

brings all the parallel tasks into alignment at the barrier so you can move

forward in unison. This is very similar to the CountDownLatch, except that

a CountDownLatch is a one-shot event, whereas a CyclicBarrier can be

reused over and over.

I’ve been fascinated with simulations from the beginning of my experience

with computers, and concurrency is a key factor of making simulations

Concurrency 1229

possible. The very first program that I can remember writing22 was a

simulation: a horse-racing game written in BASIC called (because of the file

name limitations) HOSRAC.BAS. Here is the object-oriented, threaded

version of that program, utilizing a CyclicBarrier:

//: concurrency/HorseRace.java

// Using CyclicBarriers.

import java.util.concurrent.*;

import java.util.*;

import static net.mindview.util.Print.*;

class Horse implements Runnable {

 private static int counter = 0;

 private final int id = counter++;

 private int strides = 0;

 private static Random rand = new Random(47);

 private static CyclicBarrier barrier;

 public Horse(CyclicBarrier b) { barrier = b; }

 public synchronized int getStrides() { return strides; }

 public void run() {

 try {

 while(!Thread.interrupted()) {

 synchronized(this) {

 strides += rand.nextInt(3); // Produces 0, 1 or 2

 }

 barrier.await();

 }

 } catch(InterruptedException e) {

 // A legitimate way to exit

 } catch(BrokenBarrierException e) {

 // This one we want to know about

 throw new RuntimeException(e);

 }

 }

 public String toString() { return "Horse " + id + " "; }

 public String tracks() {

 StringBuilder s = new StringBuilder();

 for(int i = 0; i < getStrides(); i++)

 s.append("*");

 s.append(id);

22 As a freshman in high school; the classroom had an ASR-33 teletype with a 110-baud
acoustic-coupler modem accessing an HP-1000.

1230 Thinking in Java Bruce Eckel

 return s.toString();

 }

}

public class HorseRace {

 static final int FINISH_LINE = 75;

 private List<Horse> horses = new ArrayList<Horse>();

 private ExecutorService exec =

 Executors.newCachedThreadPool();

 private CyclicBarrier barrier;

 public HorseRace(int nHorses, final int pause) {

 barrier = new CyclicBarrier(nHorses, new Runnable() {

 public void run() {

 StringBuilder s = new StringBuilder();

 for(int i = 0; i < FINISH_LINE; i++)

 s.append("="); // The fence on the racetrack

 print(s);

 for(Horse horse : horses)

 print(horse.tracks());

 for(Horse horse : horses)

 if(horse.getStrides() >= FINISH_LINE) {

 print(horse + "won!");

 exec.shutdownNow();

 return;

 }

 try {

 TimeUnit.MILLISECONDS.sleep(pause);

 } catch(InterruptedException e) {

 print("barrier-action sleep interrupted");

 }

 }

 });

 for(int i = 0; i < nHorses; i++) {

 Horse horse = new Horse(barrier);

 horses.add(horse);

 exec.execute(horse);

 }

 }

 public static void main(String[] args) {

 int nHorses = 7;

 int pause = 200;

 if(args.length > 0) { // Optional argument

 int n = new Integer(args[0]);

 nHorses = n > 0 ? n : nHorses;

Concurrency 1231

 }

 if(args.length > 1) { // Optional argument

 int p = new Integer(args[1]);

 pause = p > -1 ? p : pause;

 }

 new HorseRace(nHorses, pause);

 }

} /* (Execute to see output) *///:~

A CyclicBarrier can be given a “barrier action,” which is a Runnable that

is automatically executed when the count reaches zero—this is another

distinction between CyclicBarrier and CountdownLatch. Here, the

barrier action is created as an anonymous class that is handed to the

constructor of CyclicBarrier.

I tried having each horse print itself, but then the order of display was

dependent on the task manager. The CyclicBarrier allows each horse to do

whatever it needs to do in order to move forward, and then it has to wait at

the barrier until all the other horses have moved forward. When all horses

have moved, the CyclicBarrier automatically calls its Runnable barrier-

action task to display the horses in order, along with the fence.

Once all the tasks have passed the barrier, it is automatically ready for the

next round.

To give it the effect of very simple animation, make the size of your console

window small enough so that only the horses show.

DelayQueue
This is an unbounded BlockingQueue of objects that implement the

Delayed interface. An object can only be taken from the queue when its

delay has expired. The queue is sorted so that the object at the head has a

delay that has expired for the longest time. If no delay has expired, then there

is no head element and poll() will return null (because of this, you cannot

place null elements in the queue).

Here’s an example where the Delayed objects are themselves tasks, and the

DelayedTaskConsumer takes the most “urgent” task (the one that has

been expired for the longest time) off the queue and runs it. Note that

DelayQueue is thus a variation of a priority queue.

//: concurrency/DelayQueueDemo.java

1232 Thinking in Java Bruce Eckel

import java.util.concurrent.*;

import java.util.*;

import static java.util.concurrent.TimeUnit.*;

import static net.mindview.util.Print.*;

class DelayedTask implements Runnable, Delayed {

 private static int counter = 0;

 private final int id = counter++;

 private final int delta;

 private final long trigger;

 protected static List<DelayedTask> sequence =

 new ArrayList<DelayedTask>();

 public DelayedTask(int delayInMilliseconds) {

 delta = delayInMilliseconds;

 trigger = System.nanoTime() +

 NANOSECONDS.convert(delta, MILLISECONDS);

 sequence.add(this);

 }

 public long getDelay(TimeUnit unit) {

 return unit.convert(

 trigger - System.nanoTime(), NANOSECONDS);

 }

 public int compareTo(Delayed arg) {

 DelayedTask that = (DelayedTask)arg;

 if(trigger < that.trigger) return -1;

 if(trigger > that.trigger) return 1;

 return 0;

 }

 public void run() { printnb(this + " "); }

 public String toString() {

 return String.format("[%1$-4d]", delta) +

 " Task " + id;

 }

 public String summary() {

 return "(" + id + ":" + delta + ")";

 }

 public static class EndSentinel extends DelayedTask {

 private ExecutorService exec;

 public EndSentinel(int delay, ExecutorService e) {

 super(delay);

 exec = e;

 }

 public void run() {

 for(DelayedTask pt : sequence) {

Concurrency 1233

 printnb(pt.summary() + " ");

 }

 print();

 print(this + " Calling shutdownNow()");

 exec.shutdownNow();

 }

 }

}

class DelayedTaskConsumer implements Runnable {

 private DelayQueue<DelayedTask> q;

 public DelayedTaskConsumer(DelayQueue<DelayedTask> q) {

 this.q = q;

 }

 public void run() {

 try {

 while(!Thread.interrupted())

 q.take().run(); // Run task with the current thread

 } catch(InterruptedException e) {

 // Acceptable way to exit

 }

 print("Finished DelayedTaskConsumer");

 }

}

public class DelayQueueDemo {

 public static void main(String[] args) {

 Random rand = new Random(47);

 ExecutorService exec = Executors.newCachedThreadPool();

 DelayQueue<DelayedTask> queue =

 new DelayQueue<DelayedTask>();

 // Fill with tasks that have random delays:

 for(int i = 0; i < 20; i++)

 queue.put(new DelayedTask(rand.nextInt(5000)));

 // Set the stopping point

 queue.add(new DelayedTask.EndSentinel(5000, exec));

 exec.execute(new DelayedTaskConsumer(queue));

 }

} /* Output:

[128] Task 11 [200] Task 7 [429] Task 5 [520] Task 18

[555] Task 1 [961] Task 4 [998] Task 16 [1207] Task 9

[1693] Task 2 [1809] Task 14 [1861] Task 3 [2278] Task 15

[3288] Task 10 [3551] Task 12 [4258] Task 0 [4258] Task 19

[4522] Task 8 [4589] Task 13 [4861] Task 17 [4868] Task 6

1234 Thinking in Java Bruce Eckel

(0:4258) (1:555) (2:1693) (3:1861) (4:961) (5:429) (6:4868)

(7:200) (8:4522) (9:1207) (10:3288) (11:128) (12:3551)

(13:4589) (14:1809) (15:2278) (16:998) (17:4861) (18:520)

(19:4258) (20:5000)

[5000] Task 20 Calling shutdownNow()

Finished DelayedTaskConsumer

*///:~

DelayedTask contains a List<DelayedTask> called sequence that

preserves the order in which the tasks were created, so that we can see that

sorting does in fact take place.

The Delayed interface has one method, getDelay(), which tells how long it

is until the delay time expires or how long ago the delay time has expired.

This method forces us to use the TimeUnit class because that’s the

argument type. This turns out to be a very convenient class because you can

easily convert units without doing any calculations. For example, the value of

delta is stored in milliseconds, but the Java SE5 method

System.nanoTime() produces time in nanoseconds. You can convert the

value of delta by saying what units it is in and what units you want it to be in,

like this:

 NANOSECONDS.convert(delta, MILLISECONDS);

In getDelay(), the desired units are passed in as the unit argument, and

you use this to convert the time difference from the trigger time to the units

requested by the caller, without even knowing what those units are (this is a

simple example of the Strategy design pattern, where part of the algorithm is

passed in as an argument).

For sorting, the Delayed interface also inherits the Comparable interface,

so compareTo() must be implemented so that it produces a reasonable

comparison. toString() and summary() provide output formatting, and

the nested EndSentinel class provides a way to shut everything down by

placing it as the last element in the queue.

Note that because DelayedTaskConsumer is itself a task, it has its own

Thread which it can use to run each task that comes out of the queue. Since

the tasks are being performed in queue priority order, there’s no need in this

example to start separate threads to run the DelayedTasks.

Concurrency 1235

You can see from the output that the order in which the tasks are created has

no effect on execution order—instead, the tasks are executed in delay order as

expected.

PriorityBlockingQueue
This is basically a priority queue that has blocking retrieval operations. Here’s

an example where the objects in the priority queue are tasks that emerge

from the queue in priority order. A PrioritizedTask is given a priority

number to provide this order:

//: concurrency/PriorityBlockingQueueDemo.java

import java.util.concurrent.*;

import java.util.*;

import static net.mindview.util.Print.*;

class PrioritizedTask implements

Runnable, Comparable<PrioritizedTask> {

 private Random rand = new Random(47);

 private static int counter = 0;

 private final int id = counter++;

 private final int priority;

 protected static List<PrioritizedTask> sequence =

 new ArrayList<PrioritizedTask>();

 public PrioritizedTask(int priority) {

 this.priority = priority;

 sequence.add(this);

 }

 public int compareTo(PrioritizedTask arg) {

 return priority < arg.priority ? 1 :

 (priority > arg.priority ? -1 : 0);

 }

 public void run() {

 try {

 TimeUnit.MILLISECONDS.sleep(rand.nextInt(250));

 } catch(InterruptedException e) {

 // Acceptable way to exit

 }

 print(this);

 }

 public String toString() {

 return String.format("[%1$-3d]", priority) +

 " Task " + id;

 }

1236 Thinking in Java Bruce Eckel

 public String summary() {

 return "(" + id + ":" + priority + ")";

 }

 public static class EndSentinel extends PrioritizedTask {

 private ExecutorService exec;

 public EndSentinel(ExecutorService e) {

 super(-1); // Lowest priority in this program

 exec = e;

 }

 public void run() {

 int count = 0;

 for(PrioritizedTask pt : sequence) {

 printnb(pt.summary());

 if(++count % 5 == 0)

 print();

 }

 print();

 print(this + " Calling shutdownNow()");

 exec.shutdownNow();

 }

 }

}

class PrioritizedTaskProducer implements Runnable {

 private Random rand = new Random(47);

 private Queue<Runnable> queue;

 private ExecutorService exec;

 public PrioritizedTaskProducer(

 Queue<Runnable> q, ExecutorService e) {

 queue = q;

 exec = e; // Used for EndSentinel

 }

 public void run() {

 // Unbounded queue; never blocks.

 // Fill it up fast with random priorities:

 for(int i = 0; i < 20; i++) {

 queue.add(new PrioritizedTask(rand.nextInt(10)));

 Thread.yield();

 }

 // Trickle in highest-priority jobs:

 try {

 for(int i = 0; i < 10; i++) {

 TimeUnit.MILLISECONDS.sleep(250);

 queue.add(new PrioritizedTask(10));

Concurrency 1237

 }

 // Add jobs, lowest priority first:

 for(int i = 0; i < 10; i++)

 queue.add(new PrioritizedTask(i));

 // A sentinel to stop all the tasks:

 queue.add(new PrioritizedTask.EndSentinel(exec));

 } catch(InterruptedException e) {

 // Acceptable way to exit

 }

 print("Finished PrioritizedTaskProducer");

 }

}

class PrioritizedTaskConsumer implements Runnable {

 private PriorityBlockingQueue<Runnable> q;

 public PrioritizedTaskConsumer(

 PriorityBlockingQueue<Runnable> q) {

 this.q = q;

 }

 public void run() {

 try {

 while(!Thread.interrupted())

 // Use current thread to run the task:

 q.take().run();

 } catch(InterruptedException e) {

 // Acceptable way to exit

 }

 print("Finished PrioritizedTaskConsumer");

 }

}

public class PriorityBlockingQueueDemo {

 public static void main(String[] args) throws Exception {

 ExecutorService exec = Executors.newCachedThreadPool();

 PriorityBlockingQueue<Runnable> queue =

 new PriorityBlockingQueue<Runnable>();

 exec.execute(new PrioritizedTaskProducer(queue, exec));

 exec.execute(new PrioritizedTaskConsumer(queue));

 }

} /* (Execute to see output) *///:~

As with the previous example, the creation sequence of the PrioritizedTask

objects is remembered in the sequence List, for comparison with the actual

order of execution. The run() method sleeps for a short random time and

1238 Thinking in Java Bruce Eckel

prints the object information, and the EndSentinel provides the same

functionality as before while guaranteeing that it is the last object in the

queue.

The PrioritizedTaskProducer and PrioritizedTaskConsumer connect

to each other through a PriorityBlockingQueue. Because the blocking

nature of the queue provides all the necessary synchronization, notice that no

explicit synchronization is necessary—you don’t have to think about whether

the queue has any elements in it when you’re reading from it, because the

queue will simply block the reader when it is out of elements.

The greenhouse controller with

ScheduledExecutor
The Inner Classes chapter introduced the example of a control system

applied to a hypothetical greenhouse, turning various facilities on or off or

otherwise adjusting them. This can be seen as a kind of concurrency problem,

with each desired greenhouse event as a task that is run at a predefined time.

The ScheduledThreadPoolExecutor provides just the service necessary

to solve the problem. Using either schedule() (to run a task once) or

scheduleAtFixedRate() (to repeat a task at a regular interval), you set up

Runnable objects to be executed at some time in the future. Compare the

following with the approach used in the Inner Classes chapter to notice how

much simpler it is when you can use a predefined tool like

ScheduledThreadPoolExecutor:

//: concurrency/GreenhouseScheduler.java

// Rewriting innerclasses/GreenhouseController.java

// to use a ScheduledThreadPoolExecutor.

// {Args: 5000}

import java.util.concurrent.*;

import java.util.*;

public class GreenhouseScheduler {

 private volatile boolean light = false;

 private volatile boolean water = false;

 private String thermostat = "Day";

 public synchronized String getThermostat() {

 return thermostat;

 }

 public synchronized void setThermostat(String value) {

 thermostat = value;

Concurrency 1239

 }

 ScheduledThreadPoolExecutor scheduler =

 new ScheduledThreadPoolExecutor(10);

 public void schedule(Runnable event, long delay) {

 scheduler.schedule(event,delay,TimeUnit.MILLISECONDS);

 }

 public void

 repeat(Runnable event, long initialDelay, long period) {

 scheduler.scheduleAtFixedRate(

 event, initialDelay, period, TimeUnit.MILLISECONDS);

 }

 class LightOn implements Runnable {

 public void run() {

 // Put hardware control code here to

 // physically turn on the light.

 System.out.println("Turning on lights");

 light = true;

 }

 }

 class LightOff implements Runnable {

 public void run() {

 // Put hardware control code here to

 // physically turn off the light.

 System.out.println("Turning off lights");

 light = false;

 }

 }

 class WaterOn implements Runnable {

 public void run() {

 // Put hardware control code here.

 System.out.println("Turning greenhouse water on");

 water = true;

 }

 }

 class WaterOff implements Runnable {

 public void run() {

 // Put hardware control code here.

 System.out.println("Turning greenhouse water off");

 water = false;

 }

 }

 class ThermostatNight implements Runnable {

 public void run() {

 // Put hardware control code here.

1240 Thinking in Java Bruce Eckel

 System.out.println("Thermostat to night setting");

 setThermostat("Night");

 }

 }

 class ThermostatDay implements Runnable {

 public void run() {

 // Put hardware control code here.

 System.out.println("Thermostat to day setting");

 setThermostat("Day");

 }

 }

 class Bell implements Runnable {

 public void run() { System.out.println("Bing!"); }

 }

 class Terminate implements Runnable {

 public void run() {

 System.out.println("Terminating");

 scheduler.shutdownNow();

 // Must start a separate task to do this job,

 // since the scheduler has been shut down:

 new Thread() {

 public void run() {

 for(DataPoint d : data)

 System.out.println(d);

 }

 }.start();

 }

 }

 // New feature: data collection

 static class DataPoint {

 final Calendar time;

 final float temperature;

 final float humidity;

 public DataPoint(Calendar d, float temp, float hum) {

 time = d;

 temperature = temp;

 humidity = hum;

 }

 public String toString() {

 return time.getTime() +

 String.format(

 " temperature: %1$.1f humidity: %2$.2f",

 temperature, humidity);

 }

Concurrency 1241

 }

 private Calendar lastTime = Calendar.getInstance();

 { // Adjust date to the half hour

 lastTime.set(Calendar.MINUTE, 30);

 lastTime.set(Calendar.SECOND, 00);

 }

 private float lastTemp = 65.0f;

 private int tempDirection = +1;

 private float lastHumidity = 50.0f;

 private int humidityDirection = +1;

 private Random rand = new Random(47);

 List<DataPoint> data = Collections.synchronizedList(

 new ArrayList<DataPoint>());

 class CollectData implements Runnable {

 public void run() {

 System.out.println("Collecting data");

 synchronized(GreenhouseScheduler.this) {

 // Pretend the interval is longer than it is:

 lastTime.set(Calendar.MINUTE,

 lastTime.get(Calendar.MINUTE) + 30);

 // One in 5 chances of reversing the direction:

 if(rand.nextInt(5) == 4)

 tempDirection = -tempDirection;

 // Store previous value:

 lastTemp = lastTemp +

 tempDirection * (1.0f + rand.nextFloat());

 if(rand.nextInt(5) == 4)

 humidityDirection = -humidityDirection;

 lastHumidity = lastHumidity +

 humidityDirection * rand.nextFloat();

 // Calendar must be cloned, otherwise all

 // DataPoints hold references to the same lastTime.

 // For a basic object like Calendar, clone() is OK.

 data.add(new DataPoint((Calendar)lastTime.clone(),

 lastTemp, lastHumidity));

 }

 }

 }

 public static void main(String[] args) {

 GreenhouseScheduler gh = new GreenhouseScheduler();

 gh.schedule(gh.new Terminate(), 5000);

 // Former "Restart" class not necessary:

 gh.repeat(gh.new Bell(), 0, 1000);

 gh.repeat(gh.new ThermostatNight(), 0, 2000);

1242 Thinking in Java Bruce Eckel

 gh.repeat(gh.new LightOn(), 0, 200);

 gh.repeat(gh.new LightOff(), 0, 400);

 gh.repeat(gh.new WaterOn(), 0, 600);

 gh.repeat(gh.new WaterOff(), 0, 800);

 gh.repeat(gh.new ThermostatDay(), 0, 1400);

 gh.repeat(gh.new CollectData(), 500, 500);

 }

} /* (Execute to see output) *///:~

This version reorganizes the code and adds a new feature: collecting

temperature and humidity readings in the greenhouse. A DataPoint holds

and displays a single piece of data, while CollectData is the scheduled task

that generates simulated data and adds it to the List<DataPoint> in

Greenhouse each time it is run.

Notice the use of both volatile and synchronized in appropriate places to

prevent tasks from interfering with each other. All the methods in the List

that holds DataPoints are synchronized using the java.util.Collections

utility synchronizedList() when the List is created.

Exercise 33: (7) Modify GreenhouseScheduler.java so that it uses a
DelayQueue instead of a ScheduledExecutor.

Semaphore
A normal lock (from concurrent.locks or the built-in synchronized lock)

only allows one task at a time to access a resource. A counting semaphore

allows n tasks to access the resource at the same time. You can also think of a

semaphore as handing out “permits” to use a resource, although no actual

permit objects are used.

As an example, consider the concept of the object pool, which manages a

limited number of objects by allowing them to be checked out for use, and

then checked back in again when the user is finished. This functionality can

be encapsulated in a generic class:

//: concurrency/Pool.java

// Using a Semaphore inside a Pool, to restrict

// the number of tasks that can use a resource.

import java.util.concurrent.*;

import java.util.*;

public class Pool<T> {

 private int size;

Concurrency 1243

 private List<T> items = new ArrayList<T>();

 private volatile boolean[] checkedOut;

 private Semaphore available;

 public Pool(Class<T> classObject, int size) {

 this.size = size;

 checkedOut = new boolean[size];

 available = new Semaphore(size, true);

 // Load pool with objects that can be checked out:

 for(int i = 0; i < size; ++i)

 try {

 // Assumes a default constructor:

 items.add(classObject.newInstance());

 } catch(Exception e) {

 throw new RuntimeException(e);

 }

 }

 public T checkOut() throws InterruptedException {

 available.acquire();

 return getItem();

 }

 public void checkIn(T x) {

 if(releaseItem(x))

 available.release();

 }

 private synchronized T getItem() {

 for(int i = 0; i < size; ++i)

 if(!checkedOut[i]) {

 checkedOut[i] = true;

 return items.get(i);

 }

 return null; // Semaphore prevents reaching here

 }

 private synchronized boolean releaseItem(T item) {

 int index = items.indexOf(item);

 if(index == -1) return false; // Not in the list

 if(checkedOut[index]) {

 checkedOut[index] = false;

 return true;

 }

 return false; // Wasn't checked out

 }

} ///:~

1244 Thinking in Java Bruce Eckel

In this simplified form, the constructor uses newInstance() to load the

pool with objects. If you need a new object, you call checkOut(), and when

you’re finished with an object, you hand it to checkIn().

The boolean checkedOut array keeps track of the objects that are checked

out, and is managed by the getItem() and releaseItem() methods. These,

in turn, are guarded by the Semaphore available, so that, in checkOut(),

available blocks the progress of the call if there are no more semaphore

permits available (which means there are no more objects in the pool). In

checkIn(), if the object being checked in is valid, a permit is returned to the

semaphore.

To create an example, we can use Fat, a type of object that is expensive to

create because its constructor takes time to run:

//: concurrency/Fat.java

// Objects that are expensive to create.

public class Fat {

 private volatile double d; // Prevent optimization

 private static int counter = 0;

 private final int id = counter++;

 public Fat() {

 // Expensive, interruptible operation:

 for(int i = 1; i < 10000; i++) {

 d += (Math.PI + Math.E) / (double)i;

 }

 }

 public void operation() { System.out.println(this); }

 public String toString() { return "Fat id: " + id; }

} ///:~

We’ll pool these objects to limit the impact of this constructor. We can test

the Pool class by creating a task that will check out Fat objects, hold them

for a while, and then check them back in:

//: concurrency/SemaphoreDemo.java

// Testing the Pool class

import java.util.concurrent.*;

import java.util.*;

import static net.mindview.util.Print.*;

// A task to check a resource out of a pool:

class CheckoutTask<T> implements Runnable {

Concurrency 1245

 private static int counter = 0;

 private final int id = counter++;

 private Pool<T> pool;

 public CheckoutTask(Pool<T> pool) {

 this.pool = pool;

 }

 public void run() {

 try {

 T item = pool.checkOut();

 print(this + "checked out " + item);

 TimeUnit.SECONDS.sleep(1);

 print(this +"checking in " + item);

 pool.checkIn(item);

 } catch(InterruptedException e) {

 // Acceptable way to terminate

 }

 }

 public String toString() {

 return "CheckoutTask " + id + " ";

 }

}

public class SemaphoreDemo {

 final static int SIZE = 25;

 public static void main(String[] args) throws Exception {

 final Pool<Fat> pool =

 new Pool<Fat>(Fat.class, SIZE);

 ExecutorService exec = Executors.newCachedThreadPool();

 for(int i = 0; i < SIZE; i++)

 exec.execute(new CheckoutTask<Fat>(pool));

 print("All CheckoutTasks created");

 List<Fat> list = new ArrayList<Fat>();

 for(int i = 0; i < SIZE; i++) {

 Fat f = pool.checkOut();

 printnb(i + ": main() thread checked out ");

 f.operation();

 list.add(f);

 }

 Future<?> blocked = exec.submit(new Runnable() {

 public void run() {

 try {

 // Semaphore prevents additional checkout,

 // so call is blocked:

 pool.checkOut();

1246 Thinking in Java Bruce Eckel

 } catch(InterruptedException e) {

 print("checkOut() Interrupted");

 }

 }

 });

 TimeUnit.SECONDS.sleep(2);

 blocked.cancel(true); // Break out of blocked call

 print("Checking in objects in " + list);

 for(Fat f : list)

 pool.checkIn(f);

 for(Fat f : list)

 pool.checkIn(f); // Second checkIn ignored

 exec.shutdown();

 }

} /* (Execute to see output) *///:~

In main(), a Pool is created to hold Fat objects, and a set of

CheckoutTasks begins exercising the Pool. Then the main() thread

begins checking out Fat objects, and not checking them back in. Once it has

checked out all the objects in the pool, no more checkouts will be allowed by

the Semaphore. The run() method of blocked is thus blocked, and after

two seconds the cancel() method is called to break out of the Future. Note

that redundant checkins are ignored by the Pool.

This example relies on the client of the Pool to be rigorous and to voluntarily

check items back in, which is the simplest solution when it works. If you

cannot always rely on this, On Java 8 (at www.MindViewLLC.com) contains

further explorations of ways to manage the objects that have been checked

out of object pools.

Exchanger
An Exchanger is a barrier that swaps objects between two tasks. When the

tasks enter the barrier, they have one object, and when they leave, they have

the object that was formerly held by the other task. Exchangers are typically

used when one task is creating objects that are expensive to produce and

another task is consuming those objects; this way, more objects can be

created at the same time as they are being consumed.

To exercise the Exchanger class, we’ll create producer and consumer tasks

which, via generics and Generators, will work with any kind of object, and

then we’ll apply these to the Fat class. The ExchangerProducer and

ExchangerConsumer use a List<T> as the object to be exchanged; each

Concurrency 1247

one contains an Exchanger for this List<T>. When you call the

Exchanger.exchange() method, it blocks until the partner task calls its

exchange() method, and when both exchange() methods have

completed, the List<T> has been swapped:

//: concurrency/ExchangerDemo.java

import java.util.concurrent.*;

import java.util.*;

import net.mindview.util.*;

class ExchangerProducer<T> implements Runnable {

 private Generator<T> generator;

 private Exchanger<List<T>> exchanger;

 private List<T> holder;

 ExchangerProducer(Exchanger<List<T>> exchg,

 Generator<T> gen, List<T> holder) {

 exchanger = exchg;

 generator = gen;

 this.holder = holder;

 }

 public void run() {

 try {

 while(!Thread.interrupted()) {

 for(int i = 0; i < ExchangerDemo.size; i++)

 holder.add(generator.next());

 // Exchange full for empty:

 holder = exchanger.exchange(holder);

 }

 } catch(InterruptedException e) {

 // OK to terminate this way.

 }

 }

}

class ExchangerConsumer<T> implements Runnable {

 private Exchanger<List<T>> exchanger;

 private List<T> holder;

 private volatile T value;

 ExchangerConsumer(Exchanger<List<T>> ex, List<T> holder){

 exchanger = ex;

 this.holder = holder;

 }

 public void run() {

 try {

1248 Thinking in Java Bruce Eckel

 while(!Thread.interrupted()) {

 holder = exchanger.exchange(holder);

 for(T x : holder) {

 value = x; // Fetch out value

 holder.remove(x); // OK for CopyOnWriteArrayList

 }

 }

 } catch(InterruptedException e) {

 // OK to terminate this way.

 }

 System.out.println("Final value: " + value);

 }

}

public class ExchangerDemo {

 static int size = 10;

 static int delay = 5; // Seconds

 public static void main(String[] args) throws Exception {

 if(args.length > 0)

 size = new Integer(args[0]);

 if(args.length > 1)

 delay = new Integer(args[1]);

 ExecutorService exec = Executors.newCachedThreadPool();

 Exchanger<List<Fat>> xc = new Exchanger<List<Fat>>();

 List<Fat>

 producerList = new CopyOnWriteArrayList<Fat>(),

 consumerList = new CopyOnWriteArrayList<Fat>();

 exec.execute(new ExchangerProducer<Fat>(xc,

 BasicGenerator.create(Fat.class), producerList));

 exec.execute(

 new ExchangerConsumer<Fat>(xc,consumerList));

 TimeUnit.SECONDS.sleep(delay);

 exec.shutdownNow();

 }

} /* Output: (Sample)

Final value: Fat id: 29999

*///:~

In main(), a single Exchanger is created for both tasks to use, and two

CopyOnWriteArrayLists are created for swapping. This particular variant

of List can tolerate the remove() method being called while the list is being

traversed, without throwing a ConcurrentModificationException. The

ExchangerProducer fills a List, then swaps the full list for the empty one

Concurrency 1249

that the ExchangerConsumer hands it. Because of the Exchanger, the

filling of one list and consuming of the other list can happen simultaneously.

Exercise 34: (1) Modify ExchangerDemo.java to use your own class
instead of Fat.

Simulation
One of the most interesting and exciting uses of concurrency is to create

simulations. Using concurrency, each component of a simulation can be its

own task, and this makes a simulation much easier to program. Many video

games and CGI animations in movies are simulations, and HorseRace.java

and GreenhouseScheduler.java, shown earlier, could also be considered

simulations.

Bank teller simulation
This classic simulation can represent any situation where objects appear

randomly and require a random amount of time to be served by a limited

number of servers. It’s possible to build the simulation to determine the ideal

number of servers.

In this example, each bank customer requires a certain amount of service

time, which is the number of time units that a teller must spend on the

customer to serve that customer’s needs. The amount of service time will be

different for each customer and will be determined randomly. In addition,

you won’t know how many customers will be arriving in each interval, so this

will also be determined randomly.

//: concurrency/BankTellerSimulation.java

// Using queues and multithreading.

// {Args: 5}

import java.util.concurrent.*;

import java.util.*;

// Read-only objects don't require synchronization:

class Customer {

 private final int serviceTime;

 public Customer(int tm) { serviceTime = tm; }

 public int getServiceTime() { return serviceTime; }

 public String toString() {

 return "[" + serviceTime + "]";

 }

1250 Thinking in Java Bruce Eckel

}

// Teach the customer line to display itself:

class CustomerLine extends ArrayBlockingQueue<Customer> {

 public CustomerLine(int maxLineSize) {

 super(maxLineSize);

 }

 public String toString() {

 if(this.size() == 0)

 return "[Empty]";

 StringBuilder result = new StringBuilder();

 for(Customer customer : this)

 result.append(customer);

 return result.toString();

 }

}

// Randomly add customers to a queue:

class CustomerGenerator implements Runnable {

 private CustomerLine customers;

 private static Random rand = new Random(47);

 public CustomerGenerator(CustomerLine cq) {

 customers = cq;

 }

 public void run() {

 try {

 while(!Thread.interrupted()) {

 TimeUnit.MILLISECONDS.sleep(rand.nextInt(300));

 customers.put(new Customer(rand.nextInt(1000)));

 }

 } catch(InterruptedException e) {

 System.out.println("CustomerGenerator interrupted");

 }

 System.out.println("CustomerGenerator terminating");

 }

}

class Teller implements Runnable, Comparable<Teller> {

 private static int counter = 0;

 private final int id = counter++;

 // Customers served during this shift:

 private int customersServed = 0;

 private CustomerLine customers;

 private boolean servingCustomerLine = true;

Concurrency 1251

 public Teller(CustomerLine cq) { customers = cq; }

 public void run() {

 try {

 while(!Thread.interrupted()) {

 Customer customer = customers.take();

 TimeUnit.MILLISECONDS.sleep(

 customer.getServiceTime());

 synchronized(this) {

 customersServed++;

 while(!servingCustomerLine)

 wait();

 }

 }

 } catch(InterruptedException e) {

 System.out.println(this + "interrupted");

 }

 System.out.println(this + "terminating");

 }

 public synchronized void doSomethingElse() {

 customersServed = 0;

 servingCustomerLine = false;

 }

 public synchronized void serveCustomerLine() {

 assert !servingCustomerLine:"already serving: " + this;

 servingCustomerLine = true;

 notifyAll();

 }

 public String toString() { return "Teller " + id + " "; }

 public String shortString() { return "T" + id; }

 // Used by priority queue:

 public synchronized int compareTo(Teller other) {

 return customersServed < other.customersServed ? -1 :

 (customersServed == other.customersServed ? 0 : 1);

 }

}

class TellerManager implements Runnable {

 private ExecutorService exec;

 private CustomerLine customers;

 private PriorityQueue<Teller> workingTellers =

 new PriorityQueue<Teller>();

 private Queue<Teller> tellersDoingOtherThings =

 new LinkedList<Teller>();

 private int adjustmentPeriod;

1252 Thinking in Java Bruce Eckel

 public TellerManager(ExecutorService e,

 CustomerLine customers, int adjustmentPeriod) {

 exec = e;

 this.customers = customers;

 this.adjustmentPeriod = adjustmentPeriod;

 // Start with a single teller:

 Teller teller = new Teller(customers);

 exec.execute(teller);

 workingTellers.add(teller);

 }

 public void adjustTellerNumber() {

 // This is actually a control system. By adjusting

 // the numbers, you can reveal stability issues in

 // the control mechanism.

 // If line is too long, add another teller:

 if(customers.size() / workingTellers.size() > 2) {

 // If tellers are on break or doing

 // another job, bring one back:

 if(tellersDoingOtherThings.size() > 0) {

 Teller teller = tellersDoingOtherThings.remove();

 teller.serveCustomerLine();

 workingTellers.offer(teller);

 return;

 }

 // Else create (hire) a new teller

 Teller teller = new Teller(customers);

 exec.execute(teller);

 workingTellers.add(teller);

 return;

 }

 // If line is short enough, remove a teller:

 if(workingTellers.size() > 1 &&

 customers.size() / workingTellers.size() < 2)

 reassignOneTeller();

 // If there is no line, we only need one teller:

 if(customers.size() == 0)

 while(workingTellers.size() > 1)

 reassignOneTeller();

 }

 // Give a teller a different job or a break:

 private void reassignOneTeller() {

 Teller teller = workingTellers.poll();

 teller.doSomethingElse();

Concurrency 1253

 tellersDoingOtherThings.offer(teller);

 }

 public void run() {

 try {

 while(!Thread.interrupted()) {

 TimeUnit.MILLISECONDS.sleep(adjustmentPeriod);

 adjustTellerNumber();

 System.out.print(customers + " { ");

 for(Teller teller : workingTellers)

 System.out.print(teller.shortString() + " ");

 System.out.println("}");

 }

 } catch(InterruptedException e) {

 System.out.println(this + "interrupted");

 }

 System.out.println(this + "terminating");

 }

 public String toString() { return "TellerManager "; }

}

public class BankTellerSimulation {

 static final int MAX_LINE_SIZE = 50;

 static final int ADJUSTMENT_PERIOD = 1000;

 public static void main(String[] args) throws Exception {

 ExecutorService exec = Executors.newCachedThreadPool();

 // If line is too long, customers will leave:

 CustomerLine customers =

 new CustomerLine(MAX_LINE_SIZE);

 exec.execute(new CustomerGenerator(customers));

 // Manager will add and remove tellers as necessary:

 exec.execute(new TellerManager(

 exec, customers, ADJUSTMENT_PERIOD));

 if(args.length > 0) // Optional argument

 TimeUnit.SECONDS.sleep(new Integer(args[0]));

 else {

 System.out.println("Press 'Enter' to quit");

 System.in.read();

 }

 exec.shutdownNow();

 }

} /* Output: (Sample)

[429][200][207] { T0 T1 }

[861][258][140][322] { T0 T1 }

[575][342][804][826][896][984] { T0 T1 T2 }

1254 Thinking in Java Bruce Eckel

[984][810][141][12][689][992][976][368][395][354] { T0 T1 T2

T3 }

Teller 2 interrupted

Teller 2 terminating

Teller 1 interrupted

Teller 1 terminating

TellerManager interrupted

TellerManager terminating

Teller 3 interrupted

Teller 3 terminating

Teller 0 interrupted

Teller 0 terminating

CustomerGenerator interrupted

CustomerGenerator terminating

*///:~

The Customer objects are very simple, containing only a final int field.

Because these objects never change, they are read-only objects and they do

not require synchronization or the use of volatile. On top of that, each

Teller task only removes one Customer at a time from the input queue, and

works on that Customer until it is complete, so a Customer will only be

accessed by one task at a time, anyway.

CustomerLine represents a single line that the customers wait in before

being served by a Teller. This is just an ArrayBlockingQueue that has a

toString() that prints the results in the desired fashion.

A CustomerGenerator is attached to a CustomerLine and puts

Customers onto the queue at randomized intervals.

A Teller takes Customers off of the CustomerLine and processes them

one at a time, keeping track of the number of Customers it has served

during that particular shift. It can be told to doSomethingElse() when

there aren’t enough customers, and to serveCustomerLine() when lots of

customers show up. To choose the next teller to put back on the line, the

compareTo() method looks at the number of customers served so that a

PriorityQueue can automatically put the least-worked teller at the

forefront.

The TellerManager is the hub of activity. It keeps track of all the tellers and

what’s going on with the customers. One of the interesting things about this

simulation is that it attempts to discover the optimum number of tellers for a

given customer flow. You can see this in the adjustTellerNumber(), which

Concurrency 1255

is a control system to add and remove tellers in a stable fashion. All control

systems have stability issues; if they react too quickly to a change, they are

unstable, and if they react too slowly, the system moves to one of its

extremes.

Exercise 35: (8) Modify BankTellerSimulation.java so that it
represents Web clients making requests of a fixed number of servers. The
goal is to determine the load that the group of servers can handle.

The restaurant simulation
This simulation fleshes out the simple Restaurant.java example shown

earlier in this chapter by adding more simulation components, such as

Orders and Plates, and it reuses the menu classes from the Enumerated

Types chapter.

It also introduces the Java SE5 SynchronousQueue, which is a blocking

queue that has no internal capacity, so each put() must wait for a take(),

and vice versa. It’s as if you were handing an object to someone—there’s no

table to put it on, so it only works if that person is holding a hand out, ready

to receive the object. In this example, the SynchronousQueue represents

the place setting in front of a diner, to enforce the idea that only one course

can be served at a time.

The rest of the classes and functionality of this example either follow from the

structure of Restaurant.java or are intended to be a fairly direct mapping

from the operations of an actual restaurant:

//: concurrency/restaurant2/RestaurantWithQueues.java

// {Args: 5}

package concurrency.restaurant2;

import enumerated.menu.*;

import java.util.concurrent.*;

import java.util.*;

import static net.mindview.util.Print.*;

// This is given to the waiter, who gives it to the chef:

class Order { // (A data-transfer object)

 private static int counter = 0;

 private final int id = counter++;

 private final Customer customer;

 private final WaitPerson waitPerson;

 private final Food food;

1256 Thinking in Java Bruce Eckel

 public Order(Customer cust, WaitPerson wp, Food f) {

 customer = cust;

 waitPerson = wp;

 food = f;

 }

 public Food item() { return food; }

 public Customer getCustomer() { return customer; }

 public WaitPerson getWaitPerson() { return waitPerson; }

 public String toString() {

 return "Order: " + id + " item: " + food +

 " for: " + customer +

 " served by: " + waitPerson;

 }

}

// This is what comes back from the chef:

class Plate {

 private final Order order;

 private final Food food;

 public Plate(Order ord, Food f) {

 order = ord;

 food = f;

 }

 public Order getOrder() { return order; }

 public Food getFood() { return food; }

 public String toString() { return food.toString(); }

}

class Customer implements Runnable {

 private static int counter = 0;

 private final int id = counter++;

 private final WaitPerson waitPerson;

 // Only one course at a time can be received:

 private SynchronousQueue<Plate> placeSetting =

 new SynchronousQueue<Plate>();

 public Customer(WaitPerson w) { waitPerson = w; }

 public void

 deliver(Plate p) throws InterruptedException {

 // Only blocks if customer is still

 // eating the previous course:

 placeSetting.put(p);

 }

 public void run() {

 for(Course course : Course.values()) {

Concurrency 1257

 Food food = course.randomSelection();

 try {

 waitPerson.placeOrder(this, food);

 // Blocks until course has been delivered:

 print(this + "eating " + placeSetting.take());

 } catch(InterruptedException e) {

 print(this + "waiting for " +

 course + " interrupted");

 break;

 }

 }

 print(this + "finished meal, leaving");

 }

 public String toString() {

 return "Customer " + id + " ";

 }

}

class WaitPerson implements Runnable {

 private static int counter = 0;

 private final int id = counter++;

 private final Restaurant restaurant;

 BlockingQueue<Plate> filledOrders =

 new LinkedBlockingQueue<Plate>();

 public WaitPerson(Restaurant rest) { restaurant = rest; }

 public void placeOrder(Customer cust, Food food) {

 try {

 // Shouldn't actually block because this is

 // a LinkedBlockingQueue with no size limit:

 restaurant.orders.put(new Order(cust, this, food));

 } catch(InterruptedException e) {

 print(this + " placeOrder interrupted");

 }

 }

 public void run() {

 try {

 while(!Thread.interrupted()) {

 // Blocks until a course is ready

 Plate plate = filledOrders.take();

 print(this + "received " + plate +

 " delivering to " +

 plate.getOrder().getCustomer());

 plate.getOrder().getCustomer().deliver(plate);

 }

1258 Thinking in Java Bruce Eckel

 } catch(InterruptedException e) {

 print(this + " interrupted");

 }

 print(this + " off duty");

 }

 public String toString() {

 return "WaitPerson " + id + " ";

 }

}

class Chef implements Runnable {

 private static int counter = 0;

 private final int id = counter++;

 private final Restaurant restaurant;

 private static Random rand = new Random(47);

 public Chef(Restaurant rest) { restaurant = rest; }

 public void run() {

 try {

 while(!Thread.interrupted()) {

 // Blocks until an order appears:

 Order order = restaurant.orders.take();

 Food requestedItem = order.item();

 // Time to prepare order:

 TimeUnit.MILLISECONDS.sleep(rand.nextInt(500));

 Plate plate = new Plate(order, requestedItem);

 order.getWaitPerson().filledOrders.put(plate);

 }

 } catch(InterruptedException e) {

 print(this + " interrupted");

 }

 print(this + " off duty");

 }

 public String toString() { return "Chef " + id + " "; }

}

class Restaurant implements Runnable {

 private List<WaitPerson> waitPersons =

 new ArrayList<WaitPerson>();

 private List<Chef> chefs = new ArrayList<Chef>();

 private ExecutorService exec;

 private static Random rand = new Random(47);

 BlockingQueue<Order>

 orders = new LinkedBlockingQueue<Order>();

 public Restaurant(ExecutorService e, int nWaitPersons,

Concurrency 1259

 int nChefs) {

 exec = e;

 for(int i = 0; i < nWaitPersons; i++) {

 WaitPerson waitPerson = new WaitPerson(this);

 waitPersons.add(waitPerson);

 exec.execute(waitPerson);

 }

 for(int i = 0; i < nChefs; i++) {

 Chef chef = new Chef(this);

 chefs.add(chef);

 exec.execute(chef);

 }

 }

 public void run() {

 try {

 while(!Thread.interrupted()) {

 // A new customer arrives; assign a WaitPerson:

 WaitPerson wp = waitPersons.get(

 rand.nextInt(waitPersons.size()));

 Customer c = new Customer(wp);

 exec.execute(c);

 TimeUnit.MILLISECONDS.sleep(100);

 }

 } catch(InterruptedException e) {

 print("Restaurant interrupted");

 }

 print("Restaurant closing");

 }

}

public class RestaurantWithQueues {

 public static void main(String[] args) throws Exception {

 ExecutorService exec = Executors.newCachedThreadPool();

 Restaurant restaurant = new Restaurant(exec, 5, 2);

 exec.execute(restaurant);

 if(args.length > 0) // Optional argument

 TimeUnit.SECONDS.sleep(new Integer(args[0]));

 else {

 print("Press 'Enter' to quit");

 System.in.read();

 }

 exec.shutdownNow();

 }

} /* Output: (Sample)

1260 Thinking in Java Bruce Eckel

WaitPerson 0 received SPRING_ROLLS delivering to Customer 1

Customer 1 eating SPRING_ROLLS

WaitPerson 3 received SPRING_ROLLS delivering to Customer 0

Customer 0 eating SPRING_ROLLS

WaitPerson 0 received BURRITO delivering to Customer 1

Customer 1 eating BURRITO

WaitPerson 3 received SPRING_ROLLS delivering to Customer 2

Customer 2 eating SPRING_ROLLS

WaitPerson 1 received SOUP delivering to Customer 3

Customer 3 eating SOUP

WaitPerson 3 received VINDALOO delivering to Customer 0

Customer 0 eating VINDALOO

WaitPerson 0 received FRUIT delivering to Customer 1

...

*///:~

One very important thing to observe about this example is the management

of complexity using queues to communicate between tasks. This single

technique greatly simplifies the process of concurrent programming by

inverting the control: The tasks do not directly interfere with each other.

Instead, the tasks send objects to each other via queues. The receiving task

handles the object, treating it as a message rather than having the message

inflicted upon it. If you follow this technique whenever you can, you stand a

much better chance of building robust concurrent systems.

Exercise 36: (10) Modify RestaurantWithQueues.java so there’s one
OrderTicket object per table. Change order to orderTicket, and add a
Table class, with multiple Customers per table.

Distributing work
Here’s a simulation example that brings together many of the concepts in this

chapter. Consider a hypothetical robotic assembly line for automobiles. Each

Car will be built in several stages, starting with chassis creation, followed by

the attachment of the engine, drive train, and wheels.

//: concurrency/CarBuilder.java

// A complex example of tasks working together.

import java.util.concurrent.*;

import java.util.*;

import static net.mindview.util.Print.*;

class Car {

 private final int id;

Concurrency 1261

 private boolean

 engine = false, driveTrain = false, wheels = false;

 public Car(int idn) { id = idn; }

 // Empty Car object:

 public Car() { id = -1; }

 public synchronized int getId() { return id; }

 public synchronized void addEngine() { engine = true; }

 public synchronized void addDriveTrain() {

 driveTrain = true;

 }

 public synchronized void addWheels() { wheels = true; }

 public synchronized String toString() {

 return "Car " + id + " [" + " engine: " + engine

 + " driveTrain: " + driveTrain

 + " wheels: " + wheels + "]";

 }

}

class CarQueue extends LinkedBlockingQueue<Car> {}

class ChassisBuilder implements Runnable {

 private CarQueue carQueue;

 private int counter = 0;

 public ChassisBuilder(CarQueue cq) { carQueue = cq; }

 public void run() {

 try {

 while(!Thread.interrupted()) {

 TimeUnit.MILLISECONDS.sleep(500);

 // Make chassis:

 Car c = new Car(counter++);

 print("ChassisBuilder created " + c);

 // Insert into queue

 carQueue.put(c);

 }

 } catch(InterruptedException e) {

 print("Interrupted: ChassisBuilder");

 }

 print("ChassisBuilder off");

 }

}

class Assembler implements Runnable {

 private CarQueue chassisQueue, finishingQueue;

 private Car car;

1262 Thinking in Java Bruce Eckel

 private CyclicBarrier barrier = new CyclicBarrier(4);

 private RobotPool robotPool;

 public Assembler(CarQueue cq, CarQueue fq, RobotPool rp){

 chassisQueue = cq;

 finishingQueue = fq;

 robotPool = rp;

 }

 public Car car() { return car; }

 public CyclicBarrier barrier() { return barrier; }

 public void run() {

 try {

 while(!Thread.interrupted()) {

 // Blocks until chassis is available:

 car = chassisQueue.take();

 // Hire robots to perform work:

 robotPool.hire(EngineRobot.class, this);

 robotPool.hire(DriveTrainRobot.class, this);

 robotPool.hire(WheelRobot.class, this);

 barrier.await(); // Until the robots finish

 // Put car into finishingQueue for further work

 finishingQueue.put(car);

 }

 } catch(InterruptedException e) {

 print("Exiting Assembler via interrupt");

 } catch(BrokenBarrierException e) {

 // This one we want to know about

 throw new RuntimeException(e);

 }

 print("Assembler off");

 }

}

class Reporter implements Runnable {

 private CarQueue carQueue;

 public Reporter(CarQueue cq) { carQueue = cq; }

 public void run() {

 try {

 while(!Thread.interrupted()) {

 print(carQueue.take());

 }

 } catch(InterruptedException e) {

 print("Exiting Reporter via interrupt");

 }

 print("Reporter off");

Concurrency 1263

 }

}

abstract class Robot implements Runnable {

 private RobotPool pool;

 public Robot(RobotPool p) { pool = p; }

 protected Assembler assembler;

 public Robot assignAssembler(Assembler assembler) {

 this.assembler = assembler;

 return this;

 }

 private boolean engage = false;

 public synchronized void engage() {

 engage = true;

 notifyAll();

 }

 // The part of run() that's different for each robot:

 abstract protected void performService();

 public void run() {

 try {

 powerDown(); // Wait until needed

 while(!Thread.interrupted()) {

 performService();

 assembler.barrier().await(); // Synchronize

 // We're done with that job...

 powerDown();

 }

 } catch(InterruptedException e) {

 print("Exiting " + this + " via interrupt");

 } catch(BrokenBarrierException e) {

 // This one we want to know about

 throw new RuntimeException(e);

 }

 print(this + " off");

 }

 private synchronized void

 powerDown() throws InterruptedException {

 engage = false;

 assembler = null; // Disconnect from the Assembler

 // Put ourselves back in the available pool:

 pool.release(this);

 while(engage == false) // Power down

 wait();

 }

1264 Thinking in Java Bruce Eckel

 public String toString() { return getClass().getName(); }

}

class EngineRobot extends Robot {

 public EngineRobot(RobotPool pool) { super(pool); }

 protected void performService() {

 print(this + " installing engine");

 assembler.car().addEngine();

 }

}

class DriveTrainRobot extends Robot {

 public DriveTrainRobot(RobotPool pool) { super(pool); }

 protected void performService() {

 print(this + " installing DriveTrain");

 assembler.car().addDriveTrain();

 }

}

class WheelRobot extends Robot {

 public WheelRobot(RobotPool pool) { super(pool); }

 protected void performService() {

 print(this + " installing Wheels");

 assembler.car().addWheels();

 }

}

class RobotPool {

 // Quietly prevents identical entries:

 private Set<Robot> pool = new HashSet<Robot>();

 public synchronized void add(Robot r) {

 pool.add(r);

 notifyAll();

 }

 public synchronized void

 hire(Class<? extends Robot> robotType, Assembler d)

 throws InterruptedException {

 for(Robot r : pool)

 if(r.getClass().equals(robotType)) {

 pool.remove(r);

 r.assignAssembler(d);

 r.engage(); // Power it up to do the task

 return;

 }

Concurrency 1265

 wait(); // None available

 hire(robotType, d); // Try again, recursively

 }

 public synchronized void release(Robot r) { add(r); }

}

public class CarBuilder {

 public static void main(String[] args) throws Exception {

 CarQueue chassisQueue = new CarQueue(),

 finishingQueue = new CarQueue();

 ExecutorService exec = Executors.newCachedThreadPool();

 RobotPool robotPool = new RobotPool();

 exec.execute(new EngineRobot(robotPool));

 exec.execute(new DriveTrainRobot(robotPool));

 exec.execute(new WheelRobot(robotPool));

 exec.execute(new Assembler(

 chassisQueue, finishingQueue, robotPool));

 exec.execute(new Reporter(finishingQueue));

 // Start everything running by producing chassis:

 exec.execute(new ChassisBuilder(chassisQueue));

 TimeUnit.SECONDS.sleep(7);

 exec.shutdownNow();

 }

} /* (Execute to see output) *///:~

The Cars are transported from one place to another via a CarQueue, which

is a type of LinkedBlockingQueue. A ChassisBuilder creates an

unadorned Car and places it on a CarQueue. The Assembler takes the

Car off a CarQueue and hires Robots to work on it. A CyclicBarrier

allows the Assembler to wait until all the Robots are finished, at which

time it puts the Car onto the outgoing CarQueue to be transported to the

next operation. The consumer of the final CarQueue is a Reporter object,

which just prints the Car to show that the tasks have been properly

completed.

The Robots are managed in a pool, and when work needs to be done, the

appropriate Robot is hired from the pool. After the work is completed, the

Robot returns to the pool.

In main(), all the necessary objects are created and the tasks are initialized,

with the ChassisBuilder begun last to start the process. (However, because

of the behavior of the LinkedBlockingQueue, it wouldn’t matter if it were

started first.) Note that this program follows all the guidelines regarding

1266 Thinking in Java Bruce Eckel

object and task lifetime presented in this chapter, and so the shutdown

process is safe.

You’ll notice that Car has all of its methods synchronized. As it turns out,

in this example this is redundant, because within the factory the Cars move

through the queues and only one task can work on a car at a time. Basically,

the queues force serialized access to the Cars. But this is exactly the kind of

trap you can fall into—you can say “Let’s try to optimize by not synchronizing

the Car class because it doesn’t look like it needs it here.” But later, when this

system is connected to another which does need the Car to be

synchronized, it breaks.

Brian Goetz comments:

It’s much easier to say, “Car might be used from multiple threads, so

let’s make it thread-safe in the obvious way.” The way I characterize this

approach is: At public parks, you will find guard rails where there is a

steep drop, and you may find signs that say, “Don’t lean on the guard

rail.” Of course, the real purpose of this rule is not to prevent you from

leaning on the rail—it is to prevent you from falling off the cliff. But

“Don’t lean on the rail” is a much easier rule to follow than “Don’t fall off

the cliff.”

Exercise 37: (2) Modify CarBuilder.java to add another stage to the
car-building process, whereby you add the exhaust system, body, and fenders.
As with the second stage, assume these processes can be performed
simultaneously by robots.

Exercise 38: (3) Using the approach in CarBuilder.java, model the
house-building story that was given in this chapter.

Performance tuning
A significant number of classes in Java SE5’s java.util.concurrent library

exist to provide performance improvements. When you peruse the

concurrent library, it can be difficult to discern which classes are intended

for regular use (such as BlockingQueues) and which ones are only for

improving performance. In this section we will look at some of the issues and

classes surrounding performance tuning.

Concurrency 1267

Comparing mutex technologies
Now that Java includes the old synchronized keyword along with the new

Java SE5 Lock and Atomic classes, it is interesting to compare the different

approaches so that we can understand more about the value of each and

where to use them.

The naïve approach is to try a simple test on each approach, like this:

//: concurrency/SimpleMicroBenchmark.java

// The dangers of microbenchmarking.

import java.util.concurrent.locks.*;

abstract class Incrementable {

 protected long counter = 0;

 public abstract void increment();

}

class SynchronizingTest extends Incrementable {

 public synchronized void increment() { ++counter; }

}

class LockingTest extends Incrementable {

 private Lock lock = new ReentrantLock();

 public void increment() {

 lock.lock();

 try {

 ++counter;

 } finally {

 lock.unlock();

 }

 }

}

public class SimpleMicroBenchmark {

 static long test(Incrementable incr) {

 long start = System.nanoTime();

 for(long i = 0; i < 10000000L; i++)

 incr.increment();

 return System.nanoTime() - start;

 }

 public static void main(String[] args) {

 long synchTime = test(new SynchronizingTest());

 long lockTime = test(new LockingTest());

1268 Thinking in Java Bruce Eckel

 System.out.printf("synchronized: %1$10d\n", synchTime);

 System.out.printf("Lock: %1$10d\n", lockTime);

 System.out.printf("Lock/synchronized = %1$.3f",

 (double)lockTime/(double)synchTime);

 }

} /* Output: (75% match)

synchronized: 244919117

Lock: 939098964

Lock/synchronized = 3.834

*///:~

You can see from the output that calls to the synchronized method appear

to be faster than using a ReentrantLock. What’s happened here?

This example demonstrates the dangers of so-called “microbenchmarking.”23

This term generally refers to performance testing a feature in isolation, out of

context. Of course, you must still write tests to verify assertions like “Lock is

much faster than synchronized.” But you need an awareness of what’s

really happening during compilation and run time when you write these

kinds of tests.

There are a number of problems with the above example. First and foremost,

we will only see the true performance difference if the mutexes are under

contention, so there must be multiple tasks trying to access the mutexed code

sections. In the above example, each mutex is tested by the single main()

thread, in isolation.

Secondly, it’s possible that the compiler can perform special optimizations

when it sees the synchronized keyword, and perhaps even notice that this

program is single-threaded. The compiler might even identify that the

counter is simply being incremented a fixed number of times, and just pre-

calculate the result. Different compilers and runtime systems vary, so it’s

hard to know exactly what will happen, but we need to prevent the possibility

that the compiler can predict the outcome.

To create a valid test, we must make the program more complex. First we

need multiple tasks, and not just tasks that change internal values, but also

tasks that read those values (otherwise the optimizer may recognize that the

23 Brian Goetz was very helpful in explaining these issues to me. See his article at www-
128.ibm.com/developerworks/library/j-jtp12214 for more about performance
measurement.

Concurrency 1269

values are never being used). In addition, the calculation must be complex

and unpredictable enough that the compiler will have no chance to perform

aggressive optimizations. This will be accomplished by pre-loading a large

array of random ints (pre-loading to reduce the impact of calls to

Random.nextInt() on the main loops) and using those values in a

summation:

//: concurrency/SynchronizationComparisons.java

// Comparing the performance of explicit Locks

// and Atomics versus the synchronized keyword.

import java.util.concurrent.*;

import java.util.concurrent.atomic.*;

import java.util.concurrent.locks.*;

import java.util.*;

import static net.mindview.util.Print.*;

abstract class Accumulator {

 public static long cycles = 50000L;

 // Number of Modifiers and Readers during each test:

 private static final int N = 4;

 public static ExecutorService exec =

 Executors.newFixedThreadPool(N*2);

 private static CyclicBarrier barrier =

 new CyclicBarrier(N*2 + 1);

 protected volatile int index = 0;

 protected volatile long value = 0;

 protected long duration = 0;

 protected String id = "error";

 protected final static int SIZE = 100000;

 protected static int[] preLoaded = new int[SIZE];

 static { // Load the array of random numbers:

 Random rand = new Random(47);

 for(int i = 0; i < SIZE; i++)

 preLoaded[i] = rand.nextInt();

 }

 public abstract void accumulate();

 public abstract long read();

 private class Modifier implements Runnable {

 public void run() {

 for(long i = 0; i < cycles; i++)

 accumulate();

 try {

 barrier.await();

 } catch(Exception e) {

1270 Thinking in Java Bruce Eckel

 throw new RuntimeException(e);

 }

 }

 }

 private class Reader implements Runnable {

 private volatile long value;

 public void run() {

 for(long i = 0; i < cycles; i++)

 value = read();

 try {

 barrier.await();

 } catch(Exception e) {

 throw new RuntimeException(e);

 }

 }

 }

 public void timedTest() {

 long start = System.nanoTime();

 for(int i = 0; i < N; i++) {

 exec.execute(new Modifier());

 exec.execute(new Reader());

 }

 try {

 barrier.await();

 } catch(Exception e) {

 throw new RuntimeException(e);

 }

 duration = System.nanoTime() - start;

 printf("%-13s: %13d\n", id, duration);

 }

 public void report(Accumulator acc2) {

 printf("%-22s: %.2f\n", this.id + "/" + acc2.id,

 (double)this.duration/(double)acc2.duration);

 }

}

class SynchronizedTest extends Accumulator {

 { id = "synch"; }

 public synchronized void accumulate() {

 value += preLoaded[index++];

 if(index >= SIZE) index = 0;

 }

 public synchronized long read() {

 return value;

Concurrency 1271

 }

}

class LockTest extends Accumulator {

 { id = "Lock"; }

 private Lock lock = new ReentrantLock();

 public void accumulate() {

 lock.lock();

 try {

 value += preLoaded[index++];

 if(index >= SIZE) index = 0;

 } finally {

 lock.unlock();

 }

 }

 public long read() {

 lock.lock();

 try {

 return value;

 } finally {

 lock.unlock();

 }

 }

}

class AtomicTest extends Accumulator {

 { id = "Atomic"; }

 private AtomicInteger index = new AtomicInteger(0);

 private AtomicLong value = new AtomicLong(0);

 // Relying on more than one Atomic at a time doesn't

 // work, so we still have to synchronize. But it gives

 // a performance indicator:

 public synchronized void accumulate() {

 int i;

 i = index.getAndIncrement();

 value.getAndAdd(preLoaded[i]);

 if(++i >= SIZE)

 index.set(0);

 }

 public synchronized long read() { return value.get(); }

 public void report(Accumulator acc2) {

 printf("%-22s: %.2f\n", "synch/(Atomic-synch)",

 (double)acc2.duration/

 ((double)this.duration - (double)acc2.duration));

1272 Thinking in Java Bruce Eckel

 }

}

public class SynchronizationComparisons {

 static SynchronizedTest synch = new SynchronizedTest();

 static LockTest lock = new LockTest();

 static AtomicTest atomic = new AtomicTest();

 static void test() {

 print("============================");

 printf("%-12s : %13d\n", "Cycles", Accumulator.cycles);

 synch.timedTest();

 lock.timedTest();

 atomic.timedTest();

 synch.report(lock);

 atomic.report(synch);

 }

 public static void main(String[] args) {

 int iterations = 5; // Default

 if(args.length > 0) // Optionally change iterations

 iterations = new Integer(args[0]);

 // The first time fills the thread pool:

 print("Warmup");

 synch.timedTest();

 // Now the initial test doesn't include the cost

 // of starting the threads for the first time.

 // Produce multiple data points:

 for(int i = 0; i < iterations; i++) {

 test();

 Accumulator.cycles *= 2;

 }

 Accumulator.exec.shutdown();

 }

} /* Output: (Sample) using JDK6u10

Warmup

synch : 129868038

============================

Cycles : 50000

synch : 126407922

Lock : 51207369

Atomic : 141845223

synch/Lock : 2.47

synch/(Atomic-synch) : 8.19

============================

Cycles : 100000

Concurrency 1273

synch : 251174061

Lock : 105338114

Atomic : 279503250

synch/Lock : 2.38

synch/(Atomic-synch) : 8.87

============================

Cycles : 200000

synch : 508778006

Lock : 214398402

Atomic : 574464795

synch/Lock : 2.37

synch/(Atomic-synch) : 7.75

============================

Cycles : 400000

synch : 1027003521

Lock : 428342577

Atomic : 1115667617

synch/Lock : 2.40

synch/(Atomic-synch) : 11.58

============================

Cycles : 800000

synch : 2179255097

Lock : 877216314

Atomic : 2371504710

synch/Lock : 2.48

synch/(Atomic-synch) : 11.34

*///:~

The code you see here, in the sixth printing of the book, is significantly

different than the original code in this edition, and therein lies a morality tale

about concurrency.

Threading: Always more surprises
I have spent years studying and struggling with concurrency. Just this

chapter and the one in Thinking in C++, Volume 2 each took many months of

work. In the process I’ve learned that you can never believe that a program

using shared-memory concurrency (which is what threading uses) is working

correctly—you can only discover that it’s wrong, but you can never prove that

it’s right. This is one of the well-know maxims of threading.

However, I’ve met numerous people who have an impressive amount of

confidence in their ability to write correct threaded programs. I occasionally

start thinking that I can get it right, too. This program was an example.

1274 Thinking in Java Bruce Eckel

When I wrote it, I had a single-CPU machine, but I was able to convince

myself that, because of the promises that I thought I understood about the

new library tools in Java 5, the program was correct. And it didn’t fail on my

single-CPU machine.

Fast forward to the sixth printing of the book, and most new machines have

at least two cores on them, as did the machine I was using. And I was

surprised when it broke, but that’s one of the problems. It’s not Java’s fault;

“write once, run everywhere” cannot possibly extend to threading on single

vs. multicore machines. It’s a fundamental problem with threading. You can

actually discover some threading problems on a single-CPU machine, but

there are other problems that will not appear until you try it on a multi-CPU

machine, where your threads are actually running in parallel.

And most important: you can never let yourself become too confident about

your programming abilities when it comes to shared-memory concurrency. I

would not be surprised if, sometime in the future, someone comes up with a

proof to show that shared-memory concurrency programming is only

possible in theory, but not in practice. It’s the position I’ve adopted.

Program description

This program uses the Template Method design pattern24 to put all the

common code in the base class and isolate all the varying code in the derived-

class implementations of accumulate() and read(). In each of the derived

classes SynchronizedTest, LockTest, and AtomicTest, you can see how

accumulate() and read() express different ways of implementing mutual

exclusion.

In this program, tasks are executed via a FixedThreadPool in an attempt to

keep all the thread creation at the beginning, and prevent any extra cost

during the tests. Just to make sure, the initial test is duplicated and the first

result is discarded because it includes the initial thread creation.

A CyclicBarrier is necessary because we want to make sure all the tasks

have completed before declaring each test complete.

24 See On Java 8 at www.MindViewLLC.com.

Concurrency 1275

A static clause pre-loads the array of random numbers, before any tests

begin. This way, if there is any overhead to generating random numbers, we

won’t see it during the test.

Each time accumulate() is called, it moves to the next place in the array

preLoaded (wrapping to the beginning of the array) and adds another

randomly generated number to value. The multiple Modifier and Reader

tasks provide contention on the Accumulator object.

In AtomicTest, the situation is too complex to try to use Atomic objects—

basically, if more than one Atomic object is involved, are forced to give up

and use more conventional mutexes (the JDK documentation specifically

states that using Atomic objects only works when the critical updates for an

object are confined to a single variable). Thus, you can only rely on a single

atomic object, and for consistency with the other tests, there are two. This is

one place that the program broke on the dual-core machine in the pre-sixth

printings. However, the test is left in place so that you can still get a feel for

the performance benefit of Atomic objects.

To fix the problem, accumulate() is synchronized. AtomicTest.read()

is also synchronized even though it doesn’t have to be because

value.get() is a guarded operation and return is atomic. By subtracting the

SynchronizedTest time from the AtomicTest time, we might get an

indication of how long the un-synchronized AtomicTest might be. But the

compiler and runtime might also optimize this away, so it’s rather a wild

guess.

In main(), the test() is run repeatedly and you can decide to ask for more

than five repetitions (the default). For each repetition, the number of test()

cycles is doubled, so you can see how the different mutexes behave when

running for longer and longer times.

As you can see from the output (produced on a modern, dual-core machine

using update 10 of JDK6), Lock is consistently more efficient than

synchronized; but that’s why Lock was created.

Even more interesting is the way JDK6, update 10 differs from Java 5 which

produced the original results. In the original results, for the first four

iterations, the synchronized keyword seemed to be more efficient than

using a Lock or an Atomic. But then a threshold was crossed and

synchronized became quite inefficient, while Lock and Atomic seemed to

1276 Thinking in Java Bruce Eckel

roughly maintain their proportions, and therefore became much more

efficient than synchronized. Java 6 produces fairly consistent results,

which suggests that the compiler and runtime system have been tuned up

since Java 5. So that’s one more place where uncertainty can arise.

Keep in mind that this program only gives an indication of the differences

between the various mutex approaches, and the output above only indicates

these differences on my particular machine under my particular

circumstances. As you can see if you experiment with it, there can be

significant shifts in behavior when different numbers of threads are used and

when the program is run for longer periods of time. Some hotspot runtime

optimizations are not invoked until a program has been running for several

minutes, and in the case of server programs, several hours.

That said, it is fairly clear that using Lock is usually significantly more

efficient than using synchronized, and it also appears that the overhead of

synchronized varies widely, while Locks are relatively consistent.

Does this mean you should never use the synchronized keyword? There are

two factors to consider: First, in SynchronizationComparisons.java, the

bodies of the mutexed methods are extremely small. In general, this is a good

practice—only mutex the sections that you absolutely must. However, in

practice the mutexed sections may be larger than those in the above example,

and so the percentage of time in the body will probably be significantly bigger

than the overhead of entering and exiting the mutex, and could overwhelm

any benefit of speeding up the mutex. Of course, the only way to know is—

when you’re tuning for performance, no sooner—to try the different

approaches and see what impact they have.

Second, it’s clear from reading the code in this chapter that the

synchronized keyword produces much more readable code than the lock-

try/finally-unlock idiom that Locks require, and that’s why this chapter

primarily uses the synchronized keyword. As I’ve stated elsewhere in this

book, code is read much more than it is written—when programming, it is

more important to communicate with other humans than it is to

communicate with the computer—and so readability of code is critical. As a

result, it makes sense to start with the synchronized keyword and only

change to Lock objects when you are tuning for performance.

Finally, it’s nice when you can use the Atomic classes in your concurrent

program, but be aware that, as we saw in

Concurrency 1277

SynchronizationComparisons.java, Atomic objects are only useful in

very simple cases, generally when you only have one Atomic object that’s

being modified and when that object is independent from all other objects.

It’s safer to start with more traditional mutexing approaches and only

attempt to change to Atomic later, if performance requirements dictate.

Lock-free containers
As emphasized in the Holding Your Objects chapter, containers are a

fundamental tool in all programming, and this includes concurrent

programming. For this reason, early containers like Vector and Hashtable

had many synchronized methods, which caused unacceptable overhead

when they were not being used in multithreaded applications. In Java 1.2, the

new containers library was unsynchronized, and the Collections class was

given various static “synchronized” decoration methods to synchronize the

different types of containers. Although this was an improvement because it

gave you a choice about whether you use synchronization with your

container, the overhead is still based on synchronized locking. Java SE5

has added new containers specifically to increase thread-safe performance,

using clever techniques to eliminate locking.

The general strategy behind these lock-free containers is this: Modifications

to the containers can happen at the same time that reads are occurring, as

long as the readers can only see the results of completed modifications. A

modification is performed on a separate copy of a portion of the data

structure (or sometimes a copy of the whole thing), and this copy is invisible

during the modification process. Only when the modification is complete is

the modified structure atomically swapped with the “main” data structure,

and after that readers will see the modification.

In CopyOnWriteArrayList, a write will cause a copy of the entire

underlying array to be created. The original array is left in place so that reads

can safely occur while the copied array is being modified. When the

modification is complete, an atomic operation swaps the new array in so that

new reads will see the new information. One of the benefits of

CopyOnWriteArrayList is that it does not throw

ConcurrentModificationException when multiple iterators are

traversing and modifying the list, so you don’t have to write special code to

protect against such exceptions, as you’ve had to do in the past.

1278 Thinking in Java Bruce Eckel

CopyOnWriteArraySet uses CopyOnWriteArrayList to achieve its

lock-free behavior.

ConcurrentHashMap and ConcurrentLinkedQueue use similar

techniques to allow concurrent reads and writes, but only portions of the

container are copied and modified rather than the entire container. However,

readers will still not see any modifications before they are complete.

ConcurrentHashMap doesn’t throw

ConcurrentModificationExceptions.

Performance issues
As long as you are primarily reading from a lock-free container, it will be

much faster than its synchronized counterpart because the overhead of

acquiring and releasing locks is eliminated. This is still true for a small

number of writes to a lock-free container, but it would be interesting to get an

idea of what “small” means. This section will produce a rough idea of the

performance differences of these containers under different conditions.

I’ll start with a generic framework for performing tests on any type of

container, including Maps. The generic parameter C represents the container

type:

//: concurrency/Tester.java

// Framework to test performance of concurrency containers.

import java.util.concurrent.*;

import net.mindview.util.*;

public abstract class Tester<C> {

 static int testReps = 10;

 static int testCycles = 1000;

 static int containerSize = 1000;

 abstract C containerInitializer();

 abstract void startReadersAndWriters();

 C testContainer;

 String testId;

 int nReaders;

 int nWriters;

 volatile long readResult = 0;

 volatile long readTime = 0;

 volatile long writeTime = 0;

 CountDownLatch endLatch;

 static ExecutorService exec =

 Executors.newCachedThreadPool();

Concurrency 1279

 Integer[] writeData;

 Tester(String testId, int nReaders, int nWriters) {

 this.testId = testId + " " +

 nReaders + "r " + nWriters + "w";

 this.nReaders = nReaders;

 this.nWriters = nWriters;

 writeData = Generated.array(Integer.class,

 new RandomGenerator.Integer(), containerSize);

 for(int i = 0; i < testReps; i++) {

 runTest();

 readTime = 0;

 writeTime = 0;

 }

 }

 void runTest() {

 endLatch = new CountDownLatch(nReaders + nWriters);

 testContainer = containerInitializer();

 startReadersAndWriters();

 try {

 endLatch.await();

 } catch(InterruptedException ex) {

 System.out.println("endLatch interrupted");

 }

 System.out.printf("%-27s %14d %14d\n",

 testId, readTime, writeTime);

 if(readTime != 0 && writeTime != 0)

 System.out.printf("%-27s %14d\n",

 "readTime + writeTime =", readTime + writeTime);

 }

 abstract class TestTask implements Runnable {

 abstract void test();

 abstract void putResults();

 long duration;

 public void run() {

 long startTime = System.nanoTime();

 test();

 duration = System.nanoTime() - startTime;

 synchronized(Tester.this) {

 putResults();

 }

 endLatch.countDown();

 }

 }

 public static void initMain(String[] args) {

1280 Thinking in Java Bruce Eckel

 if(args.length > 0)

 testReps = new Integer(args[0]);

 if(args.length > 1)

 testCycles = new Integer(args[1]);

 if(args.length > 2)

 containerSize = new Integer(args[2]);

 System.out.printf("%-27s %14s %14s\n",

 "Type", "Read time", "Write time");

 }

} ///:~

The abstract method containerInitializer() returns the initialized

container to be tested, which is stored in the field testContainer. The other

abstract method, startReadersAndWriters(), starts the reader and

writer tasks that will read and modify the container under test. Different tests

are run with varying number of readers and writers to see the effects of lock

contention (for the synchronized containers) and writes (for the lock-free

containers).

The constructor is given various information about the test (the argument

identifiers should be self-explanatory), then it calls the runTest() method

repetitions times. runTest() creates a CountDownLatch (so the test

can know when all the tasks are complete), initializes the container, then calls

startReadersAndWriters() and waits until they all complete.

Each “Reader” or “Writer” class is based on TestTask, which measures the

duration of its abstract test() method, then calls putResults() inside a

synchronized block to store the results.

To use this framework (in which you’ll recognize the Template Method design

pattern), we must inherit from Tester for the particular container type we

wish to test, and provide appropriate Reader and Writer classes:

//: concurrency/ListComparisons.java

// {Args: 1 10 10} (Fast verification check during build)

// Rough comparison of thread-safe List performance.

import java.util.concurrent.*;

import java.util.*;

import net.mindview.util.*;

abstract class ListTest extends Tester<List<Integer>> {

 ListTest(String testId, int nReaders, int nWriters) {

 super(testId, nReaders, nWriters);

 }

Concurrency 1281

 class Reader extends TestTask {

 long result = 0;

 void test() {

 for(long i = 0; i < testCycles; i++)

 for(int index = 0; index < containerSize; index++)

 result += testContainer.get(index);

 }

 void putResults() {

 readResult += result;

 readTime += duration;

 }

 }

 class Writer extends TestTask {

 void test() {

 for(long i = 0; i < testCycles; i++)

 for(int index = 0; index < containerSize; index++)

 testContainer.set(index, writeData[index]);

 }

 void putResults() {

 writeTime += duration;

 }

 }

 void startReadersAndWriters() {

 for(int i = 0; i < nReaders; i++)

 exec.execute(new Reader());

 for(int i = 0; i < nWriters; i++)

 exec.execute(new Writer());

 }

}

class SynchronizedArrayListTest extends ListTest {

 List<Integer> containerInitializer() {

 return Collections.synchronizedList(

 new ArrayList<Integer>(

 new CountingIntegerList(containerSize)));

 }

 SynchronizedArrayListTest(int nReaders, int nWriters) {

 super("Synched ArrayList", nReaders, nWriters);

 }

}

class CopyOnWriteArrayListTest extends ListTest {

 List<Integer> containerInitializer() {

 return new CopyOnWriteArrayList<Integer>(

1282 Thinking in Java Bruce Eckel

 new CountingIntegerList(containerSize));

 }

 CopyOnWriteArrayListTest(int nReaders, int nWriters) {

 super("CopyOnWriteArrayList", nReaders, nWriters);

 }

}

public class ListComparisons {

 public static void main(String[] args) {

 Tester.initMain(args);

 new SynchronizedArrayListTest(10, 0);

 new SynchronizedArrayListTest(9, 1);

 new SynchronizedArrayListTest(5, 5);

 new CopyOnWriteArrayListTest(10, 0);

 new CopyOnWriteArrayListTest(9, 1);

 new CopyOnWriteArrayListTest(5, 5);

 Tester.exec.shutdown();

 }

} /* Output: (Sample)

Type Read time Write time

Synched ArrayList 10r 0w 232158294700 0

Synched ArrayList 9r 1w 198947618203 24918613399

readTime + writeTime = 223866231602

Synched ArrayList 5r 5w 117367305062 132176613508

readTime + writeTime = 249543918570

CopyOnWriteArrayList 10r 0w 758386889 0

CopyOnWriteArrayList 9r 1w 741305671 136145237

readTime + writeTime = 877450908

CopyOnWriteArrayList 5r 5w 212763075 67967464300

readTime + writeTime = 68180227375

*///:~

In ListTest, the Reader and Writer classes perform the specific actions for

a List<Integer>. In Reader.putResults(), the duration is stored but so

is the result, to prevent the calculations from being optimized away.

startReadersAndWriters() is then defined to create and execute the

specific Readers and Writers.

Once ListTest is created, it must be further inherited to override

containerInitializer() to create and initialize the specific test containers.

In main(), you can see variations on the tests with different numbers of

readers and writers. You can change the test variables using command-line

arguments because of the call to Tester.initMain(args).

Concurrency 1283

The default behavior is to run each test 10 times; this helps stabilize the

output, which can change because of JVM activities like hotspot optimization

and garbage collection.25 The sample output that you see has been edited to

show only the last iteration from each test. From the output, you can see that

a synchronized ArrayList has roughly the same performance regardless of

the number of readers and writers—readers contend with other readers for

locks in the same way that writers do. The CopyOnWriteArrayList,

however, is dramatically faster when there are no writers, and is still

significantly faster when there are five writers. It would appear that you can

be fairly liberal with the use of CopyOnWriteArrayList; the impact of

writing to the list does not appear to overtake the impact of synchronizing the

entire list for a while. Of course, you must try the two different approaches in

your specific application to know for sure which one is best.

Again, note that this isn’t close to being a good benchmark for absolute

numbers, and your numbers will almost certainly be different. The goal is just

to give you an idea of the relative behaviors of the two types of container.

Since CopyOnWriteArraySet uses CopyOnWriteArrayList, its

behavior will be similar and it doesn’t need a separate test here.

Comparing Map implementations
We can use the same framework to get a rough idea of the performance of a

synchronized HashMap compared to a ConcurrentHashMap:

//: concurrency/MapComparisons.java

// {Args: 1 10 10} (Fast verification check during build)

// Rough comparison of thread-safe Map performance.

import java.util.concurrent.*;

import java.util.*;

import net.mindview.util.*;

abstract class MapTest

extends Tester<Map<Integer,Integer>> {

 MapTest(String testId, int nReaders, int nWriters) {

 super(testId, nReaders, nWriters);

 }

 class Reader extends TestTask {

25 For an introduction to benchmarking under the influence of Java’s dynamic
compilation, see www-128.ibm.com/developerworks/library/j-jtp12214.

1284 Thinking in Java Bruce Eckel

 long result = 0;

 void test() {

 for(long i = 0; i < testCycles; i++)

 for(int index = 0; index < containerSize; index++)

 result += testContainer.get(index);

 }

 void putResults() {

 readResult += result;

 readTime += duration;

 }

 }

 class Writer extends TestTask {

 void test() {

 for(long i = 0; i < testCycles; i++)

 for(int index = 0; index < containerSize; index++)

 testContainer.put(index, writeData[index]);

 }

 void putResults() {

 writeTime += duration;

 }

 }

 void startReadersAndWriters() {

 for(int i = 0; i < nReaders; i++)

 exec.execute(new Reader());

 for(int i = 0; i < nWriters; i++)

 exec.execute(new Writer());

 }

}

class SynchronizedHashMapTest extends MapTest {

 Map<Integer,Integer> containerInitializer() {

 return Collections.synchronizedMap(

 new HashMap<Integer,Integer>(

 MapData.map(

 new CountingGenerator.Integer(),

 new CountingGenerator.Integer(),

 containerSize)));

 }

 SynchronizedHashMapTest(int nReaders, int nWriters) {

 super("Synched HashMap", nReaders, nWriters);

 }

}

class ConcurrentHashMapTest extends MapTest {

Concurrency 1285

 Map<Integer,Integer> containerInitializer() {

 return new ConcurrentHashMap<Integer,Integer>(

 MapData.map(

 new CountingGenerator.Integer(),

 new CountingGenerator.Integer(), containerSize));

 }

 ConcurrentHashMapTest(int nReaders, int nWriters) {

 super("ConcurrentHashMap", nReaders, nWriters);

 }

}

public class MapComparisons {

 public static void main(String[] args) {

 Tester.initMain(args);

 new SynchronizedHashMapTest(10, 0);

 new SynchronizedHashMapTest(9, 1);

 new SynchronizedHashMapTest(5, 5);

 new ConcurrentHashMapTest(10, 0);

 new ConcurrentHashMapTest(9, 1);

 new ConcurrentHashMapTest(5, 5);

 Tester.exec.shutdown();

 }

} /* Output: (Sample)

Type Read time Write time

Synched HashMap 10r 0w 306052025049 0

Synched HashMap 9r 1w 428319156207 47697347568

readTime + writeTime = 476016503775

Synched HashMap 5r 5w 243956877760 244012003202

readTime + writeTime = 487968880962

ConcurrentHashMap 10r 0w 23352654318 0

ConcurrentHashMap 9r 1w 18833089400 1541853224

readTime + writeTime = 20374942624

ConcurrentHashMap 5r 5w 12037625732 11850489099

readTime + writeTime = 23888114831

*///:~

The impact of adding writers to a ConcurrentHashMap is even less

evident than for a CopyOnWriteArrayList, but the

ConcurrentHashMap uses a different technique that clearly minimizes the

impact of writes.

1286 Thinking in Java Bruce Eckel

Optimistic locking
Although Atomic objects perform atomic operations like

decrementAndGet(), some Atomic classes also allow you to perform

what is called “optimistic locking.” This means that you do not actually use a

mutex when you are performing a calculation, but after the calculation is

finished and you’re ready to update the Atomic object, you use a method

called compareAndSet(). You hand it the old value and the new value, and

if the old value doesn’t agree with the value it finds in the Atomic object, the

operation fails—this means that some other task has modified the object in

the meantime. Remember that we would ordinarily use a mutex

(synchronized or Lock) to prevent more than one task modifying an object

at the same time, but here we are “optimistic” by leaving the data unlocked

and hoping that no other task comes along and modifies it. Again, all this is

done in the name of performance—by using an Atomic instead of

synchronized or Lock, you might gain performance benefits.

What happens if the compareAndSet() operation fails? This is where it

gets tricky, and where you are limited in applying this technique only to

problems that can be molded to the requirements. If compareAndSet()

fails, you must decide what to do; this is very important because if you can’t

do something to recover, then you cannot use this technique and must use

conventional mutexes instead. Perhaps you can retry the operation and it will

be OK if you get it the second time. Or perhaps it’s OK just to ignore the

failure—in some simulations, if a data point is lost, it will eventually be made

up in the grand scheme of things (of course, you must understand your model

well enough to know whether this is true).

Consider a fictitious simulation that consists of 100,000 “genes” of length 30;

perhaps this is the beginning of some kind of genetic algorithm. Suppose that

for each “evolution” of the genetic algorithm, some very expensive

calculations take place, so you decide to use a multiprocessor machine to

distribute the tasks and improve performance. In addition, you use Atomic

objects instead of Lock objects to prevent mutex overhead. (Naturally, you

only produced this solution after first writing the code in the simplest way

that could possibly work, using the synchronized keyword. Once you had

the program running, only then did you discover that it was too slow, and

begin applying performance techniques!) Because of the nature of your

model, if there’s a collision during a calculation, the task that discovers the

collision can just ignore it and not update its value. Here’s what it looks like:

Concurrency 1287

//: concurrency/FastSimulation.java

import java.util.concurrent.*;

import java.util.concurrent.atomic.*;

import java.util.*;

import static net.mindview.util.Print.*;

public class FastSimulation {

 static final int N_ELEMENTS = 100000;

 static final int N_GENES = 30;

 static final int N_EVOLVERS = 50;

 static final AtomicInteger[][] GRID =

 new AtomicInteger[N_ELEMENTS][N_GENES];

 static Random rand = new Random(47);

 static class Evolver implements Runnable {

 public void run() {

 while(!Thread.interrupted()) {

 // Randomly select an element to work on:

 int element = rand.nextInt(N_ELEMENTS);

 for(int i = 0; i < N_GENES; i++) {

 int previous = element - 1;

 if(previous < 0) previous = N_ELEMENTS - 1;

 int next = element + 1;

 if(next >= N_ELEMENTS) next = 0;

 int oldvalue = GRID[element][i].get();

 // Perform some kind of modeling calculation:

 int newvalue = oldvalue +

 GRID[previous][i].get() + GRID[next][i].get();

 newvalue /= 3; // Average the three values

 if(!GRID[element][i]

 .compareAndSet(oldvalue, newvalue)) {

 // Policy here to deal with failure. Here, we

 // just report it and ignore it; our model

 // will eventually deal with it.

 print("Old value changed from " + oldvalue);

 }

 }

 }

 }

 }

 public static void main(String[] args) throws Exception {

 ExecutorService exec = Executors.newCachedThreadPool();

 for(int i = 0; i < N_ELEMENTS; i++)

 for(int j = 0; j < N_GENES; j++)

 GRID[i][j] = new AtomicInteger(rand.nextInt(1000));

1288 Thinking in Java Bruce Eckel

 for(int i = 0; i < N_EVOLVERS; i++)

 exec.execute(new Evolver());

 TimeUnit.SECONDS.sleep(5);

 exec.shutdownNow();

 }

} /* (Execute to see output) *///:~

The elements are all placed inside an array with the assumption that this will

help performance (this assumption will be tested in an exercise). Each

Evolver object averages its value with the one before and after it, and if

there’s a failure when it goes to update, it simply prints the value and goes on.

Note that no mutexes appear in the program.

Exercise 39: (6) Does FastSimulation.java make reasonable
assumptions? Try changing the array to ordinary ints instead of
AtomicInteger and using Lock mutexes. Compare the performance
between the two versions of the program.

ReadWriteLocks
ReadWriteLocks optimize the situation where you write to a data structure

relatively infrequently, but multiple tasks read from it often. The

ReadWriteLock allows you to have many readers at one time as long as no

one is attempting to write. If the write lock is held, then no readers are

allowed until the write lock is released.

It’s completely uncertain whether a ReadWriteLock will improve the

performance of your program, and it depends on issues like how often data is

being read compared to how often it is being modified, the time of the read

and write operations (the lock is more complex, so short operations will not

see the benefits), how much thread contention there is, and whether you are

running on a multiprocessor machine. Ultimately, the only way to know

whether a ReadWriteLock will benefit your program is to try it out.

Here’s an example showing only the most basic use of ReadWriteLocks:

//: concurrency/ReaderWriterList.java

import java.util.concurrent.*;

import java.util.concurrent.locks.*;

import java.util.*;

import static net.mindview.util.Print.*;

public class ReaderWriterList<T> {

 private ArrayList<T> lockedList;

Concurrency 1289

 // Make the ordering fair:

 private ReentrantReadWriteLock lock =

 new ReentrantReadWriteLock(true);

 public ReaderWriterList(int size, T initialValue) {

 lockedList = new ArrayList<T>(

 Collections.nCopies(size, initialValue));

 }

 public T set(int index, T element) {

 Lock wlock = lock.writeLock();

 wlock.lock();

 try {

 return lockedList.set(index, element);

 } finally {

 wlock.unlock();

 }

 }

 public T get(int index) {

 Lock rlock = lock.readLock();

 rlock.lock();

 try {

 // Show that multiple readers

 // may acquire the read lock:

 if(lock.getReadLockCount() > 1)

 print(lock.getReadLockCount());

 return lockedList.get(index);

 } finally {

 rlock.unlock();

 }

 }

 public static void main(String[] args) throws Exception {

 new ReaderWriterListTest(30, 1);

 }

}

class ReaderWriterListTest {

 ExecutorService exec = Executors.newCachedThreadPool();

 private final static int SIZE = 100;

 private static Random rand = new Random(47);

 private ReaderWriterList<Integer> list =

 new ReaderWriterList<Integer>(SIZE, 0);

 private class Writer implements Runnable {

 public void run() {

 try {

 for(int i = 0; i < 20; i++) { // 2 second test

1290 Thinking in Java Bruce Eckel

 list.set(i, rand.nextInt());

 TimeUnit.MILLISECONDS.sleep(100);

 }

 } catch(InterruptedException e) {

 // Acceptable way to exit

 }

 print("Writer finished, shutting down");

 exec.shutdownNow();

 }

 }

 private class Reader implements Runnable {

 public void run() {

 try {

 while(!Thread.interrupted()) {

 for(int i = 0; i < SIZE; i++) {

 list.get(i);

 TimeUnit.MILLISECONDS.sleep(1);

 }

 }

 } catch(InterruptedException e) {

 // Acceptable way to exit

 }

 }

 }

 public ReaderWriterListTest(int readers, int writers) {

 for(int i = 0; i < readers; i++)

 exec.execute(new Reader());

 for(int i = 0; i < writers; i++)

 exec.execute(new Writer());

 }

} /* (Execute to see output) *///:~

A ReaderWriterList can hold a fixed number of any type. You must give

the constructor the desired size of the list and an initial object to populate the

list with. The set() method acquires the write lock in order to call the

underlying ArrayList.set(), and the get() method acquires the read lock

in order to call ArrayList.get(). In addition, get() checks to see if more

than one reader has acquired the read lock and, if so, displays that number to

demonstrate that multiple readers may acquire the read lock.

To test the ReaderWriterList, ReaderWriterListTest creates both

reader and writer tasks for a ReaderWriterList<Integer>. Notice that

there are far fewer writes than reads.

Concurrency 1291

If you look at the JDK documentation for ReentrantReadWriteLock,

you’ll see that there are a number of other methods available, as well as issues

of “fairness” and “policy decisions.” This is a rather sophisticated tool, and

one to use only when you are casting about for ways to improve performance.

Your first draft of your program should use straightforward synchronization,

and only if necessary should you introduce ReadWriteLock.

Exercise 40: (6) Following the example of ReaderWriterList.java,
create a ReaderWriterMap using a HashMap. Investigate its
performance by modifying MapComparisons.java. How does it compare
to a synchronized HashMap and a ConcurrentHashMap?

Active objects
After working your way through this chapter, you may observe that threading

in Java seems very complex and difficult to use correctly. In addition, it can

seem a bit counterproductive—although tasks work in parallel, you must

invest great effort to implement techniques that prevent those tasks from

interfering with each other.

If you’ve ever written assembly language, writing threaded programs has a

similar feel: Every detail matters, you’re responsible for everything, and

there’s no safety net in the form of compiler checking.

Could there be a problem with the threading model itself? After all, it comes

relatively unchanged from the world of procedural programming. Perhaps

there is a different model for concurrency that is a better fit for object-

oriented programming.

One alternative approach is called active objects or actors.26 The reason the

objects are called “active” is that each object maintains its own worker thread

and message queue, and all requests to that object are enqueued, to be run

one at a time. So with active objects, we serialize messages rather than

methods, which means we no longer need to guard against problems that

happen when a task is interrupted midway through its loop.

When you send a message to an active object, that message is transformed

into a task that goes on the object’s queue to be run at some later point. The

26 Thanks to Allen Holub for taking the time to explain this to me.

1292 Thinking in Java Bruce Eckel

Java SE5 Future comes in handy for implementing this scheme. Here’s a

simple example that has two methods which enqueue method calls:

//: concurrency/ActiveObjectDemo.java

// Can only pass constants, immutables, "disconnected

// objects," or other active objects as arguments

// to asynch methods.

import java.util.concurrent.*;

import java.util.*;

import static net.mindview.util.Print.*;

public class ActiveObjectDemo {

 private ExecutorService ex =

 Executors.newSingleThreadExecutor();

 private Random rand = new Random(47);

 // Insert a random delay to produce the effect

 // of a calculation time:

 private void pause(int factor) {

 try {

 TimeUnit.MILLISECONDS.sleep(

 100 + rand.nextInt(factor));

 } catch(InterruptedException e) {

 print("sleep() interrupted");

 }

 }

 public Future<Integer>

 calculateInt(final int x, final int y) {

 return ex.submit(new Callable<Integer>() {

 public Integer call() {

 print("starting " + x + " + " + y);

 pause(500);

 return x + y;

 }

 });

 }

 public Future<Float>

 calculateFloat(final float x, final float y) {

 return ex.submit(new Callable<Float>() {

 public Float call() {

 print("starting " + x + " + " + y);

 pause(2000);

 return x + y;

 }

 });

Concurrency 1293

 }

 public void shutdown() { ex.shutdown(); }

 public static void main(String[] args) {

 ActiveObjectDemo d1 = new ActiveObjectDemo();

 // Prevents ConcurrentModificationException:

 List<Future<?>> results =

 new CopyOnWriteArrayList<Future<?>>();

 for(float f = 0.0f; f < 1.0f; f += 0.2f)

 results.add(d1.calculateFloat(f, f));

 for(int i = 0; i < 5; i++)

 results.add(d1.calculateInt(i, i));

 print("All asynch calls made");

 while(results.size() > 0) {

 for(Future<?> f : results)

 if(f.isDone()) {

 try {

 print(f.get());

 } catch(Exception e) {

 throw new RuntimeException(e);

 }

 results.remove(f);

 }

 }

 d1.shutdown();

 }

} /* Output: (85% match)

All asynch calls made

starting 0.0 + 0.0

starting 0.2 + 0.2

0.0

starting 0.4 + 0.4

0.4

starting 0.6 + 0.6

0.8

starting 0.8 + 0.8

1.2

starting 0 + 0

1.6

starting 1 + 1

0

starting 2 + 2

2

starting 3 + 3

4

1294 Thinking in Java Bruce Eckel

starting 4 + 4

6

8

*///:~

The “single thread executor” produced by the call to

Executors.newSingleThreadExecutor() maintains its own unbounded

blocking queue, and has only one thread taking tasks off the queue and

running them to completion. All we need to do in calculateInt() and

calculateFloat() is to submit() a new Callable object in response to a

method call, thus converting method calls into messages. The method body is

contained within the call() method in the anonymous inner class. Notice

that the return value of each active object method is a Future with a generic

parameter that is the actual return type of the method. This way, the method

call returns almost immediately, and the caller uses the Future to discover

when the task completes and to collect the actual return value. This handles

the most complex case, but if the call has no return value, then the process is

simplified.

In main(), a List<Future<?>> is created to capture the Future objects

returned by the calculateFloat() and calculateInt() messages sent to the

active object. This list is polled using isDone() for each Future, which is

removed from the List when it completes and its results are processed.

Notice that the use of CopyOnWriteArrayList removes the need to copy

the List in order to prevent ConcurrentModificationExceptions.

In order to inadvertently prevent coupling between threads, any arguments to

pass to an active-object method call must be either read-only, other active

objects, or disconnected objects (my term), which are objects that have no

connection to any other task (this is hard to enforce because there’s no

language support for it).

With active objects:

1. Each object has its own worker thread.

2. Each object maintains total control of its own fields (which is somewhat

more rigorous than normal classes, which only have the option of

guarding their fields).

3. All communication between active objects happens in the form of

messages between those objects.

Concurrency 1295

4. All messages between active objects are enqueued.

The results are quite compelling. Since a message from one active object to

another can only be blocked by the delay in enqueuing it, and because that

delay is always very short and is not dependent on any other objects, the

sending of a message is effectively unblockable (the worst that will happen is

a short delay). Since an active-object system only communicates via

messages, two objects cannot be blocked while contending to call a method

on another object, and this means that deadlock cannot occur, which is a big

step forward. Because the worker thread within an active object only executes

one message at a time, there is no resource contention and you don’t have to

worry about synchronizing methods. Synchronization still happens, but it

happens on the message level, by enqueuing the method calls so that only one

can happen at a time.

Unfortunately, without direct compiler support, the coding approach shown

above is too cumbersome. However, progress is occurring in the field of active

objects and actors, and more interestingly, in the field called agent-based

programming. Agents are effectively active objects, but agent systems also

support transparency across networks and machines. It would not surprise

me if agent-based programming becomes the eventual successor to object-

oriented programming, because it combines objects with a relatively easy

concurrency solution.

You can find more information about active objects, actors and agents by

searching the Web. In particular, some of the ideas behind active objects

come from C.A.R. Hoare’s theory of Communicating Sequential Processes

(CSP).

Exercise 41: (6) Add a message handler to ActiveObjectDemo.java
that has no return value, and call this within main().

Exercise 42: (7) Modify WaxOMatic.java so that it implements active
objects.

Project:27 Use annotations and Javassist to create a class annotation

@Active that transforms the target class into an active object.

27 Projects are suggestions to be used (for example) as term projects. Solutions to projects
are not included in the solution guide.

1296 Thinking in Java Bruce Eckel

Summary
The goal of this chapter was to give you the foundations of concurrent

programming with Java threads, so that you understand that:

1. You can run multiple independent tasks.

2. You must consider all the possible problems when these tasks shut down.

3. Tasks can interfere with each other over shared resources. The mutex

(lock) is the basic tool used to prevent these collisions.

4. Tasks can deadlock if they are not carefully designed.

It is vital to learn when to use concurrency and when to avoid it. The main

reasons to use it are:

• To manage a number of tasks whose intermingling will use the computer

more efficiently (including the ability to transparently distribute the tasks

across multiple CPUs).

• To allow better code organization.

• To be more convenient for the user.

The classic example of resource balancing is to use the CPU during I/O waits.

Better code organization is typically seen in simulations. The classic example

of user convenience is to monitor a “stop” button during long downloads.

An additional advantage to threads is that they provide “light” execution

context switches (on the order of 100 instructions) rather than “heavy”

process context switches (thousands of instructions). Since all threads in a

given process share the same memory space, a light context switch changes

only program execution and local variables. A process change—the heavy

context switch—must exchange the full memory space.

The main drawbacks to multithreading are:

1. Slowdown occurs while threads are waiting for shared resources.

2. Additional CPU overhead is required to manage threads.

3. Unrewarded complexity arises from poor design decisions.

Concurrency 1297

4. Opportunities are created for pathologies such as starving, racing,

deadlock, and livelock (multiple threads working individual tasks that the

ensemble can’t finish).

5. Inconsistencies occur across platforms. For instance, while developing

some of the examples for this book, I discovered race conditions that

quickly appeared on some computers but that wouldn’t appear on others.

If you develop a program on the latter, you might get badly surprised

when you distribute it.

One of the biggest difficulties with threads occurs because more than one task

might be sharing a resource—such as the memory in an object—and you must

make sure that multiple tasks don’t try to read and change that resource at

the same time. This requires judicious use of the available locking

mechanisms (for example, the synchronized keyword). These are essential

tools, but they must be understood thoroughly because they can quietly

introduce deadlock situations.

In addition, there’s an art to the application of threads. Java is designed to

allow you to create as many objects as you need to solve your problem—at

least in theory. (Creating millions of objects for an engineering finite-element

analysis, for example, might not be practical in Java without the use of the

Flyweight design pattern.) However, it seems that there is an upper bound to

the number of threads you’ll want to create, because at some number, threads

seem to become balky. This critical point can be hard to detect and will often

depend on the OS and JVM; it can be less than a hundred or in the

thousands. As you will often create only a handful of threads to solve a

problem, this is typically not much of a limit, but in a more general design it

becomes a constraint that might force you to add a cooperative concurrency

scheme.

Regardless of how simple threading can seem using a particular language or

library, consider it a black art. There’s always something that can bite you

when you least expect it. The reason that the dining philosophers problem is

interesting is that it can be adjusted so that deadlock rarely happens, giving

you the impression that everything is copacetic.

In general, use threading carefully and sparingly. If your threading issues get

large and complex, consider using a language like Erlang. This is one of

several functional languages that are specialized for threading. It may be

possible to use such a language for the portions of your program that demand

1298 Thinking in Java Bruce Eckel

threading, if you are doing lots of it, and if it’s complicated enough to justify

this approach.

Further reading
Unfortunately, there is a lot of misleading information about concurrency—

this emphasizes how confusing it can be, and how easy it is to think that you

understand the issues (I know, because I’ve been under the impression that

I’ve understood threading numerous times in the past, and I have no doubt

that there will be more epiphanies for me in the future). There’s always a bit

of sleuthing required when you pick up a new document about concurrency,

to try to understand how much the writer does and doesn’t understand. Here

are some books that I think I can safely say are reliable:

Java Concurrency in Practice, by Brian Goetz, Tim Peierls, Joshua

Bloch, Joseph Bowbeer, David Holmes, and Doug Lea (Addison-Wesley,

2006). Basically, the “who’s who” in the Java threading world.

Concurrent Programming in Java, Second Edition, by Doug Lea

(Addison-Wesley, 2000). Although this book significantly predates Java SE5,

much of Doug’s work became the new java.util.concurrent libraries, so

this book is essential for a complete understanding of concurrency issues. It

goes beyond Java concurrency and discusses current thinking across

languages and technologies. Although it can be obtuse in places, it merits

rereading several times (preferably with months in between in order to

internalize the information). Doug is one of the few people in the world who

actually understand concurrency, so this is a worthwhile endeavor.

The Java Language Specification, Third Edition (Chapter 17), by

Gosling, Joy, Steele, and Bracha (Addison-Wesley, 2005). The technical

specification is conveniently available as an electronic document:

https://docs.oracle.com/javase/specs/.

Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for sale from www.MindViewLLC.com.

 1299

Graphical User
Interfaces

A fundamental design guideline is “Make simple things

easy, and difficult things possible.”1

The original design goal of the graphical user interface (GUI) library in Java

1.0 was to allow the programmer to build a GUI that looks good on all

platforms. That goal was not achieved. Instead, the Java 1.0 Abstract

Windowing Toolkit (AWT) produced a GUI that looked equally mediocre on

all systems. In addition, it was restrictive; you could use only four fonts and

you couldn’t access any of the more sophisticated GUI elements that exist in

your operating system. The Java 1.0 AWT programming model was also

awkward and non-object-oriented. A student in one of my seminars (who had

been at Sun during the creation of Java) explained why: The original AWT

had been conceived, designed, and implemented in a month. Certainly a

marvel of productivity, and also an object lesson in why design is important.

The situation improved with the Java 1.1 AWT event model, which takes a

much clearer, object-oriented approach, along with the addition of

JavaBeans, a component programming model that is oriented toward the

easy creation of visual programming environments. Java 2 (JDK 1.2) finished

the transformation away from the old Java 1.0 AWT by essentially replacing

everything with the Java Foundation Classes (JFC), the GUI portion of which

is called “Swing.” These are a rich set of easy-to-use, easy-to-understand

JavaBeans that can be dragged and dropped (as well as hand programmed) to

create a reasonable GUI. The “revision 3” rule of the software industry (a

product isn’t good until revision 3) seems to hold true with programming

languages as well.

1 A variation on this is called “the principle of least astonishment,” which essentially says,
“Don’t surprise the user.”

1300 Thinking in Java Bruce Eckel

This chapter introduces the modern Java Swing library.2 Please be aware that

this is not a comprehensive glossary of either all the Swing components or all

the methods for the described classes. What you see here is intended to be a

simple introduction. The Swing library is vast, and the goal of this chapter is

only to get you started with the essentials and comfortable with the concepts.

If you need to do more than what you see here, then Swing can probably give

you what you want if you’re willing to do the research.

I assume here that you have downloaded and installed the JDK

documentation from http://java.oracle.com and will browse the

javax.swing classes in that documentation to see the full details and

methods of the Swing library. You can also search the Web, but the best place

to start is by searching the internet for “Oracle Swing Tutorial.”

There are numerous (rather thick) books dedicated solely to Swing, and you’ll

want to go to those if you need more depth, or if you want to modify the

default Swing behavior.

As you learn about Swing, you’ll discover:

1. Swing is a much improved programming model compared to many

other languages and development environments (not to suggest

that it’s perfect, but a step forward on the path). JavaBeans

(introduced toward the end of this chapter) is the framework for

that library.

2. “GUI builders” (visual programming environments) are a de

rigueur aspect of a complete Java development environment.

JavaBeans and Swing allow the GUI builder to write code for you

as you place components onto forms using graphical tools. This

rapidly speeds development during GUI building, and also allows

for greater experimentation and thus the ability to try out more

designs and presumably come up with better ones.

3. Because Swing is reasonably straightforward, even if you do use a

GUI builder rather than coding by hand, the resulting code should

still be comprehensible. This solves a big problem with GUI

2 Note that IBM created a new open-source GUI library for their Eclipse editor
(www.Eclipse.org), which you may want to consider as an alternative to Swing. This will
be introduced later in the chapter.

Graphical User Interfaces 1301

builders from the past, which could easily generate unreadable

code.

Swing contains all the components that you expect to see in a modern UI:

everything from buttons that contain pictures to trees and tables. It’s a big

library, but it’s designed to have appropriate complexity for the task at hand;

if something is simple, you don’t have to write much code, but as you try to do

more complex things, your code becomes proportionally more complex.

Much of what you’ll like about Swing might be called “orthogonality of use.”

That is, once you pick up the general ideas about the library, you can usually

apply them everywhere. Primarily because of the standard naming

conventions, while I was writing these examples I could usually guess

successfully at the method names. This is certainly a hallmark of good library

design. In addition, you can generally plug components into other

components and things will work correctly.

Keyboard navigation is automatic; you can run a Swing application without

using the mouse, and this doesn’t require any extra programming. Scrolling

support is effortless; you simply wrap your component in a JScrollPane as

you add it to your form. Features such as tool tips typically require a single

line of code to use.

For portability, Swing is written entirely in Java.

Swing also supports a rather radical feature called “pluggable look and feel,”

which means that the appearance of the UI can be dynamically changed to

suit the expectations of users working under different platforms and

operating systems. It’s even possible (albeit difficult) to invent your own look

and feel. You can find some of these on the Web.3

Despite all of its positive aspects, Swing is not for everyone nor has it solved

all the user interface problems that its designers intended. At the end of the

chapter, we’ll look at an alternative solutions: the IBM-sponsored SWT,

developed for the Eclipse editor but freely available as an open-source,

standalone GUI library.

3 My favorite example of this is Ken Arnold’s “Napkin” look and feel, which makes the
windows look like they were scribbled on a napkin. See http://napkinlaf.sourceforge.net.

1302 Thinking in Java Bruce Eckel

Applets
When Java first appeared, much of the brouhaha around the language came

from the applet, a program that can be delivered across the Internet to run

(inside a so-called sandbox, for security) in a Web browser. People foresaw

the Java applet as the next stage in the evolution of the Internet, and many of

the original books on Java assumed that the reason you were interested in the

language was that you wanted to write applets.

For various reasons, this revolution never happened. A large part of the

problem was that most machines don’t include the necessary Java software to

run applets, and downloading and installing a 10 MB package in order to run

something you’ve casually encountered on the Web is not something most

users are willing to do. Many users are even frightened by the idea. Java

applets as a client-side application delivery system never achieved critical

mass, and although you will still occasionally see an applet, they have

generally been relegated to the backwaters of computing.

This doesn’t mean that applets are not an interesting and valuable

technology. If you are in a situation where you can ensure that users have a

JRE installed (such as inside a corporate environment), then applets (or

JNLP/Java Web Start, described later in this chapter) might be the perfect

way to distribute client programs and automatically update everyone’s

machine without the usual cost and effort of distributing and installing new

software.

Swing basics
Most Swing applications will be built inside a basic JFrame, which creates

the window in whatever operating system you’re using. The title of the

window can be set using the JFrame constructor, like this:

//: gui/HelloSwing.java

import javax.swing.*;

public class HelloSwing {

 public static void main(String[] args) {

 JFrame frame = new JFrame("Hello Swing");

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setSize(300, 100);

 frame.setVisible(true);

 }

Graphical User Interfaces 1303

} ///:~

setDefaultCloseOperation() tells the JFrame what to do when the user

executes a shutdown maneuver. The EXIT_ON_CLOSE constant tells it to

exit the program. Without this call, the default behavior is to do nothing, so

the application wouldn’t close.

setSize() sets the size of the window in pixels.

Notice the last line:

frame.setVisible(true);

Without this, you won’t see anything on the screen.

We can make things a little more interesting by adding a JLabel to the

JFrame:

//: gui/HelloLabel.java

import javax.swing.*;

import java.util.concurrent.*;

public class HelloLabel {

 public static void main(String[] args) throws Exception {

 JFrame frame = new JFrame("Hello Swing");

 JLabel label = new JLabel("A Label");

 frame.add(label);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setSize(300, 100);

 frame.setVisible(true);

 TimeUnit.SECONDS.sleep(1);

 label.setText("Hey! This is Different!");

 }

} ///:~

After one second, the text of the JLabel changes. While this is entertaining

and safe for such a trivial program, it’s really not a good idea for the main()

thread to write directly to the GUI components. Swing has its own thread

dedicated to receiving UI events and updating the screen. If you start

manipulating the screen with other threads, you can have the collisions and

deadlock described in the Concurrency chapter.

1304 Thinking in Java Bruce Eckel

Instead, other threads—like main(), here—should submit tasks to be

executed by the Swing event dispatch thread.4 You do this by handing a task

to SwingUtilities.invokeLater(), which puts it on the event queue to be

(eventually) executed by the event dispatch thread. If we do this with the

previous example, it looks like this:

//: gui/SubmitLabelManipulationTask.java

import javax.swing.*;

import java.util.concurrent.*;

public class SubmitLabelManipulationTask {

 public static void main(String[] args) throws Exception {

 JFrame frame = new JFrame("Hello Swing");

 final JLabel label = new JLabel("A Label");

 frame.add(label);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setSize(300, 100);

 frame.setVisible(true);

 TimeUnit.SECONDS.sleep(1);

 SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 label.setText("Hey! This is Different!");

 }

 });

 }

} ///:~

Now you are no longer manipulating the JLabel directly. Instead, you

submit a Runnable, and the event dispatch thread will do the actual

manipulation, when it gets to that task in the event queue. And when it’s

executing this Runnable, it’s not doing anything else, so there won’t be any

collisions—if all the code in your program follows this approach of submitting

manipulations through SwingUtilities.invokeLater(). This includes

starting the program itself—main() should not call the Swing methods as it

does in the above program, but instead should submit a task to the event

queue.5 So the properly written program will look something like this:

4 Technically, the event dispatch thread comes from the AWT library.

5 This practice was added in Java SE5, so you will see lots of older programs that don’t do
it. That doesn’t mean the authors were ignorant. The suggested practices seem to be
constantly evolving.

Graphical User Interfaces 1305

//: gui/SubmitSwingProgram.java

import javax.swing.*;

import java.util.concurrent.*;

public class SubmitSwingProgram extends JFrame {

 JLabel label;

 public SubmitSwingProgram() {

 super("Hello Swing");

 label = new JLabel("A Label");

 add(label);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setSize(300, 100);

 setVisible(true);

 }

 static SubmitSwingProgram ssp;

 public static void main(String[] args) throws Exception {

 SwingUtilities.invokeLater(new Runnable() {

 public void run() { ssp = new SubmitSwingProgram(); }

 });

 TimeUnit.SECONDS.sleep(1);

 SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 ssp.label.setText("Hey! This is Different!");

 }

 });

 }

} ///:~

Notice that the call to sleep() is not inside the constructor. If you put it

there, the original JLabel text never appears, for one thing, because the

constructor doesn’t complete until after the sleep() finishes and the new

label is inserted. But if sleep() is inside the constructor, or inside any UI

operation, it means that you’re halting the event dispatch thread during the

sleep(), which is generally a bad idea.

Exercise 1: (1) Modify HelloSwing.java to prove to yourself that the
application will not close without the call to setDefaultCloseOperation().

Exercise 2: (2) Modify HelloLabel.java to show that label addition is
dynamic, by adding a random number of labels.

1306 Thinking in Java Bruce Eckel

A display framework
We can combine the ideas above and reduce redundant code by creating a

display framework for use in the Swing examples in the rest of this chapter:

//: net/mindview/util/SwingConsole.java

// Tool for running Swing demos from the

// console, both applets and JFrames.

package net.mindview.util;

import javax.swing.*;

public class SwingConsole {

 public static void

 run(final JFrame f, final int width, final int height) {

 SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 f.setTitle(f.getClass().getSimpleName());

 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 f.setSize(width, height);

 f.setVisible(true);

 }

 });

 }

} ///:~

This is a tool you may want to use yourself, so it’s placed in the library

net.mindview.util. To use it, your application must be in a JFrame (which

all the examples in this book are). The static run() method sets the title of

the window to the simple class name of the JFrame.

Exercise 3: (3) Modify SubmitSwingProgram.java so that it uses
SwingConsole.

Making a button
Making a button is quite simple: You just call the JButton constructor with

the label you want on the button. You’ll see later that you can do fancier

things, like putting graphic images on buttons.

Usually, you’ll want to create a field for the button inside your class so that

you can refer to it later.

The JButton is a component—its own little window—that will automatically

get repainted as part of an update. This means that you don’t explicitly paint

Graphical User Interfaces 1307

a button or any other kind of control; you simply place them on the form and

let them automatically take care of painting themselves. You’ll usually place a

button on a form inside the constructor:

//: gui/Button1.java

// Putting buttons on a Swing application.

import javax.swing.*;

import java.awt.*;

import static net.mindview.util.SwingConsole.*;

public class Button1 extends JFrame {

 private JButton

 b1 = new JButton("Button 1"),

 b2 = new JButton("Button 2");

 public Button1() {

 setLayout(new FlowLayout());

 add(b1);

 add(b2);

 }

 public static void main(String[] args) {

 run(new Button1(), 200, 100);

 }

} ///:~

Something new has been added here: Before any elements are placed on the

JFrame, it is given a “layout manager,” of type FlowLayout. The layout

manager is the way that the pane implicitly decides where to place controls

on a form. The normal behavior of a JFrame is to use the BorderLayout,

but that won’t work here because (as you will learn later in this chapter) it

defaults to covering each control entirely with every new one that is added.

However, FlowLayout causes the controls to flow evenly onto the form, left

to right and top to bottom.

Exercise 4: (1) Verify that without the setLayout() call in
Button1.java, only one button will appear in the resulting program.

Capturing an event
If you compile and run the preceding program, nothing happens when you

press the buttons. This is where you must step in and write some code to

determine what will happen. The basis of event-driven programming, which

comprises a lot of what a GUI is about, is connecting events to the code that

responds to those events.

1308 Thinking in Java Bruce Eckel

The way this is accomplished in Swing is by cleanly separating the interface

(the graphical components) from the implementation (the code that you want

to run when an event happens to a component). Each Swing component can

report all the events that might happen to it, and it can report each kind of

event individually. So if you’re not interested in, for example, whether the

mouse is being moved over your button, you don’t register your interest in

that event. It’s a very straightforward and elegant way to handle event-driven

programming, and once you understand the basic concepts, you can easily

use Swing components that you haven’t seen before—in fact, this model

extends to anything that can be classified as a JavaBean (discussed later in

the chapter).

At first, we will just focus on the main event of interest for the components

being used. In the case of a JButton, this “event of interest” is that the

button is pressed. To register your interest in a button press, you call the

JButton’s addActionListener() method. This method expects an

argument that is an object that implements the ActionListener interface.

That interface contains a single method called actionPerformed(). So to

attach code to a JButton, implement the ActionListener interface in a

class, and register an object of that class with the JButton via

addActionListener(). The actionPerformed() method will then be

called when the button is pressed (this is normally referred to as a callback).

But what should the result of pressing that button be? We’d like to see

something change on the screen, so a new Swing component will be

introduced: the JTextField. This is a place where text can be typed by the

end user or, in this case, inserted by the program. Although there are a

number of ways to create a JTextField, the simplest is just to tell the

constructor how wide you want that field to be. Once the JTextField is

placed on the form, you can modify its contents by using the setText()

method (there are many other methods in JTextField, but you must look

these up in the JDK documentation from http://java.oracle.com). Here is

what it looks like:

//: gui/Button2.java

// Responding to button presses.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import static net.mindview.util.SwingConsole.*;

Graphical User Interfaces 1309

public class Button2 extends JFrame {

 private JButton

 b1 = new JButton("Button 1"),

 b2 = new JButton("Button 2");

 private JTextField txt = new JTextField(10);

 class ButtonListener implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 String name = ((JButton)e.getSource()).getText();

 txt.setText(name);

 }

 }

 private ButtonListener bl = new ButtonListener();

 public Button2() {

 b1.addActionListener(bl);

 b2.addActionListener(bl);

 setLayout(new FlowLayout());

 add(b1);

 add(b2);

 add(txt);

 }

 public static void main(String[] args) {

 run(new Button2(), 200, 150);

 }

} ///:~

Creating a JTextField and placing it on the canvas takes the same steps as

for JButtons or for any Swing component. The difference in the preceding

program is in the creation of the aforementioned ActionListener class

ButtonListener. The argument to actionPerformed() is of type

ActionEvent, which contains all the information about the event and where

it came from. In this case, I wanted to describe the button that was pressed;

getSource() produces the object where the event originated, and I assumed

(using a cast) that the object is a JButton. getText() returns the text that’s

on the button, and this is placed in the JTextField to prove that the code

was actually called when the button was pressed.

In the constructor, addActionListener() is used to register the

ButtonListener object with both the buttons.

It is often more convenient to code the ActionListener as an anonymous

inner class, especially since you tend to use only a single instance of each

listener class. Button2.java can be modified to use an anonymous inner

class as follows:

1310 Thinking in Java Bruce Eckel

//: gui/Button2b.java

// Using anonymous inner classes.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import static net.mindview.util.SwingConsole.*;

public class Button2b extends JFrame {

 private JButton

 b1 = new JButton("Button 1"),

 b2 = new JButton("Button 2");

 private JTextField txt = new JTextField(10);

 private ActionListener bl = new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 String name = ((JButton)e.getSource()).getText();

 txt.setText(name);

 }

 };

 public Button2b() {

 b1.addActionListener(bl);

 b2.addActionListener(bl);

 setLayout(new FlowLayout());

 add(b1);

 add(b2);

 add(txt);

 }

 public static void main(String[] args) {

 run(new Button2b(), 200, 150);

 }

} ///:~

The approach of using an anonymous inner class will be preferred (when

possible) for the examples in this book.

Exercise 5: (4) Create an application using the SwingConsole class.
Include one text field and three buttons. When you press each button, make
different text appear in the text field.

Text areas
A JTextArea is like a JTextField except that it can have multiple lines and

has more functionality. A particularly useful method is append(); with this

you can easily pour output into the JTextArea. Because you can scroll

backwards, this is an improvement over command-line programs that print

Graphical User Interfaces 1311

to standard output. As an example, the following program fills a JTextArea

with the output from the Countries generator in the Containers in Depth

chapter:

//: gui/TextArea.java

// Using the JTextArea control.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.util.*;

import net.mindview.util.*;

import static net.mindview.util.SwingConsole.*;

public class TextArea extends JFrame {

 private JButton

 b = new JButton("Add Data"),

 c = new JButton("Clear Data");

 private JTextArea t = new JTextArea(20, 40);

 private Map<String,String> m =

 new HashMap<String,String>();

 public TextArea() {

 // Use up all the data:

 m.putAll(Countries.capitals());

 b.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 for(Map.Entry me : m.entrySet())

 t.append(me.getKey() + ": "+ me.getValue()+"\n");

 }

 });

 c.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 t.setText("");

 }

 });

 setLayout(new FlowLayout());

 add(new JScrollPane(t));

 add(b);

 add(c);

 }

 public static void main(String[] args) {

 run(new TextArea(), 475, 425);

 }

} ///:~

1312 Thinking in Java Bruce Eckel

In the constructor, the Map is filled with all the countries and their capitals.

Note that for both buttons, the ActionListener is created and added

without defining an intermediate variable, since you never need to refer to

that listener again during the program. The “Add Data” button formats and

appends all the data, and the “Clear Data” button uses setText() to remove

all the text from the JTextArea.

As the JTextArea is added to the JFrame, it is wrapped in a JScrollPane

to control scrolling when too much text is placed on the screen. That’s all you

must do in order to produce full scrolling capabilities. Having tried to figure

out how to do the equivalent in some other GUI programming environments,

I am very impressed with the simplicity and good design of components like

JScrollPane.

Exercise 6: (7) Turn strings/TestRegularExpression.java into an
interactive Swing program that allows you to put an input string in one
JTextArea and a regular expression in a JTextField. The results should be
displayed in a second JTextArea.

Exercise 7: (5) Create an application using SwingConsole, and add all
the Swing components that have an addActionListener() method. (Look
these up in the JDK documentation from http://java.oracle.com. Hint:
Search for addActionListener() using the index.) Capture their events and
display an appropriate message for each inside a text field.

Exercise 8: (6) Almost every Swing component is derived from
Component, which has a setCursor() method. Look this up in the JDK
documentation. Create an application and change the cursor to one of the
stock cursors in the Cursor class.

Controlling layout
The way that you place components on a form in Java is probably different

from any other GUI system you’ve used. First, it’s all code; there are no

“resources” that control placement of components. Second, the way

components are placed on a form is controlled not by absolute positioning

but by a “layout manager” that decides how the components lie based on the

order that you add() them. The size, shape, and placement of components

will be remarkably different from one layout manager to another. In addition,

the layout managers adapt to the dimensions of your applet or application

window, so if the window dimension is changed, the size, shape, and

placement of the components can change in response.

Graphical User Interfaces 1313

JApplet, JFrame, JWindow, JDialog, JPanel, etc., can all contain and

display Components. In Container, there’s a method called setLayout()

that allows you to choose a different layout manager. In this section we’ll

explore the various layout managers by placing buttons in them (since that’s

the simplest thing to do). These examples won’t capture the button events

because they are only intended to show how the buttons are laid out.

BorderLayout
Unless you tell it otherwise, a JFrame will use BorderLayout as its default

layout scheme. Without any other instruction, this takes whatever you add()

to it and places it in the center, stretching the object all the way out to the

edges.

BorderLayout has the concept of four border regions and a center area.

When you add something to a panel that’s using a BorderLayout, you can

use the overloaded add() method that takes a constant value as its first

argument. This value can be any of the following:

BorderLayout.NORTH Top

BorderLayout.SOUTH Bottom

BorderLayout.EAST Right

BorderLayout.WEST Left

BorderLayout.CENTER Fill the middle, up to the other
components or to the edges

If you don’t specify an area to place the object, it defaults to CENTER.

In this example, the default layout is used, since JFrame defaults to

BorderLayout:

//: gui/BorderLayout1.java

// Demonstrates BorderLayout.

import javax.swing.*;

import java.awt.*;

import static net.mindview.util.SwingConsole.*;

public class BorderLayout1 extends JFrame {

 public BorderLayout1() {

 add(BorderLayout.NORTH, new JButton("North"));

 add(BorderLayout.SOUTH, new JButton("South"));

 add(BorderLayout.EAST, new JButton("East"));

1314 Thinking in Java Bruce Eckel

 add(BorderLayout.WEST, new JButton("West"));

 add(BorderLayout.CENTER, new JButton("Center"));

 }

 public static void main(String[] args) {

 run(new BorderLayout1(), 300, 250);

 }

} ///:~

For every placement but CENTER, the element that you add is compressed

to fit in the smallest amount of space along one dimension while it is

stretched to the maximum along the other dimension. CENTER, however,

spreads out in both dimensions to occupy the middle.

FlowLayout
This simply “flows” the components onto the form, from left to right until the

top space is full, then moves down a row and continues flowing.

Here’s an example that sets the layout manager to FlowLayout and then

places buttons on the form. You’ll notice that with FlowLayout, the

components take on their “natural” size. A JButton, for example, will be the

size of its string.

//: gui/FlowLayout1.java

// Demonstrates FlowLayout.

import javax.swing.*;

import java.awt.*;

import static net.mindview.util.SwingConsole.*;

public class FlowLayout1 extends JFrame {

 public FlowLayout1() {

 setLayout(new FlowLayout());

 for(int i = 0; i < 20; i++)

 add(new JButton("Button " + i));

 }

 public static void main(String[] args) {

 run(new FlowLayout1(), 300, 300);

 }

} ///:~

All components will be compacted to their smallest size in a FlowLayout, so

you might get a little bit of surprising behavior. For example, because a

JLabel will be the size of its string, attempting to right-justify its text yields

an unchanged display when using FlowLayout.

Graphical User Interfaces 1315

Notice that if you resize the window, the layout manager will reflow the

components accordingly.

GridLayout
A GridLayout allows you to build a table of components, and as you add

them, they are placed left to right and top to bottom in the grid. In the

constructor, you specify the number of rows and columns that you need, and

these are laid out in equal proportions.

//: gui/GridLayout1.java

// Demonstrates GridLayout.

import javax.swing.*;

import java.awt.*;

import static net.mindview.util.SwingConsole.*;

public class GridLayout1 extends JFrame {

 public GridLayout1() {

 setLayout(new GridLayout(7,3));

 for(int i = 0; i < 20; i++)

 add(new JButton("Button " + i));

 }

 public static void main(String[] args) {

 run(new GridLayout1(), 300, 300);

 }

} ///:~

In this case there are 21 slots but only 20 buttons. The last slot is left empty

because no “balancing” goes on with a GridLayout.

GridBagLayout
The GridBagLayout provides you with tremendous control in deciding

exactly how the regions of your window will lay themselves out and reformat

themselves when the window is resized. However, it’s also the most

complicated layout manager, and is quite difficult to understand. It is

intended primarily for automatic code generation by a GUI builder (GUI

builders might use GridBagLayout instead of absolute placement). If your

design is so complicated that you feel you need to use GridBagLayout, then

you should be using a GUI builder tool to generate that design. If you feel you

must know the intricate details, I’ll refer you to one of the dedicated Swing

books as a starting point.

1316 Thinking in Java Bruce Eckel

As an alternative, you may want to consider TableLayout, which is not part

of the Swing library but which can be downloaded from

http://java.oracle.com. This component is layered on top of

GridBagLayout and hides most of its complexity, so it can greatly simplify

this approach.

Absolute positioning
It is also possible to set the absolute position of the graphical components:

1. Set a null layout manager for your Container:

setLayout(null).

2. Call setBounds() or reshape() (depending on the language

version) for each component, passing a bounding rectangle in

pixel coordinates. You can do this in the constructor or in

paint(), depending on what you want to achieve.

Some GUI builders use this approach extensively, but this is usually not the

best way to generate code.

BoxLayout
Because people had so much trouble understanding and working with

GridBagLayout, Swing also includes BoxLayout, which gives you many of

the benefits of GridBagLayout without the complexity. You can often use it

when you need to do hand-coded layouts (again, if your design becomes too

complex, use a GUI builder that generates layouts for you). BoxLayout

allows you to control the placement of components either vertically or

horizontally, and to control the space between the components using

something called “struts and glue.” You can find some basic examples of

BoxLayout in the online supplements for this book at

www.MindViewLLC.com.

The best approach?
Swing is powerful; it can get a lot done with a few lines of code. The examples

shown in this book are quite simple, and for learning purposes it makes sense

to write them by hand. You can actually accomplish quite a bit by combining

simple layouts. At some point, however, it stops making sense to hand-code

GUI forms; it becomes too complicated and is not a good use of your

programming time. The Java and Swing designers oriented the language and

Graphical User Interfaces 1317

libraries to support GUI-building tools, which have been created for the

express purpose of making your programming experience easier. As long as

you understand what’s going on with layouts and how to deal with events

(described next), it’s not particularly important that you actually know the

details of how to lay out components by hand; let the appropriate tool do that

for you (Java is, after all, designed to increase programmer productivity).

The Swing event model
In the Swing event model, a component can initiate (“fire”) an event. Each

type of event is represented by a distinct class. When an event is fired, it is

received by one or more “listeners,” which act on that event. Thus, the source

of an event and the place where the event is handled can be separate. Since

you typically use Swing components as they are, but need to write custom

code that is called when the components receive an event, this is an excellent

example of the separation of interface from implementation.

Each event listener is an object of a class that implements a particular type of

listener interface. So as a programmer, all you do is create a listener object

and register it with the component that’s firing the event. This registration is

performed by calling an addXXXListener() method in the event-firing

component, in which “XXX” represents the type of event listened for. You

can easily know what types of events can be handled by noticing the names of

the “addListener” methods, and if you try to listen for the wrong events, you’ll

discover your mistake at compile time. You’ll see later in the chapter that

JavaBeans also use the names of the “addListener” methods to determine

what events a Bean can handle.

All of your event logic, then, will go inside a listener class. When you create a

listener class, the sole restriction is that it must implement the appropriate

interface. You can create a global listener class, but this is a situation in which

inner classes tend to be quite useful, not only because they provide a logical

grouping of your listener classes inside the UI or business logic classes they

are serving, but also because an inner-class object keeps a reference to its

parent object, which provides a nice way to call across class and subsystem

boundaries.

All the examples so far in this chapter have been using the Swing event

model, but the remainder of this section will fill out the details of that model.

1318 Thinking in Java Bruce Eckel

Event and listener types
All Swing components include addXXXListener() and

removeXXXListener() methods so that the appropriate types of listeners

can be added and removed from each component. You’ll notice that the

“XXX” in each case also represents the argument for the method, for

example, addMyListener(MyListener m). The following table includes

the basic associated events, listeners, and methods, along with the basic

components that support those particular events by providing the

addXXXListener() and removeXXXListener() methods. You should

keep in mind that the event model is designed to be extensible, so you may

encounter other events and listener types that are not covered in this table.

Event, listener interface, and
add- and remove-methods

Components supporting this
event

ActionEvent
ActionListener
addActionListener()
removeActionListener()

JButton, JList, JTextField,
JMenuItem and its derivatives
including JCheckBoxMenuItem,
JMenu, and
JRadioButtonMenuItem

AdjustmentEvent
AdjustmentListener
addAdjustmentListener()
removeAdjustmentListener()

JScrollbar
and anything you create that
implements the Adjustable
interface

ComponentEvent
ComponentListener
addComponentListener()
removeComponentListener()

*Component and its derivatives,
including JButton, JCheckBox,
JComboBox, Container, JPanel,
JApplet, JScrollPane, Window,
JDialog, JFileDialog, JFrame,
JLabel, JList, JScrollbar,
JTextArea, and JTextField

ContainerEvent
ContainerListener
addContainerListener()
removeContainerListener()

Container and its derivatives,
including JPanel, JApplet,
JScrollPane, Window, JDialog,
JFileDialog, and JFrame

FocusEvent
FocusListener
addFocusListener()
removeFocusListener()

Component and derivatives*

KeyEvent
KeyListener
addKeyListener()

Component and derivatives*

Graphical User Interfaces 1319

Event, listener interface, and
add- and remove-methods

Components supporting this
event

removeKeyListener()

MouseEvent (for both clicks and
motion)
MouseListener
addMouseListener()
removeMouseListener()

Component and derivatives*

MouseEvent6 (for both clicks and
motion)
MouseMotionListener
addMouseMotionListener()
removeMouseMotionListener()

Component and derivatives*

WindowEvent
WindowListener
addWindowListener()
removeWindowListener()

Window and its derivatives,
including JDialog, JFileDialog,
and JFrame

ItemEvent
ItemListener
addItemListener()
removeItemListener()

JCheckBox,
JCheckBoxMenuItem,
JComboBox, JList, and anything
that implements the
ItemSelectable interface

TextEvent
TextListener
addTextListener()
removeTextListener()

Anything derived from
JTextComponent, including
JTextArea and JTextField

You can see that each type of component supports only certain types of

events. It turns out to be rather tedious to look up all the events supported by

each component. A simpler approach is to modify the ShowMethods.java

program from the Type Information chapter so that it displays all the event

listeners supported by any Swing component that you enter.

The Type Information chapter introduced reflection and used that feature to

look up methods for a particular class—either the entire list of methods or a

subset of those whose names match a keyword that you provide. The magic of

reflection is that it can automatically show you all the methods for a class

6 There is no MouseMotionEvent even though it seems like there ought to be. Clicking
and motion is combined into MouseEvent, so this second appearance of MouseEvent
in the table is not an error.

1320 Thinking in Java Bruce Eckel

without forcing you to walk up the inheritance hierarchy, examining the base

classes at each level. Thus, it provides a valuable timesaving tool for

programming; because the names of most Java methods are made nicely

verbose and descriptive, you can search for the method names that contain a

particular word of interest. When you find what you think you’re looking for,

check the JDK documentation.

Here is the more useful GUI version of ShowMethods.java, specialized to

look for the “addListener” methods in Swing components:

//: gui/ShowAddListeners.java

// Display the "addXXXListener" methods of any Swing class.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.lang.reflect.*;

import java.util.regex.*;

import static net.mindview.util.SwingConsole.*;

public class ShowAddListeners extends JFrame {

 private JTextField name = new JTextField(25);

 private JTextArea results = new JTextArea(40, 65);

 private static Pattern addListener =

 Pattern.compile("(add\\w+?Listener\\(.*?\\))");

 private static Pattern qualifier =

 Pattern.compile("\\w+\\.");

 class NameL implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 String nm = name.getText().trim();

 if(nm.length() == 0) {

 results.setText("No match");

 return;

 }

 Class<?> kind;

 try {

 kind = Class.forName("javax.swing." + nm);

 } catch(ClassNotFoundException ex) {

 results.setText("No match");

 return;

 }

 Method[] methods = kind.getMethods();

 results.setText("");

 for(Method m : methods) {

 Matcher matcher =

Graphical User Interfaces 1321

 addListener.matcher(m.toString());

 if(matcher.find())

 results.append(qualifier.matcher(

 matcher.group(1)).replaceAll("") + "\n");

 }

 }

 }

 public ShowAddListeners() {

 NameL nameListener = new NameL();

 name.addActionListener(nameListener);

 JPanel top = new JPanel();

 top.add(new JLabel("Swing class name (press Enter):"));

 top.add(name);

 add(BorderLayout.NORTH, top);

 add(new JScrollPane(results));

 // Initial data and test:

 name.setText("JTextArea");

 nameListener.actionPerformed(

 new ActionEvent("", 0 ,""));

 }

 public static void main(String[] args) {

 run(new ShowAddListeners(), 500, 400);

 }

} ///:~

You enter the Swing class name that you want to look up in the name

JTextField. The results are extracted using regular expressions, and

displayed in a JTextArea.

You’ll notice that there are no buttons or other components to indicate that

you want the search to begin. That’s because the JTextField is monitored by

an ActionListener. Whenever you make a change and press Enter, the list

is immediately updated. If the text field isn’t empty, it is used inside

Class.forName() to try to look up the class. If the name is incorrect,

Class.forName() will fail, which means that it throws an exception. This is

trapped, and the JTextArea is set to “No match.” But if you type in a correct

name (capitalization counts), Class.forName() is successful, and

getMethods() will return an array of Method objects.

Two regular expressions are used here. The first, addListener, looks for

“add” followed by any word characters, followed by “Listener” and the

argument list in parentheses. Notice that this whole regular expression is

surrounded by non-escaped parentheses, which means it will be accessible as

1322 Thinking in Java Bruce Eckel

a regular expression “group” when it matches. Inside

NameL.ActionPerformed(), a Matcher is created by passing each

Method object to the Pattern.matcher() method. When find() is called

for this Matcher object, it returns true only if a match occurs, and in that

case you can select the first matching parenthesized group by calling

group(1). This string still contains qualifiers, so to strip them off, the

qualifier Pattern object is used just as it was in ShowMethods.java.

At the end of the constructor, an initial value is placed in name and the

action event is run to provide a test with initial data.

This program is a convenient way to investigate the capabilities of a Swing

component. Once you know which events a particular component supports,

you don’t need to look anything up to react to that event. You simply:

1. Take the name of the event class and remove the word “Event.”

Add the word “Listener” to what remains. This is the listener

interface you must implement in your inner class.

2. Implement the interface above and write out the methods for the

events you want to capture. For example, you might be looking for

mouse movements, so you write code for the mouseMoved()

method of the MouseMotionListener interface. (You must

implement the other methods, of course, but there’s often a

shortcut for this, which you’ll see soon.)

3. Create an object of the listener class in Step 2. Register it with your

component with the method produced by prefixing “add” to your

listener name. For example, addMouseMotionListener().

Here are some of the listener interfaces:

Listener interface
w/ adapter

Methods in interface

ActionListener actionPerformed(ActionEvent)

AdjustmentListener adjustmentValueChanged(
 AdjustmentEvent)

ComponentListener
ComponentAdapter

componentHidden(ComponentEvent)
componentShown(ComponentEvent)
componentMoved(ComponentEvent)
componentResized(ComponentEvent)

Graphical User Interfaces 1323

Listener interface
w/ adapter

Methods in interface

ContainerListener
ContainerAdapter

componentAdded(ContainerEvent)
componentRemoved(ContainerEvent)

FocusListener
FocusAdapter

focusGained(FocusEvent)
focusLost(FocusEvent)

KeyListener
KeyAdapter

keyPressed(KeyEvent)
keyReleased(KeyEvent)
keyTyped(KeyEvent)

MouseListener
MouseAdapter

mouseClicked(MouseEvent)
mouseEntered(MouseEvent)
mouseExited(MouseEvent)
mousePressed(MouseEvent)
mouseReleased(MouseEvent)

MouseMotionListener
MouseMotionAdapter

mouseDragged(MouseEvent)
mouseMoved(MouseEvent)

WindowListener
WindowAdapter

windowOpened(WindowEvent)
windowClosing(WindowEvent)
windowClosed(WindowEvent)
windowActivated(WindowEvent)
windowDeactivated(WindowEvent)
windowIconified(WindowEvent)
windowDeiconified(WindowEvent)

ItemListener itemStateChanged(ItemEvent)

This is not an exhaustive listing, partly because the event model allows you to

create your own event types and associated listeners. Thus, you’ll regularly

come across libraries that have invented their own events, and the knowledge

gained in this chapter will allow you to figure out how to use these events.

Using listener adapters for simplicity
In the table above, you can see that some listener interfaces have only one

method. These are trivial to implement. However, the listener interfaces that

have multiple methods can be less pleasant to use. For example, if you want

to capture a mouse click (that isn’t already captured for you, for example, by a

button), then you need to write a method for mouseClicked(). But since

MouseListener is an interface, you must implement all of the other

methods even if they don’t do anything. This can be annoying.

1324 Thinking in Java Bruce Eckel

To solve the problem, some (but not all) of the listener interfaces that have

more than one method are provided with adapters, the names of which you

can see in the table above. Each adapter provides default empty methods for

each of the interface methods. When you inherit from the adapter, you

override only the methods you need to change. For example, the typical

MouseListener you’ll use looks like this:

class MyMouseListener extends MouseAdapter {

 public void mouseClicked(MouseEvent e) {

 // Respond to mouse click...

 }

}

The whole point of the adapters is to make the creation of listener classes

easy.

There is a downside to adapters, however, in the form of a pitfall. Suppose

you write a MouseAdapter like the previous one:

class MyMouseListener extends MouseAdapter {

 public void MouseClicked(MouseEvent e) {

 // Respond to mouse click...

 }

}

This doesn’t work, but it will drive you crazy trying to figure out why, since

everything will compile and run fine—except that your method won’t be

called for a mouse click. Can you see the problem? It’s in the name of the

method: MouseClicked() instead of mouseClicked(). A simple slip in

capitalization results in the addition of a completely new method. However,

this is not the method that’s called when the mouse is clicked, so you don’t

get the desired results. Despite the inconvenience, an interface will guarantee

that the methods are properly implemented.

An improved alternative way to guarantee that you are in fact overriding a

method is to use the built-in @Override annotation in the code above.

Exercise 9: (5) Starting with ShowAddListeners.java, create a
program with the full functionality of typeinfo.ShowMethods.java.

Tracking multiple events
To prove to yourself that these events are in fact being fired, it’s worth

creating a program that tracks behavior in a JButton beyond whether it has

Graphical User Interfaces 1325

been pressed. This example also shows you how to inherit your own button

object from JButton.7

In the code below, the MyButton class is an inner class of TrackEvent, so

MyButton can reach into the parent window and manipulate its text fields,

which is necessary in order to write the status information into the fields of

the parent. Of course, this is a limited solution, since MyButton can be used

only in conjunction with TrackEvent. This kind of code is sometimes called

“highly coupled”:

//: gui/TrackEvent.java

// Show events as they happen.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.util.*;

import static net.mindview.util.SwingConsole.*;

public class TrackEvent extends JFrame {

 private HashMap<String,JTextField> h =

 new HashMap<String,JTextField>();

 private String[] event = {

 "focusGained", "focusLost", "keyPressed",

 "keyReleased", "keyTyped", "mouseClicked",

 "mouseEntered", "mouseExited", "mousePressed",

 "mouseReleased", "mouseDragged", "mouseMoved"

 };

 private MyButton

 b1 = new MyButton(Color.BLUE, "test1"),

 b2 = new MyButton(Color.RED, "test2");

 class MyButton extends JButton {

 void report(String field, String msg) {

 h.get(field).setText(msg);

 }

 FocusListener fl = new FocusListener() {

 public void focusGained(FocusEvent e) {

 report("focusGained", e.paramString());

 }

 public void focusLost(FocusEvent e) {

7 In Java 1.0/1.1 you could not usefully inherit from the button object. This was only one of
numerous fundamental design flaws.

1326 Thinking in Java Bruce Eckel

 report("focusLost", e.paramString());

 }

 };

 KeyListener kl = new KeyListener() {

 public void keyPressed(KeyEvent e) {

 report("keyPressed", e.paramString());

 }

 public void keyReleased(KeyEvent e) {

 report("keyReleased", e.paramString());

 }

 public void keyTyped(KeyEvent e) {

 report("keyTyped", e.paramString());

 }

 };

 MouseListener ml = new MouseListener() {

 public void mouseClicked(MouseEvent e) {

 report("mouseClicked", e.paramString());

 }

 public void mouseEntered(MouseEvent e) {

 report("mouseEntered", e.paramString());

 }

 public void mouseExited(MouseEvent e) {

 report("mouseExited", e.paramString());

 }

 public void mousePressed(MouseEvent e) {

 report("mousePressed", e.paramString());

 }

 public void mouseReleased(MouseEvent e) {

 report("mouseReleased", e.paramString());

 }

 };

 MouseMotionListener mml = new MouseMotionListener() {

 public void mouseDragged(MouseEvent e) {

 report("mouseDragged", e.paramString());

 }

 public void mouseMoved(MouseEvent e) {

 report("mouseMoved", e.paramString());

 }

 };

 public MyButton(Color color, String label) {

 super(label);

 setBackground(color);

 addFocusListener(fl);

 addKeyListener(kl);

Graphical User Interfaces 1327

 addMouseListener(ml);

 addMouseMotionListener(mml);

 }

 }

 public TrackEvent() {

 setLayout(new GridLayout(event.length + 1, 2));

 for(String evt : event) {

 JTextField t = new JTextField();

 t.setEditable(false);

 add(new JLabel(evt, JLabel.RIGHT));

 add(t);

 h.put(evt, t);

 }

 add(b1);

 add(b2);

 }

 public static void main(String[] args) {

 run(new TrackEvent(), 700, 500);

 }

} ///:~

In the MyButton constructor, the button’s color is set with a call to

SetBackground(). The listeners are all installed with simple method calls.

The TrackEvent class contains a HashMap to hold the strings representing

the type of event and JTextFields where information about that event is

held. Of course, these could have been created statically rather than putting

them in a HashMap, but I think you’ll agree that it’s a lot easier to use and

change. In particular, if you need to add or remove a new type of event in

TrackEvent, you simply add or remove a string in the event array—

everything else happens automatically.

When report() is called, it is given the name of the event and the parameter

string from the event. It uses the HashMap h in the outer class to look up

the actual JTextField associated with that event name and then places the

parameter string into that field.

This example is fun to play with because you can really see what’s going on

with the events in your program.

Exercise 10: (6) Create an application using SwingConsole, with a
JButton and a JTextField. Write and attach the appropriate listener so
that if the button has the focus, characters typed into it will appear in the
JTextField.

1328 Thinking in Java Bruce Eckel

Exercise 11: (4) Inherit a new type of button from JButton. Each time
you press this button, it should change its color to a randomly selected value.
See ColorBoxes.java (later in this chapter) for an example of how to
generate a random color value.

Exercise 12: (4) Monitor a new type of event in TrackEvent.java by
adding the new event-handling code. You’ll need to discover on your own the
type of event that you want to monitor.

A selection of Swing components
Now that you understand layout managers and the event model, you’re ready

to see how Swing components can be used. This section is a non-exhaustive

tour of the Swing components and features that you’ll probably use most of

the time. Each example is intended to be reasonably small so that you can

easily lift the code and use it in your own programs.

Keep in mind:

1. You can easily see what each of these examples looks like during

execution by compiling and running the downloadable source code

for this chapter (www.MindViewLLC.com).

2. The JDK documentation from http://java.oracle.com contains all

of the Swing classes and methods (only a few are shown here).

3. Because of the naming convention used for Swing events, it’s fairly

easy to guess how to write and install a handler for a particular

type of event. Use the lookup program ShowAddListeners.java

from earlier in this chapter to aid in your investigation of a

particular component.

4. When things start to get complicated you should graduate to a GUI

builder.

Buttons
Swing includes a number of different types of buttons. All buttons, check

boxes, radio buttons, and even menu items are inherited from

AbstractButton (which, since menu items are included, would probably

have been better named “AbstractSelector” or something equally general).

You’ll see the use of menu items shortly, but the following example shows the

various types of buttons available:

Graphical User Interfaces 1329

//: gui/Buttons.java

// Various Swing buttons.

import javax.swing.*;

import javax.swing.border.*;

import javax.swing.plaf.basic.*;

import java.awt.*;

import static net.mindview.util.SwingConsole.*;

public class Buttons extends JFrame {

 private JButton jb = new JButton("JButton");

 private BasicArrowButton

 up = new BasicArrowButton(BasicArrowButton.NORTH),

 down = new BasicArrowButton(BasicArrowButton.SOUTH),

 right = new BasicArrowButton(BasicArrowButton.EAST),

 left = new BasicArrowButton(BasicArrowButton.WEST);

 public Buttons() {

 setLayout(new FlowLayout());

 add(jb);

 add(new JToggleButton("JToggleButton"));

 add(new JCheckBox("JCheckBox"));

 add(new JRadioButton("JRadioButton"));

 JPanel jp = new JPanel();

 jp.setBorder(new TitledBorder("Directions"));

 jp.add(up);

 jp.add(down);

 jp.add(left);

 jp.add(right);

 add(jp);

 }

 public static void main(String[] args) {

 run(new Buttons(), 350, 200);

 }

} ///:~

This begins with the BasicArrowButton from javax.swing.plaf.basic,

then continues with the various specific types of buttons. When you run the

example, you’ll see that the toggle button holds its last position, in or out. But

the check boxes and radio buttons behave identically to each other, just

clicking on or off (they are inherited from JToggleButton).

1330 Thinking in Java Bruce Eckel

Button groups
If you want radio buttons to behave in an “exclusive or” fashion, you must

add them to a “button group.” But, as the following example demonstrates,

any AbstractButton can be added to a ButtonGroup.

To avoid repeating a lot of code, this example uses reflection to generate the

groups of different types of buttons. This is seen in makeBPanel(), which

creates a button group in a JPanel. The second argument to

makeBPanel() is an array of String. For each String, a button of the class

represented by the first argument is added to the JPanel:

//: gui/ButtonGroups.java

// Uses reflection to create groups

// of different types of AbstractButton.

import javax.swing.*;

import javax.swing.border.*;

import java.awt.*;

import java.lang.reflect.*;

import static net.mindview.util.SwingConsole.*;

public class ButtonGroups extends JFrame {

 private static String[] ids = {

 "June", "Ward", "Beaver", "Wally", "Eddie", "Lumpy"

 };

 static JPanel makeBPanel(

 Class<? extends AbstractButton> kind, String[] ids) {

 ButtonGroup bg = new ButtonGroup();

 JPanel jp = new JPanel();

 String title = kind.getName();

 title = title.substring(title.lastIndexOf('.') + 1);

 jp.setBorder(new TitledBorder(title));

 for(String id : ids) {

 AbstractButton ab = new JButton("failed");

 try {

 // Get the dynamic constructor method

 // that takes a String argument:

 Constructor ctor =

 kind.getConstructor(String.class);

 // Create a new object:

 ab = (AbstractButton)ctor.newInstance(id);

 } catch(Exception ex) {

 System.err.println("can't create " + kind);

 }

Graphical User Interfaces 1331

 bg.add(ab);

 jp.add(ab);

 }

 return jp;

 }

 public ButtonGroups() {

 setLayout(new FlowLayout());

 add(makeBPanel(JButton.class, ids));

 add(makeBPanel(JToggleButton.class, ids));

 add(makeBPanel(JCheckBox.class, ids));

 add(makeBPanel(JRadioButton.class, ids));

 }

 public static void main(String[] args) {

 run(new ButtonGroups(), 500, 350);

 }

} ///:~

The title for the border is taken from the name of the class, stripping off all

the path information. The AbstractButton is initialized to a JButton that

has the label “failed,” so if you ignore the exception message, you’ll still see

the problem on the screen. The getConstructor() method produces a

Constructor object that takes the array of arguments of the types in the list

of Classes passed to getConstructor(). Then all you do is call

newInstance(), passing it a list of arguments—in this case, just the String

from the ids array.

To get “exclusive or” behavior with buttons, you create a button group and

add each button for which you want that behavior to the group. When you

run the program, you’ll see that all the buttons except JButton exhibit this

“exclusive or” behavior.

Icons
You can use an Icon inside a JLabel or anything that inherits from

AbstractButton (including JButton, JCheckBox, JRadioButton, and

the different kinds of JMenuItem). Using Icons with JLabels is quite

straightforward (you’ll see an example later). The following example explores

all the additional ways you can use Icons with buttons and their

descendants.

You can use any GIF files you want, but the ones used in this example are

part of this book’s code distribution, available at www.MindViewLLC.com.

To open a file and bring in the image, simply create an ImageIcon and hand

1332 Thinking in Java Bruce Eckel

it the file name. From then on, you can use the resulting Icon in your

program.

//: gui/Faces.java

// Icon behavior in JButtons.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import static net.mindview.util.SwingConsole.*;

public class Faces extends JFrame {

 private static Icon[] faces;

 private JButton jb, jb2 = new JButton("Disable");

 private boolean mad = false;

 public Faces() {

 faces = new Icon[]{

 new ImageIcon(getClass().getResource("Face0.gif")),

 new ImageIcon(getClass().getResource("Face1.gif")),

 new ImageIcon(getClass().getResource("Face2.gif")),

 new ImageIcon(getClass().getResource("Face3.gif")),

 new ImageIcon(getClass().getResource("Face4.gif")),

 };

 jb = new JButton("JButton", faces[3]);

 setLayout(new FlowLayout());

 jb.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 if(mad) {

 jb.setIcon(faces[3]);

 mad = false;

 } else {

 jb.setIcon(faces[0]);

 mad = true;

 }

 jb.setVerticalAlignment(JButton.TOP);

 jb.setHorizontalAlignment(JButton.LEFT);

 }

 });

 jb.setRolloverEnabled(true);

 jb.setRolloverIcon(faces[1]);

 jb.setPressedIcon(faces[2]);

 jb.setDisabledIcon(faces[4]);

 jb.setToolTipText("Yow!");

 add(jb);

 jb2.addActionListener(new ActionListener() {

Graphical User Interfaces 1333

 public void actionPerformed(ActionEvent e) {

 if(jb.isEnabled()) {

 jb.setEnabled(false);

 jb2.setText("Enable");

 } else {

 jb.setEnabled(true);

 jb2.setText("Disable");

 }

 }

 });

 add(jb2);

 }

 public static void main(String[] args) {

 run(new Faces(), 250, 125);

 }

} ///:~

An Icon can be used as an argument for many different Swing component

constructors, but you can also use setIcon() to add or change an Icon. This

example also shows how a JButton (or any AbstractButton) can set the

various different sorts of icons that appear when things happen to that

button: when it’s pressed, disabled, or “rolled over” (the mouse moves over it

without clicking). You’ll see that this gives the button a nice animated feel.

Tool tips
The previous example added a “tool tip” to the button. Almost all of the

classes that you’ll be using to create your user interfaces are derived from

JComponent, which contains a method called setToolTipText(String).

So, for virtually anything you place on your form, all you need to do is say (for

an object jc of any JComponent-derived class):

jc.setToolTipText("My tip");

When the mouse stays over that JComponent for a predetermined period of

time, a tiny box containing your text will pop up next to the mouse.

Text fields
This example shows what JTextFields can do:

//: gui/TextFields.java

// Text fields and Java events.

import javax.swing.*;

1334 Thinking in Java Bruce Eckel

import javax.swing.event.*;

import javax.swing.text.*;

import java.awt.*;

import java.awt.event.*;

import static net.mindview.util.SwingConsole.*;

public class TextFields extends JFrame {

 private JButton

 b1 = new JButton("Get Text"),

 b2 = new JButton("Set Text");

 private JTextField

 t1 = new JTextField(30),

 t2 = new JTextField(30),

 t3 = new JTextField(30);

 private String s = "";

 private UpperCaseDocument ucd = new UpperCaseDocument();

 public TextFields() {

 t1.setDocument(ucd);

 ucd.addDocumentListener(new T1());

 b1.addActionListener(new B1());

 b2.addActionListener(new B2());

 t1.addActionListener(new T1A());

 setLayout(new FlowLayout());

 add(b1);

 add(b2);

 add(t1);

 add(t2);

 add(t3);

 }

 class T1 implements DocumentListener {

 public void changedUpdate(DocumentEvent e) {}

 public void insertUpdate(DocumentEvent e) {

 t2.setText(t1.getText());

 t3.setText("Text: "+ t1.getText());

 }

 public void removeUpdate(DocumentEvent e) {

 t2.setText(t1.getText());

 }

 }

 class T1A implements ActionListener {

 private int count = 0;

 public void actionPerformed(ActionEvent e) {

 t3.setText("t1 Action Event " + count++);

 }

Graphical User Interfaces 1335

 }

 class B1 implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 if(t1.getSelectedText() == null)

 s = t1.getText();

 else

 s = t1.getSelectedText();

 t1.setEditable(true);

 }

 }

 class B2 implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 ucd.setUpperCase(false);

 t1.setText("Inserted by Button 2: " + s);

 ucd.setUpperCase(true);

 t1.setEditable(false);

 }

 }

 public static void main(String[] args) {

 run(new TextFields(), 375, 200);

 }

}

class UpperCaseDocument extends PlainDocument {

 private boolean upperCase = true;

 public void setUpperCase(boolean flag) {

 upperCase = flag;

 }

 public void

 insertString(int offset, String str, AttributeSet attSet)

 throws BadLocationException {

 if(upperCase) str = str.toUpperCase();

 super.insertString(offset, str, attSet);

 }

} ///:~

The JTextField t3 is included as a place to report when the action listener

for the JTextField t1 is fired. You’ll see that the action listener for a

JTextField is fired only when you press the Enter key.

The JTextField t1 has several listeners attached to it. The T1 listener is a

DocumentListener that responds to any change in the “document” (the

contents of the JTextField, in this case). It automatically copies all text from

t1 into t2. In addition, t1’s document is set to a derived class of

1336 Thinking in Java Bruce Eckel

PlainDocument, called UpperCaseDocument, which forces all

characters to uppercase. It automatically detects backspaces and performs

the deletion, adjusting the caret and handling everything as you expect.

Exercise 13: (3) Modify TextFields.java so that the characters in t2
retain the original case that they were typed in, instead of automatically being
forced to uppercase.

Borders
JComponent contains a method called setBorder(), which allows you to

place various interesting borders on any visible component. The following

example demonstrates a number of the different borders that are available,

using a method called showBorder() that creates a JPanel and puts on

the border in each case. Also, it uses RTTI to find the name of the border that

you’re using (stripping off all the path information), then puts that name in a

JLabel in the middle of the panel:

//: gui/Borders.java

// Different Swing borders.

import javax.swing.*;

import javax.swing.border.*;

import java.awt.*;

import static net.mindview.util.SwingConsole.*;

public class Borders extends JFrame {

 static JPanel showBorder(Border b) {

 JPanel jp = new JPanel();

 jp.setLayout(new BorderLayout());

 String nm = b.getClass().toString();

 nm = nm.substring(nm.lastIndexOf('.') + 1);

 jp.add(new JLabel(nm, JLabel.CENTER),

 BorderLayout.CENTER);

 jp.setBorder(b);

 return jp;

 }

 public Borders() {

 setLayout(new GridLayout(2,4));

 add(showBorder(new TitledBorder("Title")));

 add(showBorder(new EtchedBorder()));

 add(showBorder(new LineBorder(Color.BLUE)));

 add(showBorder(

 new MatteBorder(5,5,30,30,Color.GREEN)));

 add(showBorder(

Graphical User Interfaces 1337

 new BevelBorder(BevelBorder.RAISED)));

 add(showBorder(

 new SoftBevelBorder(BevelBorder.LOWERED)));

 add(showBorder(new CompoundBorder(

 new EtchedBorder(),

 new LineBorder(Color.RED))));

 }

 public static void main(String[] args) {

 run(new Borders(), 500, 300);

 }

} ///:~

You can also create your own borders and put them inside buttons, labels,

etc.—anything derived from JComponent.

A mini-editor
The JTextPane control provides a great deal of support for editing, without

much effort. The following example makes very simple use of this component,

ignoring the bulk of its functionality:

//: gui/TextPane.java

// The JTextPane control is a little editor.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import net.mindview.util.*;

import static net.mindview.util.SwingConsole.*;

public class TextPane extends JFrame {

 private JButton b = new JButton("Add Text");

 private JTextPane tp = new JTextPane();

 private static Generator sg =

 new RandomGenerator.String(7);

 public TextPane() {

 b.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 for(int i = 1; i < 10; i++)

 tp.setText(tp.getText() + sg.next() + "\n");

 }

 });

 add(new JScrollPane(tp));

 add(BorderLayout.SOUTH, b);

 }

 public static void main(String[] args) {

1338 Thinking in Java Bruce Eckel

 run(new TextPane(), 475, 425);

 }

} ///:~

The button adds randomly generated text. The intent of the JTextPane is to

allow text to be edited in place, so you will see that there is no append()

method. In this case (admittedly, a poor use of the capabilities of

JTextPane), the text must be captured, modified, and placed back into the

pane using setText().

Elements are added to the JFrame using its default BorderLayout. The

JTextPane is added (inside a JScrollPane) without specifying a region, so

it just fills the center of the pane out to the edges. The JButton is added to

the SOUTH, so the component will fit itself into that region; in this case, the

button will nest down at the bottom of the screen.

Notice the built-in features of JTextPane, such as automatic line wrapping.

There are numerous other features that you can look up using the JDK

documentation.

Exercise 14: (2) Modify TextPane.java to use a JTextArea instead of
a JTextPane.

Check boxes
A check box provides a way to make a single on/off choice. It consists of a tiny

box and a label. The box typically holds a little “x” (or some other indication

that it is set) or is empty, depending on whether that item was selected.

You’ll normally create a JCheckBox using a constructor that takes the label

as an argument. You can get and set the state, and also get and set the label if

you want to read or change it after the JCheckBox has been created.

Whenever a JCheckBox is set or cleared, an event occurs, which you can

capture the same way you do a button: by using an ActionListener. The

following example uses a JTextArea to enumerate all the check boxes that

have been checked:

//: gui/CheckBoxes.java

// Using JCheckBoxes.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import static net.mindview.util.SwingConsole.*;

Graphical User Interfaces 1339

public class CheckBoxes extends JFrame {

 private JTextArea t = new JTextArea(6, 15);

 private JCheckBox

 cb1 = new JCheckBox("Check Box 1"),

 cb2 = new JCheckBox("Check Box 2"),

 cb3 = new JCheckBox("Check Box 3");

 public CheckBoxes() {

 cb1.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 trace("1", cb1);

 }

 });

 cb2.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 trace("2", cb2);

 }

 });

 cb3.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 trace("3", cb3);

 }

 });

 setLayout(new FlowLayout());

 add(new JScrollPane(t));

 add(cb1);

 add(cb2);

 add(cb3);

 }

 private void trace(String b, JCheckBox cb) {

 if(cb.isSelected())

 t.append("Box " + b + " Set\n");

 else

 t.append("Box " + b + " Cleared\n");

 }

 public static void main(String[] args) {

 run(new CheckBoxes(), 200, 300);

 }

} ///:~

The trace() method sends the name of the selected JCheckBox and its

current state to the JTextArea using append(), so you’ll see a cumulative

list of the check boxes that were selected, along with their state.

1340 Thinking in Java Bruce Eckel

Exercise 15: (5) Add a check box to the application created in Exercise 5,
capture the event, and insert different text into the text field.

Radio buttons
The concept of radio buttons in GUI programming comes from pre-electronic

car radios with mechanical buttons: When you push one in, any other buttons

pop out. Thus, it allows you to force a single choice among many.

To set up an associated group of JRadioButtons, you add them to a

ButtonGroup (you can have any number of ButtonGroups on a form).

One of the buttons can be optionally set to true (using the second argument

in the constructor). If you try to set more than one radio button to true, then

only the last one set will be true.

Here’s a simple example of the use of radio buttons, showing event capture

using an ActionListener:

//: gui/RadioButtons.java

// Using JRadioButtons.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import static net.mindview.util.SwingConsole.*;

public class RadioButtons extends JFrame {

 private JTextField t = new JTextField(15);

 private ButtonGroup g = new ButtonGroup();

 private JRadioButton

 rb1 = new JRadioButton("one", false),

 rb2 = new JRadioButton("two", false),

 rb3 = new JRadioButton("three", false);

 private ActionListener al = new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 t.setText("Radio button " +

 ((JRadioButton)e.getSource()).getText());

 }

 };

 public RadioButtons() {

 rb1.addActionListener(al);

 rb2.addActionListener(al);

 rb3.addActionListener(al);

 g.add(rb1); g.add(rb2); g.add(rb3);

 t.setEditable(false);

Graphical User Interfaces 1341

 setLayout(new FlowLayout());

 add(t);

 add(rb1);

 add(rb2);

 add(rb3);

 }

 public static void main(String[] args) {

 run(new RadioButtons(), 200, 125);

 }

} ///:~

To display the state, a text field is used. This field is set to non-editable

because it’s used only to display data, not to collect it. Thus it is an alternative

to using a JLabel.

Combo boxes (drop-down lists)
Like a group of radio buttons, a drop-down list is a way to force the user to

select only one element from a group of possibilities. However, it’s a more

compact way to accomplish this, and it’s easier to change the elements of the

list without surprising the user. (You can change radio buttons dynamically,

but that tends to be visibly jarring.)

By default, JComboBox box is not like the combo box in Windows, which

lets you select from a list or type in your own selection. To produce this

behavior you must call setEditable(). With a JComboBox box, you choose

one and only one element from the list. In the following example, the

JComboBox box starts with a certain number of entries, and then new

entries are added to the box when a button is pressed.

//: gui/ComboBoxes.java

// Using drop-down lists.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import static net.mindview.util.SwingConsole.*;

public class ComboBoxes extends JFrame {

 private String[] description = {

 "Ebullient", "Obtuse", "Recalcitrant", "Brilliant",

 "Somnescent", "Timorous", "Florid", "Putrescent"

 };

 private JTextField t = new JTextField(15);

 private JComboBox c = new JComboBox();

1342 Thinking in Java Bruce Eckel

 private JButton b = new JButton("Add items");

 private int count = 0;

 public ComboBoxes() {

 for(int i = 0; i < 4; i++)

 c.addItem(description[count++]);

 t.setEditable(false);

 b.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 if(count < description.length)

 c.addItem(description[count++]);

 }

 });

 c.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 t.setText("index: "+ c.getSelectedIndex() + " " +

 ((JComboBox)e.getSource()).getSelectedItem());

 }

 });

 setLayout(new FlowLayout());

 add(t);

 add(c);

 add(b);

 }

 public static void main(String[] args) {

 run(new ComboBoxes(), 200, 175);

 }

} ///:~

The JTextField displays the “selected index,” which is the sequence number

of the currently selected element, as well as the text of the selected item in the

combo box.

List boxes
List boxes are significantly different from JComboBox boxes, and not just

in appearance. While a JComboBox box drops down when you activate it, a

JList occupies some fixed number of lines on a screen all the time and

doesn’t change. If you want to see the items in a list, you simply call

getSelectedValues(), which produces an array of String of the items that

have been selected.

A JList allows multiple selection; if you control-click on more than one item

(holding down the Control key while performing additional mouse clicks), the

original item stays highlighted and you can select as many as you want. If you

Graphical User Interfaces 1343

select an item, then shift-click on another item, all the items in the span

between the two are selected. To remove an item from a group, you can

control-click it.

//: gui/List.java

import javax.swing.*;

import javax.swing.border.*;

import javax.swing.event.*;

import java.awt.*;

import java.awt.event.*;

import static net.mindview.util.SwingConsole.*;

public class List extends JFrame {

 private String[] flavors = {

 "Chocolate", "Strawberry", "Vanilla Fudge Swirl",

 "Mint Chip", "Mocha Almond Fudge", "Rum Raisin",

 "Praline Cream", "Mud Pie"

 };

 private DefaultListModel lItems = new DefaultListModel();

 private JList lst = new JList(lItems);

 private JTextArea t =

 new JTextArea(flavors.length, 20);

 private JButton b = new JButton("Add Item");

 private ActionListener bl = new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 if(count < flavors.length) {

 lItems.add(0, flavors[count++]);

 } else {

 // Disable, since there are no more

 // flavors left to be added to the List

 b.setEnabled(false);

 }

 }

 };

 private ListSelectionListener ll =

 new ListSelectionListener() {

 public void valueChanged(ListSelectionEvent e) {

 if(e.getValueIsAdjusting()) return;

 t.setText("");

 for(Object item : lst.getSelectedValues())

 t.append(item + "\n");

 }

 };

 private int count = 0;

1344 Thinking in Java Bruce Eckel

 public List() {

 t.setEditable(false);

 setLayout(new FlowLayout());

 // Create Borders for components:

 Border brd = BorderFactory.createMatteBorder(

 1, 1, 2, 2, Color.BLACK);

 lst.setBorder(brd);

 t.setBorder(brd);

 // Add the first four items to the List

 for(int i = 0; i < 4; i++)

 lItems.addElement(flavors[count++]);

 add(t);

 add(lst);

 add(b);

 // Register event listeners

 lst.addListSelectionListener(ll);

 b.addActionListener(bl);

 }

 public static void main(String[] args) {

 run(new List(), 250, 375);

 }

} ///:~

You can see that borders have also been added to the lists.

If you just want to put an array of Strings into a JList, there’s a much

simpler solution; you pass the array to the JList constructor, and it builds

the list automatically. The only reason for using the “list model” in the

preceding example is so that the list can be manipulated during the execution

of the program.

JLists do not automatically provide direct support for scrolling. Of course, all

you need to do is wrap the JList in a JScrollPane, and the details are

automatically managed for you.

Exercise 16: (5) Simplify List.java by passing the array to the
constructor and eliminating the dynamic addition of elements to the list.

Tabbed panes
The JTabbedPane allows you to create a “tabbed dialog,” which has file-

folder tabs running across one edge. When you press a tab, it brings forward a

different dialog.

Graphical User Interfaces 1345

//: gui/TabbedPane1.java

// Demonstrates the Tabbed Pane.

import javax.swing.*;

import javax.swing.event.*;

import java.awt.*;

import static net.mindview.util.SwingConsole.*;

public class TabbedPane1 extends JFrame {

 private String[] flavors = {

 "Chocolate", "Strawberry", "Vanilla Fudge Swirl",

 "Mint Chip", "Mocha Almond Fudge", "Rum Raisin",

 "Praline Cream", "Mud Pie"

 };

 private JTabbedPane tabs = new JTabbedPane();

 private JTextField txt = new JTextField(20);

 public TabbedPane1() {

 int i = 0;

 for(String flavor : flavors)

 tabs.addTab(flavors[i],

 new JButton("Tabbed pane " + i++));

 tabs.addChangeListener(new ChangeListener() {

 public void stateChanged(ChangeEvent e) {

 txt.setText("Tab selected: " +

 tabs.getSelectedIndex());

 }

 });

 add(BorderLayout.SOUTH, txt);

 add(tabs);

 }

 public static void main(String[] args) {

 run(new TabbedPane1(), 400, 250);

 }

} ///:~

When you run the program, you’ll see that the JTabbedPane automatically

stacks the tabs if there are too many of them to fit on one row. You can see

this by resizing the window when you run the program from the console

command line.

Message boxes
Windowing environments commonly contain a standard set of message boxes

that allow you to quickly post information to the user or to capture

information from the user. In Swing, these message boxes are contained in

1346 Thinking in Java Bruce Eckel

JOptionPane. You have many different possibilities (some quite

sophisticated), but the ones you’ll most commonly use are probably the

message dialog and confirmation dialog, invoked using the static

JOptionPane.showMessageDialog() and

JOptionPane.showConfirmDialog(). The following example shows a

subset of the message boxes available with JOptionPane:

//: gui/MessageBoxes.java

// Demonstrates JOptionPane.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import static net.mindview.util.SwingConsole.*;

public class MessageBoxes extends JFrame {

 private JButton[] b = {

 new JButton("Alert"), new JButton("Yes/No"),

 new JButton("Color"), new JButton("Input"),

 new JButton("3 Vals")

 };

 private JTextField txt = new JTextField(15);

 private ActionListener al = new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 String id = ((JButton)e.getSource()).getText();

 if(id.equals("Alert"))

 JOptionPane.showMessageDialog(null,

 "There's a bug on you!", "Hey!",

 JOptionPane.ERROR_MESSAGE);

 else if(id.equals("Yes/No"))

 JOptionPane.showConfirmDialog(null,

 "or no", "choose yes",

 JOptionPane.YES_NO_OPTION);

 else if(id.equals("Color")) {

 Object[] options = { "Red", "Green" };

 int sel = JOptionPane.showOptionDialog(

 null, "Choose a Color!", "Warning",

 JOptionPane.DEFAULT_OPTION,

 JOptionPane.WARNING_MESSAGE, null,

 options, options[0]);

 if(sel != JOptionPane.CLOSED_OPTION)

 txt.setText("Color Selected: " + options[sel]);

 } else if(id.equals("Input")) {

 String val = JOptionPane.showInputDialog(

 "How many fingers do you see?");

Graphical User Interfaces 1347

 txt.setText(val);

 } else if(id.equals("3 Vals")) {

 Object[] selections = {"First", "Second", "Third"};

 Object val = JOptionPane.showInputDialog(

 null, "Choose one", "Input",

 JOptionPane.INFORMATION_MESSAGE,

 null, selections, selections[0]);

 if(val != null)

 txt.setText(val.toString());

 }

 }

 };

 public MessageBoxes() {

 setLayout(new FlowLayout());

 for(int i = 0; i < b.length; i++) {

 b[i].addActionListener(al);

 add(b[i]);

 }

 add(txt);

 }

 public static void main(String[] args) {

 run(new MessageBoxes(), 200, 200);

 }

} ///:~

To write a single ActionListener, I’ve used the somewhat risky approach of

checking the String labels on the buttons. The problem with this is that it’s

easy to get the label a little bit wrong, typically in capitalization, and this bug

can be hard to spot.

Note that showOptionDialog() and showInputDialog() provide return

objects that contain the value entered by the user.

Exercise 17: (5) Create an application using SwingConsole. In the JDK
documentation from http://java.oracle.com, find the JPasswordField and
add this to the program. If the user types in the correct password, use
JOptionPane to provide a success message to the user.

Exercise 18: (4) Modify MessageBoxes.java so that it has an
individual ActionListener for each button (instead of matching the button
text).

1348 Thinking in Java Bruce Eckel

Menus
Each component capable of holding a menu, including JApplet, JFrame,

JDialog, and their descendants, has a setJMenuBar() method that

accepts a JMenuBar (you can have only one JMenuBar on a particular

component). You add JMenus to the JMenuBar, and JMenuItems to the

JMenus. Each JMenuItem can have an ActionListener attached to it, to

be fired when that menu item is selected.

With Java and Swing you must hand assemble all the menus in source code.

Here is a very simple menu example:

//: gui/SimpleMenus.java

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import static net.mindview.util.SwingConsole.*;

public class SimpleMenus extends JFrame {

 private JTextField t = new JTextField(15);

 private ActionListener al = new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 t.setText(((JMenuItem)e.getSource()).getText());

 }

 };

 private JMenu[] menus = {

 new JMenu("Winken"), new JMenu("Blinken"),

 new JMenu("Nod")

 };

 private JMenuItem[] items = {

 new JMenuItem("Fee"), new JMenuItem("Fi"),

 new JMenuItem("Fo"), new JMenuItem("Zip"),

 new JMenuItem("Zap"), new JMenuItem("Zot"),

 new JMenuItem("Olly"), new JMenuItem("Oxen"),

 new JMenuItem("Free")

 };

 public SimpleMenus() {

 for(int i = 0; i < items.length; i++) {

 items[i].addActionListener(al);

 menus[i % 3].add(items[i]);

 }

 JMenuBar mb = new JMenuBar();

 for(JMenu jm : menus)

 mb.add(jm);

Graphical User Interfaces 1349

 setJMenuBar(mb);

 setLayout(new FlowLayout());

 add(t);

 }

 public static void main(String[] args) {

 run(new SimpleMenus(), 200, 150);

 }

} ///:~

The use of the modulus operator in “i%3” distributes the menu items among

the three JMenus. Each JMenuItem must have an ActionListener

attached to it; here, the same ActionListener is used everywhere, but you’ll

usually need an individual one for each JMenuItem.

JMenuItem inherits AbstractButton, so it has some button-like

behaviors. By itself, it provides an item that can be placed on a drop-down

menu. There are also three types inherited from JMenuItem: JMenu, to

hold other JMenuItems (so you can have cascading menus);

JCheckBoxMenuItem, which produces a check mark to indicate whether

that menu item is selected; and JRadioButtonMenuItem, which contains

a radio button.

As a more sophisticated example, here are the ice cream flavors again, used to

create menus. This example also shows cascading menus, keyboard

mnemonics, JCheckBoxMenuItems, and the way that you can dynamically

change menus:

//: gui/Menus.java

// Submenus, check box menu items, swapping menus,

// mnemonics (shortcuts) and action commands.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import static net.mindview.util.SwingConsole.*;

public class Menus extends JFrame {

 private String[] flavors = {

 "Chocolate", "Strawberry", "Vanilla Fudge Swirl",

 "Mint Chip", "Mocha Almond Fudge", "Rum Raisin",

 "Praline Cream", "Mud Pie"

 };

 private JTextField t = new JTextField("No flavor", 30);

 private JMenuBar mb1 = new JMenuBar();

 private JMenu

1350 Thinking in Java Bruce Eckel

 f = new JMenu("File"),

 m = new JMenu("Flavors"),

 s = new JMenu("Safety");

 // Alternative approach:

 private JCheckBoxMenuItem[] safety = {

 new JCheckBoxMenuItem("Guard"),

 new JCheckBoxMenuItem("Hide")

 };

 private JMenuItem[] file = { new JMenuItem("Open") };

 // A second menu bar to swap to:

 private JMenuBar mb2 = new JMenuBar();

 private JMenu fooBar = new JMenu("fooBar");

 private JMenuItem[] other = {

 // Adding a menu shortcut (mnemonic) is very

 // simple, but only JMenuItems can have them

 // in their constructors:

 new JMenuItem("Foo", KeyEvent.VK_F),

 new JMenuItem("Bar", KeyEvent.VK_A),

 // No shortcut:

 new JMenuItem("Baz"),

 };

 private JButton b = new JButton("Swap Menus");

 class BL implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 JMenuBar m = getJMenuBar();

 setJMenuBar(m == mb1 ? mb2 : mb1);

 validate(); // Refresh the frame

 }

 }

 class ML implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 JMenuItem target = (JMenuItem)e.getSource();

 String actionCommand = target.getActionCommand();

 if(actionCommand.equals("Open")) {

 String s = t.getText();

 boolean chosen = false;

 for(String flavor : flavors)

 if(s.equals(flavor))

 chosen = true;

 if(!chosen)

 t.setText("Choose a flavor first!");

 else

 t.setText("Opening " + s + ". Mmm, mm!");

 }

Graphical User Interfaces 1351

 }

 }

 class FL implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 JMenuItem target = (JMenuItem)e.getSource();

 t.setText(target.getText());

 }

 }

 // Alternatively, you can create a different

 // class for each different MenuItem. Then you

 // don't have to figure out which one it is:

 class FooL implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 t.setText("Foo selected");

 }

 }

 class BarL implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 t.setText("Bar selected");

 }

 }

 class BazL implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 t.setText("Baz selected");

 }

 }

 class CMIL implements ItemListener {

 public void itemStateChanged(ItemEvent e) {

 JCheckBoxMenuItem target =

 (JCheckBoxMenuItem)e.getSource();

 String actionCommand = target.getActionCommand();

 if(actionCommand.equals("Guard"))

 t.setText("Guard the Ice Cream! " +

 "Guarding is " + target.getState());

 else if(actionCommand.equals("Hide"))

 t.setText("Hide the Ice Cream! " +

 "Is it hidden? " + target.getState());

 }

 }

 public Menus() {

 ML ml = new ML();

 CMIL cmil = new CMIL();

 safety[0].setActionCommand("Guard");

 safety[0].setMnemonic(KeyEvent.VK_G);

1352 Thinking in Java Bruce Eckel

 safety[0].addItemListener(cmil);

 safety[1].setActionCommand("Hide");

 safety[1].setMnemonic(KeyEvent.VK_H);

 safety[1].addItemListener(cmil);

 other[0].addActionListener(new FooL());

 other[1].addActionListener(new BarL());

 other[2].addActionListener(new BazL());

 FL fl = new FL();

 int n = 0;

 for(String flavor : flavors) {

 JMenuItem mi = new JMenuItem(flavor);

 mi.addActionListener(fl);

 m.add(mi);

 // Add separators at intervals:

 if((n++ + 1) % 3 == 0)

 m.addSeparator();

 }

 for(JCheckBoxMenuItem sfty : safety)

 s.add(sfty);

 s.setMnemonic(KeyEvent.VK_A);

 f.add(s);

 f.setMnemonic(KeyEvent.VK_F);

 for(int i = 0; i < file.length; i++) {

 file[i].addActionListener(ml);

 f.add(file[i]);

 }

 mb1.add(f);

 mb1.add(m);

 setJMenuBar(mb1);

 t.setEditable(false);

 add(t, BorderLayout.CENTER);

 // Set up the system for swapping menus:

 b.addActionListener(new BL());

 b.setMnemonic(KeyEvent.VK_S);

 add(b, BorderLayout.NORTH);

 for(JMenuItem oth : other)

 fooBar.add(oth);

 fooBar.setMnemonic(KeyEvent.VK_B);

 mb2.add(fooBar);

 }

 public static void main(String[] args) {

 run(new Menus(), 300, 200);

 }

} ///:~

Graphical User Interfaces 1353

In this program I placed the menu items into arrays and then stepped

through each array, calling add() for each JMenuItem. This makes adding

or subtracting a menu item somewhat less tedious.

This program creates two JMenuBars to demonstrate that menu bars can

be actively swapped while the program is running. You can see how a

JMenuBar is made up of JMenus, and each JMenu is made up of

JMenuItems, JCheckBoxMenuItems, or even other JMenus (which

produce submenus). When a JMenuBar is assembled, it can be installed

into the current program with the setJMenuBar() method. Note that when

the button is pressed, it checks to see which menu is currently installed by

calling getJMenuBar(), then it puts the other menu bar in its place.

When testing for “Open,” notice that spelling and capitalization are critical,

but Java signals no error if there is no match with “Open.” This kind of string

comparison is a source of programming errors.

The checking and unchecking of the menu items is taken care of

automatically. The code handling the JCheckBoxMenuItems shows two

different ways to determine what was checked: string matching (the less-safe

approach, although you’ll see it used) and matching on the event target

object. As shown, the getState() method can be used to reveal the state. You

can also change the state of a JCheckBoxMenuItem with setState().

The events for menus are a bit inconsistent and can lead to confusion:

JMenuItems use ActionListeners, but JCheckBoxMenuItems use

ItemListeners. The JMenu objects can also support ActionListeners,

but that’s not usually helpful. In general, you’ll attach listeners to each

JMenuItem, JCheckBoxMenuItem, or JRadioButtonMenuItem, but

the example shows ItemListeners and ActionListeners attached to the

various menu components.

Swing supports mnemonics, or “keyboard shortcuts,” so you can select

anything derived from AbstractButton (button, menu item, etc.) by using

the keyboard instead of the mouse. These are quite simple; for JMenuItem,

you can use the overloaded constructor that takes, as a second argument, the

identifier for the key. However, most AbstractButtons do not have

constructors like this, so the more general way to solve the problem is to use

the setMnemonic() method. The preceding example adds mnemonics to

the button and some of the menu items; shortcut indicators automatically

appear on the components.

1354 Thinking in Java Bruce Eckel

You can also see the use of setActionCommand(). This seems a bit

strange because in each case, the “action command” is exactly the same as the

label on the menu component. Why not just use the label instead of this

alternative string? The problem is internationalization. If you retarget this

program to another language, you want to change only the label in the menu,

and not change the code (which would no doubt introduce new errors). By

using setActionCommand(), the “action command” can be immutable,

but the menu label can change. All the code works with the “action

command,” so it’s unaffected by changes to the menu labels. Note that in this

program, not all the menu components are examined for their action

commands, so those that aren’t do not have their action command set.

The bulk of the work happens in the listeners. BL performs the JMenuBar

swapping. In ML, the “figure out who rang” approach is taken by getting the

source of the ActionEvent and casting it to a JMenuItem, then getting the

action command string to pass it through a cascaded if statement.

The FL listener is simple even though it’s handling all the different flavors in

the flavor menu. This approach is useful if you have enough simplicity in your

logic, but in general, you’ll want to take the approach used with FooL, BarL,

and BazL, in which each is attached to only a single menu component, so no

extra detection logic is necessary, and you know exactly who called the

listener. Even with the profusion of classes generated this way, the code

inside tends to be smaller, and the process is more foolproof.

You can see that menu code quickly gets long-winded and messy. This is

another case where the use of a GUI builder is the appropriate solution. A

good tool will also handle the maintenance of the menus.

Exercise 19: (3) Modify Menus.java to use radio buttons instead of
check boxes on the menus.

Exercise 20: (6) Create a program that breaks a text file into words.
Distribute those words as labels on menus and submenus.

Pop-up menus
The most straightforward way to implement a JPopupMenu is to create an

inner class that extends MouseAdapter, then add an object of that inner

class to each component that you want to produce pop-up behavior:

//: gui/Popup.java

Graphical User Interfaces 1355

// Creating popup menus with Swing.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import static net.mindview.util.SwingConsole.*;

public class Popup extends JFrame {

 private JPopupMenu popup = new JPopupMenu();

 private JTextField t = new JTextField(10);

 public Popup() {

 setLayout(new FlowLayout());

 add(t);

 ActionListener al = new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 t.setText(((JMenuItem)e.getSource()).getText());

 }

 };

 JMenuItem m = new JMenuItem("Hither");

 m.addActionListener(al);

 popup.add(m);

 m = new JMenuItem("Yon");

 m.addActionListener(al);

 popup.add(m);

 m = new JMenuItem("Afar");

 m.addActionListener(al);

 popup.add(m);

 popup.addSeparator();

 m = new JMenuItem("Stay Here");

 m.addActionListener(al);

 popup.add(m);

 PopupListener pl = new PopupListener();

 addMouseListener(pl);

 t.addMouseListener(pl);

 }

 class PopupListener extends MouseAdapter {

 public void mousePressed(MouseEvent e) {

 maybeShowPopup(e);

 }

 public void mouseReleased(MouseEvent e) {

 maybeShowPopup(e);

 }

 private void maybeShowPopup(MouseEvent e) {

 if(e.isPopupTrigger())

 popup.show(e.getComponent(), e.getX(), e.getY());

1356 Thinking in Java Bruce Eckel

 }

 }

 public static void main(String[] args) {

 run(new Popup(), 300, 200);

 }

} ///:~

The same ActionListener is added to each JMenuItem. It fetches the text

from the menu label and inserts it into the JTextField.

Drawing
In a good GUI framework, drawing should be reasonably easy—and it is, in

the Swing library. The problem with any drawing example is that the

calculations that determine where things go are typically a lot more

complicated than the calls to the drawing routines, and these calculations are

often mixed together with the drawing calls, so it can seem that the interface

is more complicated than it actually is.

For simplicity, consider the problem of representing data on the screen—

here, the data will be provided by the built-in Math.sin() method, which

produces a mathematical sine function. To make things a little more

interesting, and to further demonstrate how easy it is to use Swing

components, a slider will be placed at the bottom of the form to dynamically

control the number of sine wave cycles that are displayed. In addition, if you

resize the window, you’ll see that the sine wave refits itself to the new window

size.

Although any JComponent may be painted and thus used as a canvas, if you

just want a straightforward drawing surface, you will typically inherit from a

JPanel. The only method you need to override is paintComponent(),

which is called whenever that component must be repainted (you normally

don’t need to worry about this, because the decision is managed by Swing).

When it is called, Swing passes a Graphics object to the method, and you

can then use this object to draw or paint on the surface.

In the following example, all the intelligence concerning painting is in the

SineDraw class; the SineWave class simply configures the program and

the slider control. Inside SineDraw, the setCycles() method provides a

hook to allow another object—the slider control, in this case—to control the

number of cycles.

Graphical User Interfaces 1357

//: gui/SineWave.java

// Drawing with Swing, using a JSlider.

import javax.swing.*;

import javax.swing.event.*;

import java.awt.*;

import static net.mindview.util.SwingConsole.*;

class SineDraw extends JPanel {

 private static final int SCALEFACTOR = 200;

 private int cycles;

 private int points;

 private double[] sines;

 private int[] pts;

 public SineDraw() { setCycles(5); }

 public void paintComponent(Graphics g) {

 super.paintComponent(g);

 int maxWidth = getWidth();

 double hstep = (double)maxWidth / (double)points;

 int maxHeight = getHeight();

 pts = new int[points];

 for(int i = 0; i < points; i++)

 pts[i] =

 (int)(sines[i] * maxHeight/2 * .95 + maxHeight/2);

 g.setColor(Color.RED);

 for(int i = 1; i < points; i++) {

 int x1 = (int)((i - 1) * hstep);

 int x2 = (int)(i * hstep);

 int y1 = pts[i-1];

 int y2 = pts[i];

 g.drawLine(x1, y1, x2, y2);

 }

 }

 public void setCycles(int newCycles) {

 cycles = newCycles;

 points = SCALEFACTOR * cycles * 2;

 sines = new double[points];

 for(int i = 0; i < points; i++) {

 double radians = (Math.PI / SCALEFACTOR) * i;

 sines[i] = Math.sin(radians);

 }

 repaint();

 }

}

1358 Thinking in Java Bruce Eckel

public class SineWave extends JFrame {

 private SineDraw sines = new SineDraw();

 private JSlider adjustCycles = new JSlider(1, 30, 5);

 public SineWave() {

 add(sines);

 adjustCycles.addChangeListener(new ChangeListener() {

 public void stateChanged(ChangeEvent e) {

 sines.setCycles(

 ((JSlider)e.getSource()).getValue());

 }

 });

 add(BorderLayout.SOUTH, adjustCycles);

 }

 public static void main(String[] args) {

 run(new SineWave(), 700, 400);

 }

} ///:~

All of the fields and arrays are used in the calculation of the sine wave points;

cycles indicates the number of complete sine waves desired, points contains

the total number of points that will be graphed, sines contains the sine

function values, and pts contains the y-coordinates of the points that will be

drawn on the JPanel. The setCycles() method creates the arrays according

to the number of points needed and fills the sines array with numbers. By

calling repaint(), setCycles() forces paintComponent() to be called so

the rest of the calculation and redraw will take place.

The first thing you must do when you override paintComponent() is to

call the base-class version of the method. Then you are free to do whatever

you like; normally, this means using the Graphics methods that you can find

in the documentation for java.awt.Graphics (in the JDK documentation

from http://java.oracle.com) to draw and paint pixels onto the JPanel.

Here, you can see that almost all the code is involved in performing the

calculations; the only two method calls that actually manipulate the screen

are setColor() and drawLine(). You will probably have a similar

experience when creating your own program that displays graphical data;

you’ll spend most of your time figuring out what it is you want to draw, but

the actual drawing process will be quite simple.

When I created this program, the bulk of my time was spent in getting the

sine wave to display. Once I did that, I thought it would be nice to

dynamically change the number of cycles. My programming experiences

Graphical User Interfaces 1359

when trying to do such things in other languages made me a bit reluctant to

try this, but it turned out to be the easiest part of the project. I created a

JSlider (the arguments are the leftmost value of the JSlider, the rightmost

value, and the starting value, respectively, but there are other constructors as

well) and dropped it into the JFrame. Then I looked at the JDK

documentation and noticed that the only listener was the

addChangeListener, which was triggered whenever the slider was changed

enough for it to produce a different value. The only method for this was the

obviously named stateChanged(), which provided a ChangeEvent object

so that I could look backward to the source of the change and find the new

value. Calling the sines object’s setCycles() enabled the new value to be

incorporated and the JPanel to be redrawn.

In general, you will find that most of your Swing problems can be solved by

following a similar process, and you’ll find that it’s generally quite simple,

even if you haven’t used a particular component before.

If your problem is more complex, there are other, more sophisticated

alternatives for drawing, including third-party JavaBeans components and

the Java 2D API. These solutions are beyond the scope of this book, but you

should look them up if your drawing code becomes too onerous.

Exercise 21: (5) Modify SineWave.java to turn SineDraw into a
JavaBean by adding “getter” and “setter” methods.

Exercise 22: (7) Create an application using SwingConsole. This
should have three sliders, one each for the red, green, and blue values in
java.awt.Color. The rest of the form should be a JPanel that displays the
color determined by the three sliders. Also include non-editable text fields
that show the current RGB values.

Exercise 23: (8) Using SineWave.java as a starting point, create a
program that displays a rotating square on the screen. One slider should
control the speed of rotation, and a second slider should control the size of
the box.

Exercise 24: (7) Remember the “sketching box” toy with two knobs, one
that controls the vertical movement of the drawing point, and one that
controls the horizontal movement? Create a variation of this toy, using
SineWave.java to get you started. Instead of knobs, use sliders. Add a
button that will erase the entire sketch.

1360 Thinking in Java Bruce Eckel

Exercise 25: (8) Starting with SineWave.java, create a program (an
application using the SwingConsole class) that draws an animated sine
wave that appears to scroll past the viewing window like an oscilloscope,
driving the animation with a java.util.Timer. The speed of the animation
should be controlled with a javax.swing.JSlider control.

Exercise 26: (5) Modify the previous exercise so that multiple sine wave
panels are created within the application. The number of sine wave panels
should be controlled by command-line parameters.

Exercise 27: (5) Modify Exercise 25 so that the javax.swing.Timer
class is used to drive the animation. Note the difference between this and
java.util.Timer.

Exercise 28: (7) Create a dice class (just a class, without a GUI). Create
five dice and throw them repeatedly. Draw the curve showing the sum of the
dots from each throw, and show the curve evolving dynamically as you throw
more and more times.

Dialog boxes
A dialog box is a window that pops up out of another window. Its purpose is

to deal with some specific issue without cluttering the original window with

those details. Dialog boxes are commonly used in windowed programming

environments.

To create a dialog box, you inherit from JDialog, which is just another kind

of Window, like a JFrame. A JDialog has a layout manager (which

defaults to BorderLayout), and you add event listeners to deal with events.

Here’s a very simple example:

//: gui/Dialogs.java

// Creating and using Dialog Boxes.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import static net.mindview.util.SwingConsole.*;

class MyDialog extends JDialog {

 public MyDialog(JFrame parent) {

 super(parent, "My dialog", true);

 setLayout(new FlowLayout());

 add(new JLabel("Here is my dialog"));

 JButton ok = new JButton("OK");

Graphical User Interfaces 1361

 ok.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 dispose(); // Closes the dialog

 }

 });

 add(ok);

 setSize(150,125);

 }

}

public class Dialogs extends JFrame {

 private JButton b1 = new JButton("Dialog Box");

 private MyDialog dlg = new MyDialog(null);

 public Dialogs() {

 b1.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 dlg.setVisible(true);

 }

 });

 add(b1);

 }

 public static void main(String[] args) {

 run(new Dialogs(), 125, 75);

 }

} ///:~

Once the JDialog is created, setVisible(true) must be called to display and

activate it. When the dialog window is closed, you must release the resources

used by the dialog’s window by calling dispose().

The following example is more complex; the dialog box is made up of a grid

(using GridLayout) of a special kind of button that is defined here as class

ToeButton. This button draws a frame around itself and, depending on its

state, a blank, an “x,” or an “o” in the middle. It starts out blank, and then

depending on whose turn it is, changes to an “x” or an “o.” However, it will

also flip back and forth between “x” and “o” when you click on the button, to

provide an interesting variation on the tic-tac-toe concept. In addition, the

dialog box can be set up for any number of rows and columns by changing

numbers in the main application window.

//: gui/TicTacToe.java

// Dialog boxes and creating your own components.

import javax.swing.*;

import java.awt.*;

1362 Thinking in Java Bruce Eckel

import java.awt.event.*;

import static net.mindview.util.SwingConsole.*;

public class TicTacToe extends JFrame {

 private JTextField

 rows = new JTextField("3"),

 cols = new JTextField("3");

 private enum State { BLANK, XX, OO }

 static class ToeDialog extends JDialog {

 private State turn = State.XX; // Start with x's turn

 ToeDialog(int cellsWide, int cellsHigh) {

 setTitle("The game itself");

 setLayout(new GridLayout(cellsWide, cellsHigh));

 for(int i = 0; i < cellsWide * cellsHigh; i++)

 add(new ToeButton());

 setSize(cellsWide * 50, cellsHigh * 50);

 setDefaultCloseOperation(DISPOSE_ON_CLOSE);

 }

 class ToeButton extends JPanel {

 private State state = State.BLANK;

 public ToeButton() { addMouseListener(new ML()); }

 public void paintComponent(Graphics g) {

 super.paintComponent(g);

 int

 x1 = 0, y1 = 0,

 x2 = getSize().width - 1,

 y2 = getSize().height - 1;

 g.drawRect(x1, y1, x2, y2);

 x1 = x2/4;

 y1 = y2/4;

 int wide = x2/2, high = y2/2;

 if(state == State.XX) {

 g.drawLine(x1, y1, x1 + wide, y1 + high);

 g.drawLine(x1, y1 + high, x1 + wide, y1);

 }

 if(state == State.OO)

 g.drawOval(x1, y1, x1 + wide/2, y1 + high/2);

 }

 class ML extends MouseAdapter {

 public void mousePressed(MouseEvent e) {

 if(state == State.BLANK) {

 state = turn;

 turn =

 (turn == State.XX ? State.OO : State.XX);

Graphical User Interfaces 1363

 }

 else

 state =

 (state == State.XX ? State.OO : State.XX);

 repaint();

 }

 }

 }

 }

 class BL implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 JDialog d = new ToeDialog(

 new Integer(rows.getText()),

 new Integer(cols.getText()));

 d.setVisible(true);

 }

 }

 public TicTacToe() {

 JPanel p = new JPanel();

 p.setLayout(new GridLayout(2,2));

 p.add(new JLabel("Rows", JLabel.CENTER));

 p.add(rows);

 p.add(new JLabel("Columns", JLabel.CENTER));

 p.add(cols);

 add(p, BorderLayout.NORTH);

 JButton b = new JButton("go");

 b.addActionListener(new BL());

 add(b, BorderLayout.SOUTH);

 }

 public static void main(String[] args) {

 run(new TicTacToe(), 200, 200);

 }

} ///:~

Because statics can only be at the outer level of the class, inner classes

cannot have static data or nested classes.

The paintComponent() method draws the square around the panel and

the “x” or the “o.” This is full of tedious calculations, but it’s straightforward.

A mouse click is captured by the MouseListener, which first checks to see if

the panel has anything written on it. If not, the parent window is queried to

find out whose turn it is, which establishes the state of the ToeButton. Via

the inner-class mechanism, the ToeButton then reaches back into the

1364 Thinking in Java Bruce Eckel

parent and changes the turn. If the button is already displaying an “x” or an

“o,” then that is flopped. You can see in these calculations the convenient use

of the ternary if-else described in the Operators chapter. After a state

change, the ToeButton is repainted.

The constructor for ToeDialog is quite simple: It adds into a GridLayout

as many buttons as you request, then resizes it for 50 pixels on a side for each

button.

TicTacToe sets up the whole application by creating the JTextFields (for

inputting the rows and columns of the button grid) and the “go” button with

its ActionListener. When the button is pressed, the data in the

JTextFields must be fetched, and, since they are in String form, turned

into ints using the Integer constructor that takes a String argument.

File dialogs
Some operating systems have a number of special built-in dialog boxes to

handle the selection of things such as fonts, colors, printers, and the like.

Virtually all graphical operating systems support the opening and saving of

files, so Java’s JFileChooser encapsulates these for easy use.

The following application exercises two forms of JFileChooser dialogs, one

for opening and one for saving. Most of the code should by now be familiar,

and all the interesting activities happen in the action listeners for the two

different button clicks:

//: gui/FileChooserTest.java

// Demonstration of File dialog boxes.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import static net.mindview.util.SwingConsole.*;

public class FileChooserTest extends JFrame {

 private JTextField

 fileName = new JTextField(),

 dir = new JTextField();

 private JButton

 open = new JButton("Open"),

 save = new JButton("Save");

 public FileChooserTest() {

 JPanel p = new JPanel();

Graphical User Interfaces 1365

 open.addActionListener(new OpenL());

 p.add(open);

 save.addActionListener(new SaveL());

 p.add(save);

 add(p, BorderLayout.SOUTH);

 dir.setEditable(false);

 fileName.setEditable(false);

 p = new JPanel();

 p.setLayout(new GridLayout(2,1));

 p.add(fileName);

 p.add(dir);

 add(p, BorderLayout.NORTH);

 }

 class OpenL implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 JFileChooser c = new JFileChooser();

 // Demonstrate "Open" dialog:

 int rVal = c.showOpenDialog(FileChooserTest.this);

 if(rVal == JFileChooser.APPROVE_OPTION) {

 fileName.setText(c.getSelectedFile().getName());

 dir.setText(c.getCurrentDirectory().toString());

 }

 if(rVal == JFileChooser.CANCEL_OPTION) {

 fileName.setText("You pressed cancel");

 dir.setText("");

 }

 }

 }

 class SaveL implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 JFileChooser c = new JFileChooser();

 // Demonstrate "Save" dialog:

 int rVal = c.showSaveDialog(FileChooserTest.this);

 if(rVal == JFileChooser.APPROVE_OPTION) {

 fileName.setText(c.getSelectedFile().getName());

 dir.setText(c.getCurrentDirectory().toString());

 }

 if(rVal == JFileChooser.CANCEL_OPTION) {

 fileName.setText("You pressed cancel");

 dir.setText("");

 }

 }

 }

 public static void main(String[] args) {

1366 Thinking in Java Bruce Eckel

 run(new FileChooserTest(), 250, 150);

 }

} ///:~

Note that there are many variations you can apply to JFileChooser,

including filters to narrow the file names that you will allow.

For an “open file” dialog, you call showOpenDialog(), and for a “save file”

dialog, you call showSaveDialog(). These commands don’t return until the

dialog is closed. The JFileChooser object still exists, so you can read data

from it. The methods getSelectedFile() and getCurrentDirectory() are

two ways you can interrogate the results of the operation. If these return

null, it means the user canceled out of the dialog.

Exercise 29: (3) In the JDK documentation for javax.swing, look up the
JColorChooser. Write a program with a button that brings up the color
chooser as a dialog.

HTML on Swing components
Any component that can take text can also take HTML text, which it will

reformat according to HTML rules. This means you can very easily add fancy

text to a Swing component. For example:

//: gui/HTMLButton.java

// Putting HTML text on Swing components.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import static net.mindview.util.SwingConsole.*;

public class HTMLButton extends JFrame {

 private JButton b = new JButton(

 "<html>" +

 "<center>Hello!
<i>Press me now!");

 public HTMLButton() {

 b.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 add(new JLabel("<html>" +

 "<i>Kapow!"));

 // Force a re-layout to include the new label:

 validate();

 }

 });

Graphical User Interfaces 1367

 setLayout(new FlowLayout());

 add(b);

 }

 public static void main(String[] args) {

 run(new HTMLButton(), 200, 500);

 }

} ///:~

You must start the text with “<html>,” and then you can use normal HTML

tags. Note that you are not forced to include the normal closing tags.

The ActionListener adds a new JLabel to the form, which also contains

HTML text. However, this label is not added during construction, so you

must call the container’s validate() method in order to force a re-layout of

the components (and thus the display of the new label).

You can also use HTML text for JTabbedPane, JMenuItem, JToolTip,

JRadioButton, and JCheckBox.

Exercise 30: (3) Write a program that shows the use of HTML text on all
the items from the previous paragraph.

Sliders and progress bars
A slider (which has already been used in SineWave.java) allows the user to

input data by moving a point back and forth, which is intuitive in some

situations (volume controls, for example). A progress bar displays data in a

relative fashion from “full” to “empty” so the user gets a perspective. My

favorite example for these is to simply hook the slider to the progress bar so

when you move the slider, the progress bar changes accordingly. The

following example also demonstrates the ProgressMonitor, a more full-

featured pop-up dialog:

//: gui/Progress.java

// Using sliders, progress bars and progress monitors.

import javax.swing.*;

import javax.swing.border.*;

import javax.swing.event.*;

import java.awt.*;

import static net.mindview.util.SwingConsole.*;

public class Progress extends JFrame {

 private JProgressBar pb = new JProgressBar();

 private ProgressMonitor pm = new ProgressMonitor(

1368 Thinking in Java Bruce Eckel

 this, "Monitoring Progress", "Test", 0, 100);

 private JSlider sb =

 new JSlider(JSlider.HORIZONTAL, 0, 100, 60);

 public Progress() {

 setLayout(new GridLayout(2,1));

 add(pb);

 pm.setProgress(0);

 pm.setMillisToPopup(1000);

 sb.setValue(0);

 sb.setPaintTicks(true);

 sb.setMajorTickSpacing(20);

 sb.setMinorTickSpacing(5);

 sb.setBorder(new TitledBorder("Slide Me"));

 pb.setModel(sb.getModel()); // Share model

 add(sb);

 sb.addChangeListener(new ChangeListener() {

 public void stateChanged(ChangeEvent e) {

 pm.setProgress(sb.getValue());

 }

 });

 }

 public static void main(String[] args) {

 run(new Progress(), 300, 200);

 }

} ///:~

The key to hooking the slider and progress bar components together is in

sharing their model, in the line:

pb.setModel(sb.getModel());

Of course, you could also control the two using a listener, but using the model

is more straightforward for simple situations. The ProgressMonitor does

not have a model and so the listener approach is required. Note that the

ProgressMonitor only moves forward, and once it reaches the end it closes.

The JProgressBar is fairly straightforward, but the JSlider has a lot of

options, such as the orientation and major and minor tick marks. Notice how

straightforward it is to add a titled border.

Exercise 31: (8) Create an “asymptotic progress indicator” that gets
slower and slower as it approaches the finish point. Add random erratic
behavior so it will periodically look like it’s starting to speed up.

Graphical User Interfaces 1369

Exercise 32: (6) Modify Progress.java so that it does not share models,
but instead uses a listener to connect the slider and progress bar.

Selecting look & feel
“Pluggable look & feel” allows your program to emulate the look and feel of

various operating environments. You can even dynamically change the look

and feel while the program is executing. However, you generally just want to

do one of two things: either select the “cross-platform” look and feel (which is

Swing’s “metal”), or select the look and feel for the system you are currently

on so your Java program looks like it was created specifically for that system

(this is almost certainly the best choice in most cases, to avoid confounding

the user). The code to select either of these behaviors is quite simple, but you

must execute it before you create any visual components, because the

components will be made based on the current look and feel, and will not be

changed just because you happen to change the look and feel midway during

the program (that process is more complicated and uncommon, and is

relegated to Swing-specific books).

Actually, if you want to use the cross-platform (“metal”) look and feel that is

characteristic of Swing programs, you don’t have to do anything—it’s the

default. But if you want instead to use the current operating environment’s

look and feel,8 you just insert the following code, typically at the beginning of

your main(), but at least before any components are added:

try {

 UIManager.setLookAndFeel(

 UIManager.getSystemLookAndFeelClassName());

} catch(Exception e) {

 throw new RuntimeException(e);

}

You don’t actually need anything in the catch clause because the

UIManager will default to the cross-platform look and feel if your attempts

to set up any of the alternatives fail. However, during debugging, the

exception can be quite useful, so you may at least want to see some results via

the catch clause.

8 You may argue about whether the Swing rendering does justice to your operating
environment.

1370 Thinking in Java Bruce Eckel

Here is a program that takes a command-line argument to select a look and

feel, and shows how several different components look under the chosen look

and feel:

//: gui/LookAndFeel.java

// Selecting different looks & feels.

// {Args: motif}

import javax.swing.*;

import java.awt.*;

import static net.mindview.util.SwingConsole.*;

public class LookAndFeel extends JFrame {

 private String[] choices =

 "Eeny Meeny Minnie Mickey Moe Larry Curly".split(" ");

 private Component[] samples = {

 new JButton("JButton"),

 new JTextField("JTextField"),

 new JLabel("JLabel"),

 new JCheckBox("JCheckBox"),

 new JRadioButton("Radio"),

 new JComboBox(choices),

 new JList(choices),

 };

 public LookAndFeel() {

 super("Look And Feel");

 setLayout(new FlowLayout());

 for(Component component : samples)

 add(component);

 }

 private static void usageError() {

 System.out.println(

 "Usage:LookAndFeel [cross|system|motif]");

 System.exit(1);

 }

 public static void main(String[] args) {

 if(args.length == 0) usageError();

 if(args[0].equals("cross")) {

 try {

 UIManager.setLookAndFeel(UIManager.

 getCrossPlatformLookAndFeelClassName());

 } catch(Exception e) {

 e.printStackTrace();

 }

 } else if(args[0].equals("system")) {

Graphical User Interfaces 1371

 try {

 UIManager.setLookAndFeel(UIManager.

 getSystemLookAndFeelClassName());

 } catch(Exception e) {

 e.printStackTrace();

 }

 } else if(args[0].equals("motif")) {

 try {

 UIManager.setLookAndFeel("com.sun.java."+

 "swing.plaf.motif.MotifLookAndFeel");

 } catch(Exception e) {

 e.printStackTrace();

 }

 } else usageError();

 // Note the look & feel must be set before

 // any components are created.

 run(new LookAndFeel(), 300, 300);

 }

} ///:~

You can see that one option is to explicitly specify a string for a look and feel,

as seen with MotifLookAndFeel. However, that one and the default

“metal” look and feel are the only ones that can legally be used on any

platform; even though there are look-and-feel strings for Windows and

Macintosh, those can only be used on their respective platforms (these are

produced when you call getSystemLookAndFeelClassName() and

you’re on that particular platform).

It is also possible to create a custom look and feel package, for example, if you

are building a framework for a company that wants a distinctive appearance.

This is a big job and is far beyond the scope of this book (in fact, you’ll

discover it is beyond the scope of many dedicated Swing books!).

JNLP and Java Web Start
It’s possible to sign an applet for security purposes. Signed applets are

powerful and can effectively take the place of an application, but they must

run inside a Web browser. This requires the extra overhead of the browser

running on the client machine, and also means that the user interface of the

1372 Thinking in Java Bruce Eckel

applet is limited and often visually confusing. The Web browser has its own

set of menus and toolbars, which will appear above the applet.9

The Java Network Launch Protocol (JNLP) solves the problem without

sacrificing the advantages of applets. With a JNLP application, you can

download and install a standalone Java application onto the client’s machine.

This can be run from the command prompt, a desktop icon, or the application

manager that is installed with your JNLP implementation. The application

can even be run from the Web site from which it was originally downloaded.

A JNLP application can dynamically download resources from the Internet at

run time, and can automatically check the version if the user is connected to

the Internet. This means that it has all of the advantages of an applet together

with the advantages of standalone applications.

Like applets, JNLP applications need to be treated with some caution by the

client’s system. Because of this, JNLP applications are subject to the same

sandbox security restrictions as applets. Like applets, they can be deployed in

signed JAR files, giving the user the option to trust the signer. Unlike applets,

if they are deployed in an unsigned JAR file, they can still request access to

certain resources of the client’s system by means of services in the JNLP API.

The user must approve these requests during program execution.

JNLP describes a protocol, not an implementation, so you will need an

implementation in order to use it. Java Web Start, or JAWS, is the freely

available official reference implementation and is distributed as part of Java

SE5. If you are using it for development, you must ensure that the JAR file

(javaws.jar) is in your classpath; the easiest solution is to add javaws.jar

to your classpath from its normal Java installation path in jre/lib. If you are

deploying your JNLP application from a Web server, you must ensure that

your server recognizes the MIME type application/x-java-jnlp-file. If you

are using a recent version of the Tomcat server

(http://jakarta.apache.org/tomcat) this is pre-configured. Consult the user

guide for your particular server.

Creating a JNLP application is not difficult. You create a standard application

that is archived in a JAR file, and then you provide a launch file, which is a

simple XML file that gives the client system all the information it needs to

9 Jeremy Meyer developed this section.

Graphical User Interfaces 1373

download and install your application. If you choose not to sign your JAR file,

then you must use the services supplied by the JNLP API for each type of

resource you want to access on the user’s machine.

Here is a variation of FileChooserTest.java using the JNLP services to

open the file chooser, so that the class can be deployed as a JNLP application

in an unsigned JAR file.

//: gui/jnlp/JnlpFileChooser.java

// Opening files on a local machine with JNLP.

// {Requires: javax.jnlp.FileOpenService;

// You must have javaws.jar in your classpath}

// To create the jnlpfilechooser.jar file, do this:

// cd ..

// cd ..

// jar cvf gui/jnlp/jnlpfilechooser.jar gui/jnlp/*.class

package gui.jnlp;

import javax.jnlp.*;

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.io.*;

public class JnlpFileChooser extends JFrame {

 private JTextField fileName = new JTextField();

 private JButton

 open = new JButton("Open"),

 save = new JButton("Save");

 private JEditorPane ep = new JEditorPane();

 private JScrollPane jsp = new JScrollPane();

 private FileContents fileContents;

 public JnlpFileChooser() {

 JPanel p = new JPanel();

 open.addActionListener(new OpenL());

 p.add(open);

 save.addActionListener(new SaveL());

 p.add(save);

 jsp.getViewport().add(ep);

 add(jsp, BorderLayout.CENTER);

 add(p, BorderLayout.SOUTH);

 fileName.setEditable(false);

 p = new JPanel();

 p.setLayout(new GridLayout(2,1));

 p.add(fileName);

1374 Thinking in Java Bruce Eckel

 add(p, BorderLayout.NORTH);

 ep.setContentType("text");

 save.setEnabled(false);

 }

 class OpenL implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 FileOpenService fs = null;

 try {

 fs = (FileOpenService)ServiceManager.lookup(

 "javax.jnlp.FileOpenService");

 } catch(UnavailableServiceException use) {

 throw new RuntimeException(use);

 }

 if(fs != null) {

 try {

 fileContents = fs.openFileDialog(".",

 new String[]{"txt", "*"});

 if(fileContents == null)

 return;

 fileName.setText(fileContents.getName());

 ep.read(fileContents.getInputStream(), null);

 } catch(Exception exc) {

 throw new RuntimeException(exc);

 }

 save.setEnabled(true);

 }

 }

 }

 class SaveL implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 FileSaveService fs = null;

 try {

 fs = (FileSaveService)ServiceManager.lookup(

 "javax.jnlp.FileSaveService");

 } catch(UnavailableServiceException use) {

 throw new RuntimeException(use);

 }

 if(fs != null) {

 try {

 fileContents = fs.saveFileDialog(".",

 new String[]{"txt"},

 new ByteArrayInputStream(

 ep.getText().getBytes()),

 fileContents.getName());

Graphical User Interfaces 1375

 if(fileContents == null)

 return;

 fileName.setText(fileContents.getName());

 } catch(Exception exc) {

 throw new RuntimeException(exc);

 }

 }

 }

 }

 public static void main(String[] args) {

 JnlpFileChooser fc = new JnlpFileChooser();

 fc.setSize(400, 300);

 fc.setVisible(true);

 }

} ///:~

Note that the FileOpenService and the FileSaveService classes are

imported from the javax.jnlp package and that nowhere in the code is the

JFileChooser dialog box referred to directly. The two services used here

must be requested using the ServiceManager.lookup() method, and the

resources on the client system can only be accessed via the objects returned

from this method. In this case, the files on the client’s file system are being

written to and read from using the FileContent interface, provided by the

JNLP. Any attempt to access the resources directly by using, say, a File or a

FileReader object would cause a SecurityException to be thrown in the

same way that it would if you tried to use them from an unsigned applet. If

you want to use these classes and not be restricted to the JNLP service

interfaces, you must sign the JAR file.

The commented jar command in JnlpFileChooser.java will produce the

necessary JAR file. Here is an appropriate launch file for the preceding

example.

//:! gui/jnlp/filechooser.jnlp

<?xml version="1.0" encoding="UTF-8"?>

<jnlp spec = "1.0+"

 codebase="file:C:/AAA-TIJ4/code/gui/jnlp"

 href="filechooser.jnlp">

 <information>

 <title>FileChooser demo application</title>

 <vendor>Mindview Inc.</vendor>

 <description>

 Jnlp File chooser Application

1376 Thinking in Java Bruce Eckel

 </description>

 <description kind="short">

 Demonstrates opening, reading and writing a text file

 </description>

 <icon href="mindview.gif"/>

 <offline-allowed/>

 </information>

 <resources>

 <j2se version="1.3+"

 href="http://java.oracle.com/products/autodl/j2se"/>

 <jar href="jnlpfilechooser.jar" download="eager"/>

 </resources>

 <application-desc

 main-class="gui.jnlp.JnlpFileChooser"/>

</jnlp>

///:~

You’ll find this launch file in the source-code download for this book (from

www.MindViewLLC.com) saved as filechooser.jnlp without the first and

last lines, in the same directory as the JAR file. As you can see, it is an XML

file with one <jnlp> tag. This has a few sub-elements, which are mostly self-

explanatory.

The spec attribute of the jnlp element tells the client system what version of

the JNLP the application can be run with. The codebase attribute points to

the URL where this launch file and the resources can be found. Here, it points

to a directory on the local machine, which is a good means of testing the

application. Note that you’ll need to change this path so that it indicates the

appropriate directory on your machine, in order for the program to load

successfully. The href attribute must specify the name of this file.

The information tag has various sub-elements that provide information

about the application. These are used by the Java Web Start administrative

console or equivalent, which installs the JNLP application and allows the user

to run it from the command line, make shortcuts, and so on.

The resources tag serves a similar purpose as the applet tag in an HTML

file. The j2se sub-element specifies the J2SE version required to run the

application, and the jar sub-element specifies the JAR file in which the class

is archived. The jar element has an attribute download, which can have the

values “eager” or “lazy” that tell the JNLP implementation whether or not the

entire archive needs to be downloaded before the application can be run.

Graphical User Interfaces 1377

The application-desc attribute tells the JNLP implementation which class

is the executable class, or entry point, to the JAR file.

Another useful sub-element of the jnlp tag is the security tag, not shown

here. Here’s what a security tag looks like:

<security>

 <all-permissions/>

<security/>

You use the security tag when your application is deployed in a signed JAR

file. It is not needed in the preceding example because the local resources are

all accessed via the JNLP services.

There are a few other tags available, the details of which can be found in the

specification at

https://docs.oracle.com/javase/8/docs/technotes/guides/javaws/.

To launch the program, you need a download page containing a hypertext

link to the .jnlp file. Here’s what it looks like (without the first and last lines):

//:! gui/jnlp/filechooser.html

<html>

Follow the instructions in JnlpFileChooser.java to

build jnlpfilechooser.jar, then:

click here

</html>

///:~

Once you have downloaded the application once, you can configure it by

using the administrative console. If you are using Java Web Start on

Windows, then you will be prompted to make a shortcut to your application

the second time you use it. This behavior is configurable.

Only two of the JNLP services are covered here, but there are seven services

in the current release. Each is designed for a specific task such as printing, or

cutting and pasting to the clipboard. You can find more information at

http://java.oracle.com.

Concurrency & Swing
When you program with Swing you’re using threads. You saw this at the

beginning of this chapter when you learned that everything should be

submitted to the Swing event dispatch thread through

1378 Thinking in Java Bruce Eckel

SwingUtilities.invokeLater(). However, the fact that you don’t have to

explicitly create a Thread object means that threading issues can catch you

by surprise. You must keep in mind that there is a Swing event dispatch

thread, which is always there, handling all the Swing events by pulling each

one out of the event queue and executing it in turn. By remembering the

event dispatch thread you’ll help ensure that your application won’t suffer

from deadlocking or race conditions.

This section addresses threading issues that arise when working with Swing.

Long-running tasks
One of the most fundamental mistakes you can make when programming

with a graphical user interface is to accidentally use the event dispatch thread

to run a long task. Here’s a simple example:

//: gui/LongRunningTask.java

// A badly designed program.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.util.concurrent.*;

import static net.mindview.util.SwingConsole.*;

public class LongRunningTask extends JFrame {

 private JButton

 b1 = new JButton("Start Long Running Task"),

 b2 = new JButton("End Long Running Task");

 public LongRunningTask() {

 b1.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent evt) {

 try {

 TimeUnit.SECONDS.sleep(3);

 } catch(InterruptedException e) {

 System.out.println("Task interrupted");

 return;

 }

 System.out.println("Task completed");

 }

 });

 b2.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent evt) {

 // Interrupt yourself?

 Thread.currentThread().interrupt();

Graphical User Interfaces 1379

 }

 });

 setLayout(new FlowLayout());

 add(b1);

 add(b2);

 }

 public static void main(String[] args) {

 run(new LongRunningTask(), 200, 150);

 }

} ///:~

When you press b1, the event dispatch thread is suddenly occupied in

performing the long-running task. You’ll see that the button doesn’t even pop

back out, because the event dispatch thread that would normally repaint the

screen is busy. And you cannot do anything else, like press b2, because the

program won’t respond until b1’s task is complete and the event dispatch

thread is once again available. The code in b2 is a flawed attempt to solve the

problem by interrupting the event dispatch thread.

The answer, of course, is to execute long-running processes in separate

threads. Here, the single-thread Executor is used, which automatically

queues pending tasks and executes them one at a time:

//: gui/InterruptableLongRunningTask.java

// Long-running tasks in threads.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.util.concurrent.*;

import static net.mindview.util.SwingConsole.*;

class Task implements Runnable {

 private static int counter = 0;

 private final int id = counter++;

 public void run() {

 System.out.println(this + " started");

 try {

 TimeUnit.SECONDS.sleep(3);

 } catch(InterruptedException e) {

 System.out.println(this + " interrupted");

 return;

 }

 System.out.println(this + " completed");

 }

1380 Thinking in Java Bruce Eckel

 public String toString() { return "Task " + id; }

 public long id() { return id; }

};

public class InterruptableLongRunningTask extends JFrame {

 private JButton

 b1 = new JButton("Start Long Running Task"),

 b2 = new JButton("End Long Running Task");

 ExecutorService executor =

 Executors.newSingleThreadExecutor();

 public InterruptableLongRunningTask() {

 b1.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 Task task = new Task();

 executor.execute(task);

 System.out.println(task + " added to the queue");

 }

 });

 b2.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 executor.shutdownNow(); // Heavy-handed

 }

 });

 setLayout(new FlowLayout());

 add(b1);

 add(b2);

 }

 public static void main(String[] args) {

 run(new InterruptableLongRunningTask(), 200, 150);

 }

} ///:~

This is better, but when you press b2, it calls shutdownNow() on the

ExecutorService, thereby disabling it. If you try to add more tasks, you get

an exception. Thus, pressing b2 makes the program inoperable. What we’d

like to do is to shut down the current task (and cancel pending tasks) without

stopping everything. The Java SE5 Callable/Future mechanism described

in the Concurrency chapter is just what we need. We’ll define a new class

called TaskManager, which contains tuples that hold the Callable

representing the task and the Future that comes back from the Callable.

The reason the tuple is necessary is because it allows us to keep track of the

original task, so that we may get extra information that is not available from

the Future. Here it is:

Graphical User Interfaces 1381

//: net/mindview/util/TaskItem.java

// A Future and the Callable that produced it.

package net.mindview.util;

import java.util.concurrent.*;

public class TaskItem<R,C extends Callable<R>> {

 public final Future<R> future;

 public final C task;

 public TaskItem(Future<R> future, C task) {

 this.future = future;

 this.task = task;

 }

} ///:~

In the java.util.concurrent library, the task is not available via the Future

by default because the task would not necessarily still be around when you get

the result from the Future. Here, we force the task to stay around by storing

it.

TaskManager is placed in net.mindview.util so it is available as a

general-purpose utility:

//: net/mindview/util/TaskManager.java

// Managing and executing a queue of tasks.

package net.mindview.util;

import java.util.concurrent.*;

import java.util.*;

public class TaskManager<R,C extends Callable<R>>

extends ArrayList<TaskItem<R,C>> {

 private ExecutorService exec =

 Executors.newSingleThreadExecutor();

 public void add(C task) {

 add(new TaskItem<R,C>(exec.submit(task),task));

 }

 public List<R> getResults() {

 Iterator<TaskItem<R,C>> items = iterator();

 List<R> results = new ArrayList<R>();

 while(items.hasNext()) {

 TaskItem<R,C> item = items.next();

 if(item.future.isDone()) {

 try {

 results.add(item.future.get());

 } catch(Exception e) {

 throw new RuntimeException(e);

1382 Thinking in Java Bruce Eckel

 }

 items.remove();

 }

 }

 return results;

 }

 public List<String> purge() {

 Iterator<TaskItem<R,C>> items = iterator();

 List<String> results = new ArrayList<String>();

 while(items.hasNext()) {

 TaskItem<R,C> item = items.next();

 // Leave completed tasks for results reporting:

 if(!item.future.isDone()) {

 results.add("Cancelling " + item.task);

 item.future.cancel(true); // May interrupt

 items.remove();

 }

 }

 return results;

 }

} ///:~

TaskManager is an ArrayList of TaskItem. It also contains a single-

thread Executor, so when you call add() with a Callable, it submits the

Callable and stores the resulting Future along with the original task. This

way, if you need to do anything with the task, you have a reference to that

task. As a simple example, in purge() the task’s toString() is used.

This can now be used to manage the long-running tasks in our example:

//: gui/InterruptableLongRunningCallable.java

// Using Callables for long-running tasks.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.util.concurrent.*;

import net.mindview.util.*;

import static net.mindview.util.SwingConsole.*;

class CallableTask extends Task

implements Callable<String> {

 public String call() {

 run();

 return "Return value of " + this;

 }

Graphical User Interfaces 1383

}

public class

InterruptableLongRunningCallable extends JFrame {

 private JButton

 b1 = new JButton("Start Long Running Task"),

 b2 = new JButton("End Long Running Task"),

 b3 = new JButton("Get results");

 private TaskManager<String,CallableTask> manager =

 new TaskManager<String,CallableTask>();

 public InterruptableLongRunningCallable() {

 b1.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 CallableTask task = new CallableTask();

 manager.add(task);

 System.out.println(task + " added to the queue");

 }

 });

 b2.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 for(String result : manager.purge())

 System.out.println(result);

 }

 });

 b3.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 // Sample call to a Task method:

 for(TaskItem<String,CallableTask> tt :

 manager)

 tt.task.id(); // No cast required

 for(String result : manager.getResults())

 System.out.println(result);

 }

 });

 setLayout(new FlowLayout());

 add(b1);

 add(b2);

 add(b3);

 }

 public static void main(String[] args) {

 run(new InterruptableLongRunningCallable(), 200, 150);

 }

} ///:~

1384 Thinking in Java Bruce Eckel

As you can see, CallableTask does exactly the same thing as Task except

that it returns a result—in this case a String identifying the task.

Non-Swing utilities (not part of the standard Java distribution) called

SwingWorker (from the Sun Web site) and Foxtrot (from

http://foxtrot.sourceforge.net) were created to solve a similar problem, but

at this writing, those utilities had not been modified to take advantage of the

Java SE5 Callable/Future mechanism.

It’s often important to give the end user some kind of visual cue that a task is

running, and of its progress. This is normally done through either a

JProgressBar or a ProgressMonitor. This example uses a

ProgressMonitor:

//: gui/MonitoredLongRunningCallable.java

// Displaying task progress with ProgressMonitors.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.util.concurrent.*;

import net.mindview.util.*;

import static net.mindview.util.SwingConsole.*;

class MonitoredCallable implements Callable<String> {

 private static int counter = 0;

 private final int id = counter++;

 private final ProgressMonitor monitor;

 private final static int MAX = 8;

 public MonitoredCallable(ProgressMonitor monitor) {

 this.monitor = monitor;

 monitor.setNote(toString());

 monitor.setMaximum(MAX - 1);

 monitor.setMillisToPopup(500);

 }

 public String call() {

 System.out.println(this + " started");

 try {

 for(int i = 0; i < MAX; i++) {

 TimeUnit.MILLISECONDS.sleep(500);

 if(monitor.isCanceled())

 Thread.currentThread().interrupt();

 final int progress = i;

 SwingUtilities.invokeLater(

 new Runnable() {

Graphical User Interfaces 1385

 public void run() {

 monitor.setProgress(progress);

 }

 }

);

 }

 } catch(InterruptedException e) {

 monitor.close();

 System.out.println(this + " interrupted");

 return "Result: " + this + " interrupted";

 }

 System.out.println(this + " completed");

 return "Result: " + this + " completed";

 }

 public String toString() { return "Task " + id; }

};

public class MonitoredLongRunningCallable extends JFrame {

 private JButton

 b1 = new JButton("Start Long Running Task"),

 b2 = new JButton("End Long Running Task"),

 b3 = new JButton("Get results");

 private TaskManager<String,MonitoredCallable> manager =

 new TaskManager<String,MonitoredCallable>();

 public MonitoredLongRunningCallable() {

 b1.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 MonitoredCallable task = new MonitoredCallable(

 new ProgressMonitor(

 MonitoredLongRunningCallable.this,

 "Long-Running Task", "", 0, 0)

);

 manager.add(task);

 System.out.println(task + " added to the queue");

 }

 });

 b2.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 for(String result : manager.purge())

 System.out.println(result);

 }

 });

 b3.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

1386 Thinking in Java Bruce Eckel

 for(String result : manager.getResults())

 System.out.println(result);

 }

 });

 setLayout(new FlowLayout());

 add(b1);

 add(b2);

 add(b3);

 }

 public static void main(String[] args) {

 run(new MonitoredLongRunningCallable(), 200, 500);

 }

} ///:~

The MonitoredCallable constructor takes a ProgressMonitor as an

argument, and its call() method updates the ProgressMonitor every half

second. Notice that a MonitoredCallable is a separate task and thus should

not try to control the UI directly, so SwingUtilities.invokeLater() is used

to submit the progress change information to the monitor. Sun’s Swing

Tutorial (on http://java.oracle.com) shows an alternate approach of using a

Swing Timer, which checks the status of the task and updates the monitor.

If the “cancel” button is pressed on the monitor, monitor.isCanceled()

will return true. Here, the task just calls interrupt() on its own thread,

which will land it in the catch clause where the monitor is terminated with

the close() method.

The rest of the code is effectively the same as before, except for the creation of

the ProgressMonitor as part of the MonitoredLongRunningCallable

constructor.

Exercise 33: (6) Modify InterruptableLongRunningCallable.java
so that it runs all the tasks in parallel rather than sequentially.

Visual threading
The following example makes a Runnable JPanel class that paints different

colors on itself. This application is set up to take values from the command

line to determine how big the grid of colors is and how long to sleep()

between color changes. By playing with these values, you may discover some

interesting and possibly inexplicable features in the threading

implementation on your platform:

Graphical User Interfaces 1387

//: gui/ColorBoxes.java

// A visual demonstration of threading.

import javax.swing.*;

import java.awt.*;

import java.util.concurrent.*;

import java.util.*;

import static net.mindview.util.SwingConsole.*;

class CBox extends JPanel implements Runnable {

 private int pause;

 private static Random rand = new Random();

 private Color color = new Color(0);

 public void paintComponent(Graphics g) {

 g.setColor(color);

 Dimension s = getSize();

 g.fillRect(0, 0, s.width, s.height);

 }

 public CBox(int pause) { this.pause = pause; }

 public void run() {

 try {

 while(!Thread.interrupted()) {

 color = new Color(rand.nextInt(0x1000000));

 repaint(); // Asynchronously request a paint()

 TimeUnit.MILLISECONDS.sleep(pause);

 }

 } catch(InterruptedException e) {

 // Acceptable way to exit

 }

 }

}

public class ColorBoxes extends JFrame {

 private int grid = 12;

 private int pause = 50;

 private static ExecutorService exec =

 Executors.newCachedThreadPool();

 public void setUp() {

 setLayout(new GridLayout(grid, grid));

 for(int i = 0; i < grid * grid; i++) {

 CBox cb = new CBox(pause);

 add(cb);

 exec.execute(cb);

 }

 }

1388 Thinking in Java Bruce Eckel

 public static void main(String[] args) {

 ColorBoxes boxes = new ColorBoxes();

 if(args.length > 0)

 boxes.grid = new Integer(args[0]);

 if(args.length > 1)

 boxes.pause = new Integer(args[1]);

 boxes.setUp();

 run(boxes, 500, 400);

 }

} ///:~

ColorBoxes configures a GridLayout so that it has grid cells in each

dimension. Then it adds the appropriate number of CBox objects to fill the

grid, passing the pause value to each one. In main() you can see how

pause and grid have default values that can be changed if you pass in

command-line arguments.

CBox is where all the work takes place. This is inherited from JPanel and it

implements the Runnable interface so that each JPanel can also be an

independent task. These tasks are driven by a thread pool ExecutorService.

The current cell color is color. Colors are created using the Color

constructor that takes a 24-bit number, which in this case is created

randomly.

paintComponent() is quite simple; it just sets the color to color and fills

the entire JPanel with that color.

In run(), you see the infinite loop that sets the color to a new random color

and then calls repaint() to show it. Then the thread goes to sleep() for the

amount of time specified on the command line.

The call to repaint() in run() deserves examination. At first glance, it may

seem like we’re creating a lot of threads, each of which is forcing a paint. It

might appear that this is violating the principle that you should only submit

tasks to the event queue. However, these threads are not actually modifying

the shared resource. When they call repaint(), it doesn’t force a paint at

that time, but only sets a “dirty flag” indicating that the next time the event

dispatch thread is ready to repaint things, this area is a candidate for

repainting. Thus the program doesn’t cause Swing threading problems.

When the event dispatch thread actually does perform a paint(), it first calls

paintComponent(), then paintBorder() and paintChildren(). If you

Graphical User Interfaces 1389

need to override paint() in a derived component, you must remember to call

the base-class version of paint() so that the proper actions are still

performed.

Precisely because this design is flexible and threading is tied to each JPanel

element, you can experiment by making as many threads as you want. (In

reality, there is a restriction imposed by the number of threads your JVM can

comfortably handle.)

This program also makes an interesting benchmark, since it can show

dramatic performance and behavioral differences between one JVM

threading implementation and another, as well as on different platforms.

Exercise 34: (4) Modify ColorBoxes.java so that it begins by sprinkling
points (“stars”) across the canvas, then randomly changes the colors of those
“stars.”

Visual programming
and JavaBeans

So far in this book you’ve seen how valuable Java is for creating reusable

pieces of code. The “most reusable” unit of code has been the class, since it

comprises a cohesive unit of characteristics (fields) and behaviors (methods)

that can be reused either directly via composition or through inheritance.

Inheritance and polymorphism are essential parts of object-oriented

programming, but in the majority of cases when you’re putting together an

application, what you really want is components that do exactly what you

need. You’d like to drop these parts into your design like the chips an

electronic engineer puts on a circuit board. It seems that there should be

some way to accelerate this “modular assembly” style of programming.

“Visual programming” first became successful—very successful—with

Microsoft’s Visual BASIC (VB), followed by a second-generation design in

Borland’s Delphi (which was the primary inspiration for the JavaBeans

design). With these programming tools the components are represented

visually, which makes sense since they usually display some kind of visual

component such as a button or a text field. The visual representation, in fact,

is often exactly the way the component will look in the running program. So

part of the process of visual programming involves dragging a component

from a palette and dropping it onto your form. The Application Builder

1390 Thinking in Java Bruce Eckel

Integrated Development Environment (IDE) writes code as you do this, and

that code will cause the component to be created in the running program.

Simply dropping the component onto a form is usually not enough to

complete the program. Often, you must change the characteristics of a

component, such as its color, the text that’s on it, the database it’s connected

to, etc. Characteristics that can be modified at design time are referred to as

properties. You can manipulate the properties of your component inside the

IDE, and when you create the program, this configuration data is saved so

that it can be rejuvenated when the program is started.

By now you’re probably used to the idea that an object is more than

characteristics; it’s also a set of behaviors. At design time, the behaviors of a

visual component are partially represented by events, meaning “Here’s

something that can happen to the component.” Ordinarily, you decide what

you want to happen when an event occurs by tying code to that event.

Here’s the critical part: The IDE uses reflection to dynamically interrogate the

component and find out which properties and events the component

supports. Once it knows what they are, it can display the properties and allow

you to change them (saving the state when you build the program), and also

display the events. In general, you do something like double-clicking on an

event, and the IDE creates a code body and ties it to that particular event. All

you must do at that point is write the code that executes when the event

occurs.

All this adds up to a lot of work that’s done for you by the IDE. As a result,

you can focus on what the program looks like and what it is supposed to do,

and rely on the IDE to manage the connection details for you. The reason that

visual programming tools have been so successful is that they dramatically

speed up the process of building an application—certainly the user interface,

but often other portions of the application as well.

What is a JavaBean?
After the dust settles, then, a component is really just a block of code,

typically embodied in a class. The key issue is the ability for the IDE to

discover the properties and events for that component. To create a VB

component, the programmer originally had to write a fairly complicated piece

of code following certain conventions to expose the properties and events (it

got easier as the years passed). Delphi was a second-generation visual

Graphical User Interfaces 1391

programming tool, and the language was actively designed around visual

programming, so it was much easier to create a visual component. However,

Java has brought the creation of visual components to its most advanced

state with JavaBeans, because a Bean is just a class. You don’t have to write

any extra code or use special language extensions in order to make something

a Bean. The only thing you need to do, in fact, is slightly modify the way that

you name your methods. It is the method name that tells the IDE whether

this is a property, an event, or just an ordinary method.

In the JDK documentation, this naming convention is mistakenly termed a

“design pattern.” This is unfortunate, since design patterns (see On Java 8 at

www.MindViewLLC.com) are challenging enough without this sort of

confusion. It’s not a design pattern, it’s just a naming convention, and it’s

fairly simple:

1. For a property named xxx, you typically create two methods:

getXxx() and setXxx(). The first letter after “get” or “set” will

automatically be lowercased by any tools that look at the methods,

in order to produce the property name. The type produced by the

“get” method is the same as the type of the argument to the “set”

method. The name of the property and the type for the “get” and

“set” are not related.

2. For a boolean property, you can use the “get” and “set” approach

above, but you can also use “is” instead of “get.”

3. Ordinary methods of the Bean don’t conform to the above naming

convention, but they’re public.

4. For events, you use the Swing “listener” approach. It’s exactly the

same as you’ve been seeing:

addBounceListener(BounceListener) and

removeBounceListener(BounceListener) to handle a

BounceEvent. Most of the time, the built-in events and listeners

will satisfy your needs, but you can also create your own events

and listener interfaces.

We can use these guidelines to create a simple Bean:

//: frogbean/Frog.java

// A trivial JavaBean.

package frogbean;

1392 Thinking in Java Bruce Eckel

import java.awt.*;

import java.awt.event.*;

class Spots {}

public class Frog {

 private int jumps;

 private Color color;

 private Spots spots;

 private boolean jmpr;

 public int getJumps() { return jumps; }

 public void setJumps(int newJumps) {

 jumps = newJumps;

 }

 public Color getColor() { return color; }

 public void setColor(Color newColor) {

 color = newColor;

 }

 public Spots getSpots() { return spots; }

 public void setSpots(Spots newSpots) {

 spots = newSpots;

 }

 public boolean isJumper() { return jmpr; }

 public void setJumper(boolean j) { jmpr = j; }

 public void addActionListener(ActionListener l) {

 //...

 }

 public void removeActionListener(ActionListener l) {

 // ...

 }

 public void addKeyListener(KeyListener l) {

 // ...

 }

 public void removeKeyListener(KeyListener l) {

 // ...

 }

 // An "ordinary" public method:

 public void croak() {

 System.out.println("Ribbet!");

 }

} ///:~

First, you can see that it’s just a class. Usually, all your fields will be private

and accessible only through methods and properties. Following the naming

Graphical User Interfaces 1393

convention, the properties are jumps, color, spots, and jumper (notice

the case change of the first letter in the property name). Although the name of

the internal identifier is the same as the name of the property in the first

three cases, in jumper you can see that the property name does not force you

to use any particular identifier for internal variables (or, indeed, to even have

any internal variables for that property).

The events this Bean handles are ActionEvent and KeyEvent, based on the

naming of the “add” and “remove” methods for the associated listener.

Finally, you can see that the ordinary method croak() is still part of the

Bean simply because it’s a public method, not because it conforms to any

naming scheme.

Extracting BeanInfo

with the Introspector
One of the most critical parts of the JavaBean scheme occurs when you drag a

Bean off a palette and drop it onto a form. The IDE must be able to create the

Bean (which it can do if there’s a default constructor) and then, without

access to the Bean’s source code, extract all the necessary information to

create the property sheet and event handlers.

Part of the solution is already evident from the Type Information chapter:

Java reflection discovers all the methods of an unknown class. This is perfect

for solving the JavaBean problem without requiring extra language keywords

like those in other visual programming languages. In fact, one of the prime

reasons that reflection was added to Java was to support JavaBeans

(although reflection also supports object serialization and Remote Method

Invocation, and is helpful in ordinary programming). So you might expect

that the creator of the IDE would have to reflect each Bean and hunt through

its methods to find the properties and events for that Bean.

This is certainly possible, but the Java designers wanted to provide a

standard tool, not only to make Beans simpler to use, but also to provide a

standard gateway to the creation of more complex Beans. This tool is the

Introspector class, and the most important method in this class is the

static getBeanInfo(). You pass a Class reference to this method, and it

fully interrogates that class and returns a BeanInfo object which you can

dissect to find properties, methods, and events.

1394 Thinking in Java Bruce Eckel

Usually, you won’t care about any of this; you’ll probably get most of your

Beans off the shelf, and you won’t need to know all the magic that’s going on

underneath. You’ll simply drag Beans onto your form, then configure their

properties and write handlers for the events of interest. However, it’s an

educational exercise to use the Introspector to display information about a

Bean. Here’s a tool that does it:

//: gui/BeanDumper.java

// Introspecting a Bean.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.beans.*;

import java.lang.reflect.*;

import static net.mindview.util.SwingConsole.*;

public class BeanDumper extends JFrame {

 private JTextField query = new JTextField(20);

 private JTextArea results = new JTextArea();

 public void print(String s) { results.append(s + "\n"); }

 public void dump(Class<?> bean) {

 results.setText("");

 BeanInfo bi = null;

 try {

 bi = Introspector.getBeanInfo(bean, Object.class);

 } catch(IntrospectionException e) {

 print("Couldn't introspect " + bean.getName());

 return;

 }

 for(PropertyDescriptor d: bi.getPropertyDescriptors()){

 Class<?> p = d.getPropertyType();

 if(p == null) continue;

 print("Property type:\n " + p.getName() + "\n" +

 "Property name:\n " + d.getName());

 Method readMethod = d.getReadMethod();

 if(readMethod != null)

 print("Read method:\n " + readMethod);

 Method writeMethod = d.getWriteMethod();

 if(writeMethod != null)

 print("Write method:\n " + writeMethod);

 print("====================");

 }

 print("Public methods:");

 for(MethodDescriptor m : bi.getMethodDescriptors())

Graphical User Interfaces 1395

 print(m.getMethod().toString());

 print("======================");

 print("Event support:");

 for(EventSetDescriptor e: bi.getEventSetDescriptors()){

 print("Listener type:\n " +

 e.getListenerType().getName());

 for(Method lm : e.getListenerMethods())

 print("Listener method:\n " + lm.getName());

 for(MethodDescriptor lmd :

 e.getListenerMethodDescriptors())

 print("Method descriptor:\n " + lmd.getMethod());

 Method addListener= e.getAddListenerMethod();

 print("Add Listener Method:\n " + addListener);

 Method removeListener = e.getRemoveListenerMethod();

 print("Remove Listener Method:\n "+ removeListener);

 print("====================");

 }

 }

 class Dumper implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 String name = query.getText();

 Class<?> c = null;

 try {

 c = Class.forName(name);

 } catch(ClassNotFoundException ex) {

 results.setText("Couldn't find " + name);

 return;

 }

 dump(c);

 }

 }

 public BeanDumper() {

 JPanel p = new JPanel();

 p.setLayout(new FlowLayout());

 p.add(new JLabel("Qualified bean name:"));

 p.add(query);

 add(BorderLayout.NORTH, p);

 add(new JScrollPane(results));

 Dumper dmpr = new Dumper();

 query.addActionListener(dmpr);

 query.setText("frogbean.Frog");

 // Force evaluation

 dmpr.actionPerformed(new ActionEvent(dmpr, 0, ""));

 }

1396 Thinking in Java Bruce Eckel

 public static void main(String[] args) {

 run(new BeanDumper(), 600, 500);

 }

} ///:~

BeanDumper.dump() does all the work. First it tries to create a

BeanInfo object, and if successful, calls the methods of BeanInfo that

produce information about properties, methods, and events. In

Introspector.getBeanInfo(), you’ll see there is a second argument that

tells the Introspector where to stop in the inheritance hierarchy. Here, it

stops before it parses all the methods from Object, since we’re not interested

in seeing those.

For properties, getPropertyDescriptors() returns an array of

PropertyDescriptors. For each PropertyDescriptor, you can call

getPropertyType() to find the class of object that is passed in and out via

the property methods. Then, for each property, you can get its pseudonym

(extracted from the method names) with getName(), the method for

reading with getReadMethod(), and the method for writing with

getWriteMethod(). These last two methods return a Method object that

can actually be used to invoke the corresponding method on the object (this is

part of reflection).

For the public methods (including the property methods),

getMethodDescriptors() returns an array of MethodDescriptors. For

each one, you can get the associated Method object and print its name.

For the events, getEventSetDescriptors() returns an array of

EventSetDescriptors. Each of these can be queried to find out the class of

the listener, the methods of that listener class, and the add- and remove-

listener methods. The BeanDumper program displays all of this

information.

Upon startup, the program forces the evaluation of frogbean.Frog. The

output, after unnecessary details have been removed, is:

Property type:

 Color

Property name:

 color

Read method:

 public Color getColor()

Write method:

Graphical User Interfaces 1397

 public void setColor(Color)

====================

Property type:

 boolean

Property name:

 jumper

Read method:

 public boolean isJumper()

Write method:

 public void setJumper(boolean)

====================

Property type:

 int

Property name:

 jumps

Read method:

 public int getJumps()

Write method:

 public void setJumps(int)

====================

Property type:

 frogbean.Spots

Property name:

 spots

Read method:

 public frogbean.Spots getSpots()

Write method:

 public void setSpots(frogbean.Spots)

====================

Public methods:

public void setSpots(frogbean.Spots)

public void setColor(Color)

public void setJumps(int)

public boolean isJumper()

public frogbean.Spots getSpots()

public void croak()

public void addActionListener(ActionListener)

public void addKeyListener(KeyListener)

public Color getColor()

public void setJumper(boolean)

public int getJumps()

public void removeActionListener(ActionListener)

public void removeKeyListener(KeyListener)

======================

1398 Thinking in Java Bruce Eckel

Event support:

Listener type:

 KeyListener

Listener method:

 keyPressed

Listener method:

 keyReleased

Listener method:

 keyTyped

Method descriptor:

 public abstract void keyPressed(KeyEvent)

Method descriptor:

 public abstract void keyReleased(KeyEvent)

Method descriptor:

 public abstract void keyTyped(KeyEvent)

Add Listener Method:

 public void addKeyListener(KeyListener)

Remove Listener Method:

 public void removeKeyListener(KeyListener)

====================

Listener type:

 ActionListener

Listener method:

 actionPerformed

Method descriptor:

 public abstract void actionPerformed(ActionEvent)

Add Listener Method:

 public void addActionListener(ActionListener)

Remove Listener Method:

 public void removeActionListener(ActionListener)

====================

This reveals most of what the Introspector sees as it produces a BeanInfo

object from your Bean. You can see that the type of the property and its name

are independent. Notice the lowercasing of the property name. (The only time

this doesn’t occur is when the property name begins with more than one

capital letter in a row.) And remember that the method names you’re seeing

here (such as the read and write methods) are actually produced from a

Method object that can be used to invoke the associated method on the

object.

The public method list includes the methods that are not associated with a

property or an event, such as croak(), as well as those that are. These are all

Graphical User Interfaces 1399

the methods that you can call programmatically for a Bean, and the IDE can

choose to list all of these while you’re making method calls, to ease your task.

Finally, you can see that the events are fully parsed out into the listener, its

methods, and the add- and remove-listener methods. Basically, once you

have the BeanInfo, you can find out everything of importance for the Bean.

You can also call the methods for that Bean, even though you don’t have any

other information except the object (again, a feature of reflection).

A more sophisticated Bean
This next example is slightly more sophisticated, albeit frivolous. It’s a

JPanel that draws a little circle around the mouse whenever the mouse is

moved. When you press the mouse, the word “Bang!” appears in the middle

of the screen, and an action listener is fired.

The properties you can change are the size of the circle as well as the color,

size, and text of the word that is displayed when you press the mouse. A

BangBean also has its own addActionListener() and

removeActionListener(), so you can attach your own listener that will be

fired when the user clicks on the BangBean. You should recognize the

property and event support:

//: bangbean/BangBean.java

// A graphical Bean.

package bangbean;

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.io.*;

import java.util.*;

public class

BangBean extends JPanel implements Serializable {

 private int xm, ym;

 private int cSize = 20; // Circle size

 private String text = "Bang!";

 private int fontSize = 48;

 private Color tColor = Color.RED;

 private ActionListener actionListener;

 public BangBean() {

 addMouseListener(new ML());

 addMouseMotionListener(new MML());

1400 Thinking in Java Bruce Eckel

 }

 public int getCircleSize() { return cSize; }

 public void setCircleSize(int newSize) {

 cSize = newSize;

 }

 public String getBangText() { return text; }

 public void setBangText(String newText) {

 text = newText;

 }

 public int getFontSize() { return fontSize; }

 public void setFontSize(int newSize) {

 fontSize = newSize;

 }

 public Color getTextColor() { return tColor; }

 public void setTextColor(Color newColor) {

 tColor = newColor;

 }

 public void paintComponent(Graphics g) {

 super.paintComponent(g);

 g.setColor(Color.BLACK);

 g.drawOval(xm - cSize/2, ym - cSize/2, cSize, cSize);

 }

 // This is a unicast listener, which is

 // the simplest form of listener management:

 public void addActionListener(ActionListener l)

 throws TooManyListenersException {

 if(actionListener != null)

 throw new TooManyListenersException();

 actionListener = l;

 }

 public void removeActionListener(ActionListener l) {

 actionListener = null;

 }

 class ML extends MouseAdapter {

 public void mousePressed(MouseEvent e) {

 Graphics g = getGraphics();

 g.setColor(tColor);

 g.setFont(

 new Font("TimesRoman", Font.BOLD, fontSize));

 int width = g.getFontMetrics().stringWidth(text);

 g.drawString(text, (getSize().width - width) /2,

 getSize().height/2);

 g.dispose();

 // Call the listener's method:

Graphical User Interfaces 1401

 if(actionListener != null)

 actionListener.actionPerformed(

 new ActionEvent(BangBean.this,

 ActionEvent.ACTION_PERFORMED, null));

 }

 }

 class MML extends MouseMotionAdapter {

 public void mouseMoved(MouseEvent e) {

 xm = e.getX();

 ym = e.getY();

 repaint();

 }

 }

 public Dimension getPreferredSize() {

 return new Dimension(200, 200);

 }

} ///:~

The first thing you’ll notice is that BangBean implements the Serializable

interface. This means that the IDE can “pickle” all the information for the

BangBean by using serialization after the program designer has adjusted

the values of the properties. When the Bean is created as part of the running

application, these “pickled” properties are restored so that you get exactly

what you designed.

When you look at the signature for addActionListener(), you’ll see that it

can throw a TooManyListenersException. This indicates that it is

unicast, which means it notifies only one listener when the event occurs.

Ordinarily, you’ll use multicast events so that many listeners can be notified

of an event. However, that runs into threading issues, so it will be revisited in

the next section, “JavaBeans and synchronization.” In the meantime, a

unicast event sidesteps the problem.

When you click the mouse, the text is put in the middle of the BangBean,

and if the actionListener field is not null, its actionPerformed() is

called, creating a new ActionEvent object in the process. Whenever the

mouse is moved, its new coordinates are captured and the canvas is repainted

(erasing any text that’s on the canvas, as you’ll see).

Here is the BangBeanTest class to test the Bean:

//: bangbean/BangBeanTest.java

// {Timeout: 5} Abort after 5 seconds when testing

1402 Thinking in Java Bruce Eckel

package bangbean;

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.util.*;

import static net.mindview.util.SwingConsole.*;

public class BangBeanTest extends JFrame {

 private JTextField txt = new JTextField(20);

 // During testing, report actions:

 class BBL implements ActionListener {

 private int count = 0;

 public void actionPerformed(ActionEvent e) {

 txt.setText("BangBean action "+ count++);

 }

 }

 public BangBeanTest() {

 BangBean bb = new BangBean();

 try {

 bb.addActionListener(new BBL());

 } catch(TooManyListenersException e) {

 txt.setText("Too many listeners");

 }

 add(bb);

 add(BorderLayout.SOUTH, txt);

 }

 public static void main(String[] args) {

 run(new BangBeanTest(), 400, 500);

 }

} ///:~

When a Bean is used in an IDE, this class will not be used, but it’s helpful to

provide a rapid testing method for each of your Beans. BangBeanTest

places a BangBean within the JFrame, attaching a simple

ActionListener to the BangBean to print an event count to the

JTextField whenever an ActionEvent occurs. Usually, of course, the IDE

would create most of the code that uses the Bean.

When you run the BangBean through BeanDumper or put the

BangBean inside a Bean-enabled development environment, you’ll notice

that there are many more properties and actions than are evident from the

preceding code. That’s because BangBean is inherited from JPanel, and

JPanel is also a Bean, so you’re seeing its properties and events as well.

Graphical User Interfaces 1403

Exercise 35: (6) Locate and download one or more of the free GUI
builder development environments available on the Internet, or use a
commercial product if you own one. Discover what is necessary to add
BangBean to this environment and to use it.

JavaBeans and synchronization
Whenever you create a Bean, you must assume that it will run in a

multithreaded environment. This means that:

1. Whenever possible, all the public methods of a Bean should be

synchronized. Of course, this incurs the synchronized runtime

overhead (which has been significantly reduced in recent versions

of the JDK). If that’s a problem, methods that will not cause

problems in critical sections can be left unsynchronized, but

keep in mind that such methods are not always obvious. Methods

that qualify tend to be small (such as getCircleSize() in the

following example) and/or “atomic”; that is, the method call

executes in such a short amount of code that the object cannot be

changed during execution (but review the Concurrency chapter—

what you may think is atomic might not be). Making such methods

unsynchronized might not have a significant effect on the

execution speed of your program. You’re better off making all

public methods of a Bean synchronized and removing the

synchronized keyword on a method only when you know for

sure that it makes a difference and that you can safely remove the

keyword.

2. When firing a multicast event to a bunch of listeners interested in

that event, you must assume that listeners might be added or

removed while moving through the list.

The first point is fairly straightforward, but the second point requires a little

more thought. BangBean.java ducked out of the concurrency question by

ignoring the synchronized keyword and making the event unicast. Here is a

modified version that works in a multithreaded environment and uses

multicasting for events:

//: gui/BangBean2.java

// You should write your Beans this way so they

// can run in a multithreaded environment.

import javax.swing.*;

1404 Thinking in Java Bruce Eckel

import java.awt.*;

import java.awt.event.*;

import java.io.*;

import java.util.*;

import static net.mindview.util.SwingConsole.*;

public class BangBean2 extends JPanel

implements Serializable {

 private int xm, ym;

 private int cSize = 20; // Circle size

 private String text = "Bang!";

 private int fontSize = 48;

 private Color tColor = Color.RED;

 private ArrayList<ActionListener> actionListeners =

 new ArrayList<ActionListener>();

 public BangBean2() {

 addMouseListener(new ML());

 addMouseMotionListener(new MM());

 }

 public synchronized int getCircleSize() { return cSize; }

 public synchronized void setCircleSize(int newSize) {

 cSize = newSize;

 }

 public synchronized String getBangText() { return text; }

 public synchronized void setBangText(String newText) {

 text = newText;

 }

 public synchronized int getFontSize(){ return fontSize; }

 public synchronized void setFontSize(int newSize) {

 fontSize = newSize;

 }

 public synchronized Color getTextColor(){ return tColor;}

 public synchronized void setTextColor(Color newColor) {

 tColor = newColor;

 }

 public void paintComponent(Graphics g) {

 super.paintComponent(g);

 g.setColor(Color.BLACK);

 g.drawOval(xm - cSize/2, ym - cSize/2, cSize, cSize);

 }

 // This is a multicast listener, which is more typically

 // used than the unicast approach taken in BangBean.java:

 public synchronized void

 addActionListener(ActionListener l) {

Graphical User Interfaces 1405

 actionListeners.add(l);

 }

 public synchronized void

 removeActionListener(ActionListener l) {

 actionListeners.remove(l);

 }

 // Notice this isn't synchronized:

 public void notifyListeners() {

 ActionEvent a = new ActionEvent(BangBean2.this,

 ActionEvent.ACTION_PERFORMED, null);

 ArrayList<ActionListener> lv = null;

 // Make a shallow copy of the List in case

 // someone adds a listener while we're

 // calling listeners:

 synchronized(this) {

 lv = new ArrayList<ActionListener>(actionListeners);

 }

 // Call all the listener methods:

 for(ActionListener al : lv)

 al.actionPerformed(a);

 }

 class ML extends MouseAdapter {

 public void mousePressed(MouseEvent e) {

 Graphics g = getGraphics();

 g.setColor(tColor);

 g.setFont(

 new Font("TimesRoman", Font.BOLD, fontSize));

 int width = g.getFontMetrics().stringWidth(text);

 g.drawString(text, (getSize().width - width) /2,

 getSize().height/2);

 g.dispose();

 notifyListeners();

 }

 }

 class MM extends MouseMotionAdapter {

 public void mouseMoved(MouseEvent e) {

 xm = e.getX();

 ym = e.getY();

 repaint();

 }

 }

 public static void main(String[] args) {

 BangBean2 bb2 = new BangBean2();

 bb2.addActionListener(new ActionListener() {

1406 Thinking in Java Bruce Eckel

 public void actionPerformed(ActionEvent e) {

 System.out.println("ActionEvent" + e);

 }

 });

 bb2.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 System.out.println("BangBean2 action");

 }

 });

 bb2.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 System.out.println("More action");

 }

 });

 JFrame frame = new JFrame();

 frame.add(bb2);

 run(frame, 300, 300);

 }

} ///:~

Adding synchronized to the methods is an easy change. However, notice in

addActionListener() and removeActionListener() that the

ActionListeners are now added to and removed from an ArrayList, so you

can have as many as you want.

You can see that the method notifyListeners() is not synchronized. It

can be called from more than one thread at a time. It’s also possible for

addActionListener() or removeActionListener() to be called in the

middle of a call to notifyListeners(), which is a problem because it

traverses the ArrayList actionListeners. To alleviate the problem, the

ArrayList is duplicated inside a synchronized clause, using the

ArrayList constructor which copies the elements of its argument, and the

duplicate is traversed. This way, the original ArrayList can be manipulated

without impact on notifyListeners().

The paintComponent() method is also not synchronized. Deciding

whether to synchronize overridden methods is not as clear as when you’re

just adding your own methods. In this example, it turns out that

paintComponent() seems to work OK whether it’s synchronized or not.

But the issues you must consider are:

1. Does the method modify the state of “critical” variables within the

object? To discover whether the variables are “critical,” you must

Graphical User Interfaces 1407

determine whether they will be read or set by other threads in the

program. (In this case, the reading or setting is virtually always

accomplished via synchronized methods, so you can just

examine those.) In the case of paintComponent(), no

modification takes place.

2. Does the method depend on the state of these “critical” variables?

If a synchronized method modifies a variable that your method

uses, then you might very well want to make your method

synchronized as well. Based on this, you might observe that

cSize is changed by synchronized methods, and therefore

paintComponent() should be synchronized. Here, however,

you can ask, “What’s the worst thing that will happen if cSize is

changed during a paintComponent()?” When you see that it’s

nothing too bad, and a transient effect at that, you can decide to

leave paintComponent() unsynchronized to prevent the

extra overhead from the synchronized method call.

3. A third clue is to notice whether the base-class version of

paintComponent() is synchronized, which it isn’t. This isn’t

an airtight argument, just a clue. In this case, for example, a field

that is changed via synchronized methods (that is, cSize) has

been mixed into the paintComponent() formula and might

have changed the situation. Notice, however, that synchronized

doesn’t inherit; that is, if a method is synchronized in the base

class, then it is not automatically synchronized in the derived-

class overridden version.

4. paint() and paintComponent() are methods that must be as

fast as possible. Anything that takes processing overhead out of

these methods is highly recommended, so if you think you need to

synchronize these methods it may be an indicator of bad design.

The test code in main() has been modified from that seen in

BangBeanTest to demonstrate the multicast ability of BangBean2 by

adding extra listeners.

Packaging a Bean
Before you can bring a JavaBean into a Bean-enabled IDE, it must be put into

a Bean container, which is a JAR file that includes all the Bean classes as well

1408 Thinking in Java Bruce Eckel

as a “manifest” file that says, “This is a Bean.” A manifest file is simply a text

file that follows a particular form. For the BangBean, the manifest file looks

like this:

Manifest-Version: 1.0

Name: bangbean/BangBean.class

Java-Bean: True

The first line indicates the version of the manifest scheme, which until further

notice from Sun is 1.0. The second line (empty lines are ignored) names the

BangBean.class file, and the third says, “It’s a Bean.” Without the third

line, the program builder tool will not recognize the class as a Bean.

The only tricky part is that you must make sure that you get the proper path

in the “Name:” field. If you look back at BangBean.java, you’ll see it’s in

package bangbean (and thus in a subdirectory called bangbean that’s off

of the classpath), and the name in the manifest file must include this package

information. In addition, you must place the manifest file in the directory

above the root of your package path, which in this case means placing the file

in the directory above the “bangbean” subdirectory. Then you must invoke

jar from the same directory as the manifest file, as follows:

jar cfm BangBean.jar BangBean.mf bangbean

This assumes that you want the resulting JAR file to be named

BangBean.jar, and that you’ve put the manifest in a file called

BangBean.mf.

You might wonder, “What about all the other classes that were generated

when I compiled BangBean.java?” Well, they all ended up inside the

bangbean subdirectory, and you’ll see that the last argument for the above

jar command line is the bangbean subdirectory. When you give jar the

name of a subdirectory, it packages that entire subdirectory into the JAR file

(including, in this case, the original BangBean.java source-code file—you

might not choose to include the source with your own Beans). In addition, if

you turn around and unpack the JAR file you’ve just created, you’ll discover

that your manifest file isn’t inside, but that jar has created its own manifest

file (based partly on yours) called MANIFEST.MF and placed it inside the

subdirectory META-INF (for “meta-information”). If you open this manifest

file, you’ll also notice that digital signature information has been added by

jar for each file, of the form:

Graphical User Interfaces 1409

Digest-Algorithms: SHA MD5

SHA-Digest: pDpEAG9NaeCx8aFtqPI4udSX/O0=

MD5-Digest: O4NcS1hE3Smnzlp2hj6qeg==

In general, you don’t need to worry about any of this, and if you make

changes, you can just modify your original manifest file and reinvoke jar to

create a new JAR file for your Bean. You can also add other Beans to the JAR

file simply by adding their information to your manifest.

One thing to notice is that you’ll probably want to put each Bean in its own

subdirectory, since when you create a JAR file you hand the jar utility the

name of a subdirectory, and it puts everything in that subdirectory into the

JAR file. You can see that both Frog and BangBean are in their own

subdirectories.

Once you have your Bean properly inside a JAR file, you can bring it into a

Beans-enabled IDE. The way you do this varies from one tool to the next, but

Sun provides a freely available test bed for JavaBeans in its “Bean Builder.”

You place a Bean into the Bean Builder by simply copying the JAR file into

the correct subdirectory.

Exercise 36: (4) Add Frog.class to the manifest file in this section and
run jar to create a JAR file containing both Frog and BangBean. Now
either download and install the Bean Builder from Sun, or use your own
Beans-enabled program builder tool and add the JAR file to your
environment so you can test the two Beans.

Exercise 37: (5) Create your own JavaBean called Valve that contains
two properties: a boolean called “on” and an int called “level.” Create a
manifest file, use jar to package your Bean, then load it into the Bean Builder
or into a Beans-enabled program builder tool so that you can test it.

More complex Bean support
You can see how remarkably simple it is to make a Bean, but you aren’t

limited to what you’ve seen here. The JavaBeans architecture provides a

simple point of entry but can also scale to more complex situations. These

situations are beyond the scope of this book, but they will be briefly

introduced here. You can find more details by searching the internet for “Java

beans.”

One place where you can add sophistication is with properties. The examples

you’ve seen here have shown only single properties, but it’s also possible to

1410 Thinking in Java Bruce Eckel

represent multiple properties in an array. This is called an indexed property.

You simply provide the appropriate methods (again following a naming

convention for the method names), and the Introspector recognizes an

indexed property so that your IDE can respond appropriately.

Properties can be bound, which means that they will notify other objects via a

PropertyChangeEvent. The other objects can then choose to change

themselves based on the change to the Bean.

Properties can be constrained, which means that other objects can veto a

change to that property if it is unacceptable. The other objects are notified by

using a PropertyChangeEvent, and they can throw a

PropertyVetoException to prevent the change from happening and to

restore the old values.

You can also change the way your Bean is represented at design time:

1. You can provide a custom property sheet for your particular Bean.

The ordinary property sheet will be used for all other Beans, but

yours is automatically invoked when your Bean is selected.

2. You can create a custom editor for a particular property, so the

ordinary property sheet is used, but when your special property is

being edited, your editor will automatically be invoked.

3. You can provide a custom BeanInfo class for your Bean that

produces information different from the default created by the

Introspector.

4. It’s also possible to turn “expert” mode on and off in all

FeatureDescriptors to distinguish between basic features and

more complicated ones.

More to Beans
There are a number of books about JavaBeans; for example, JavaBeans by

Elliotte Rusty Harold (IDG, 1998).

Creating SWT applications
As previously noted, Swing took the approach of building all the UI

components pixel-by-pixel, in order to provide every component desired

Graphical User Interfaces 1411

whether the underlying OS had those components or not. SWT takes the

middle ground by using native components if the OS provides them, and

synthesizing components if it doesn’t. The result is an application that feels to

the user like a native application, and often has noticeably faster performance

than the equivalent Swing program. In addition, SWT tends to be a less

complex programming model than Swing, which can be desirable in a large

portion of applications.10

Because SWT uses the native OS to do as much of its work as possible, it can

automatically take advantage of OS features that may not be available to

Swing—for example, Windows has “subpixel rendering” that makes fonts on

LCD screens clearer.

It’s even possible to create applets using SWT.

This section is not meant to be a comprehensive introduction to SWT; it’s just

enough to give you a flavor of it, and to see how SWT contrasts with Swing.

You’ll discover that there are lots of SWT widgets and that they are all

reasonably straightforward to use. You can explore the details in the full

documentation and many examples that can be found at www.eclipse.org.

There are also a number of books on programming with SWT, and more on

the way.

Installing SWT
SWT applications require downloading and installing the SWT library from

the Eclipse project. Go to www.eclipse.org/downloads/ and choose a mirror.

Follow the links to the current Eclipse build and locate a compressed file with

a name that begins with “swt” and includes the name of your platform (for

example, “win32”). Inside this file you’ll find swt.jar. The easiest way to

install the swt.jar file is to put it into your jre/lib/ext directory (that way

you don’t have to make any modifications to your classpath). When you

decompress the SWT library, you may find additional files that you need to

install in appropriate places for your platform. For example, the Win32

distribution comes with DLL files that need to be placed somewhere in your

java.library.path (this is usually the same as your PATH environment

variable, but you can run object/ShowProperties.java to discover the

10 Chris Grindstaff was very helpful in translating SWT examples and providing SWT
information.

1412 Thinking in Java Bruce Eckel

actual value of java.library.path). Once you’ve done this, you should be

able to transparently compile and execute an SWT application as if it were

any other Java program.

The documentation for SWT is in a separate download.

An alternative approach is just to install the Eclipse editor, which includes

both SWT and the SWT documentation that you can view through the Eclipse

help system.

Hello, SWT
Let’s start with the simplest possible “hello world”-style application:

//: swt/HelloSWT.java

// {Requires: org.eclipse.swt.widgets.Display; You must

// install the SWT library from http://www.eclipse.org }

import org.eclipse.swt.widgets.*;

public class HelloSWT {

 public static void main(String [] args) {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Hi there, SWT!"); // Title bar

 shell.open();

 while(!shell.isDisposed())

 if(!display.readAndDispatch())

 display.sleep();

 display.dispose();

 }

} ///:~

If you download the source code from this book, you’ll discover that the

“Requires” comment directive ends up in the Ant build.xml as a prerequisite

for building the swt subdirectory; all the files that import org.eclipse.swt

require that you install the SWT library from www.eclipse.org.

The Display manages the connection between SWT and the underlying

operating system—it is part of a Bridge between the operating system and

SWT. The Shell is the top-level main window, within which all the other

components are built. When you call setText(), the argument becomes the

label on the title bar of the window.

Graphical User Interfaces 1413

To display the window and thus the application, you must call open() on the

Shell.

Whereas Swing hides the event-handling loop from you, SWT forces you to

write it explicitly. At the top of the loop, you check to see whether the shell

has been disposed—note that this gives you the option of inserting code to

perform cleanup activities. But this means that the main() thread is the user

interface thread. In Swing, a second event-dispatching thread is created

behind the scenes, but in SWT your main() thread is what handles the UI.

Since by default there’s only one thread and not two, this makes it somewhat

less likely that you’ll clobber the UI with threads.

Notice that you don’t have to worry about submitting tasks to the user

interface thread like you do in Swing. SWT not only takes care of this for you,

it throws an exception if you try to manipulate a widget with the wrong

thread. However, if you need to spawn other threads to perform long-running

operations, you still need to submit changes in the same way that you do with

Swing. For this, SWT provides three methods which can be called on the

Display object: asyncExec(Runnable), syncExec(Runnable) and

timerExec(int, Runnable).

The activity of your main() thread at this point is to call

readAndDispatch() on the Display object (this means that there can only

be one Display object per application). The readAndDispatch() method

returns true if there are more events in the event queue, waiting to be

processed. In that case, you want to call it again, immediately. However, if

nothing is pending, you call the Display object’s sleep() to wait for a short

time before checking the event queue again.

Once the program is complete, you must explicitly dispose() of your

Display object. SWT often requires you to explicitly dispose of resources,

because these are usually resources from the underlying operating system,

which may otherwise become exhausted.

To prove that the Shell is the main window, here’s a program that makes a

number of Shell objects:

//: swt/ShellsAreMainWindows.java

import org.eclipse.swt.widgets.*;

public class ShellsAreMainWindows {

 static Shell[] shells = new Shell[10];

1414 Thinking in Java Bruce Eckel

 public static void main(String [] args) {

 Display display = new Display();

 for(int i = 0; i < shells.length; i++) {

 shells[i] = new Shell(display);

 shells[i].setText("Shell #" + i);

 shells[i].open();

 }

 while(!shellsDisposed())

 if(!display.readAndDispatch())

 display.sleep();

 display.dispose();

 }

 static boolean shellsDisposed() {

 for(int i = 0; i < shells.length; i++)

 if(shells[i].isDisposed())

 return true;

 return false;

 }

} ///:~

When you run it, you’ll get ten main windows. The way the program is

written, if you close any one of the windows, it will close all of them.

SWT also uses layout managers—different ones than Swing, but the same

idea. Here’s a slightly more complex example that takes the text from

System.getProperties() and adds it to the shell:

//: swt/DisplayProperties.java

import org.eclipse.swt.*;

import org.eclipse.swt.widgets.*;

import org.eclipse.swt.layout.*;

import java.io.*;

public class DisplayProperties {

 public static void main(String [] args) {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Display Properties");

 shell.setLayout(new FillLayout());

 Text text = new Text(shell, SWT.WRAP | SWT.V_SCROLL);

 StringWriter props = new StringWriter();

 System.getProperties().list(new PrintWriter(props));

 text.setText(props.toString());

 shell.open();

 while(!shell.isDisposed())

Graphical User Interfaces 1415

 if(!display.readAndDispatch())

 display.sleep();

 display.dispose();

 }

} ///:~

In SWT, all widgets must have a parent object of the general type

Composite, and you must provide this parent as the first argument in the

widget constructor. You see this in the Text constructor, where shell is the

first argument. Virtually all constructors also take a flag argument that allows

you to provide any number of style directives, depending on what that

particular widget accepts. Multiple style directives are bitwise-ORed together

as seen in this example.

When setting up the Text() object, I added style flags so that it wraps the

text, and automatically adds a vertical scroll bar if it needs to. You’ll discover

that SWT is very constructor-based; there are many attributes of a widget

that are difficult or impossible to change except via the constructor. Always

check a widget constructor’s documentation for the accepted flags. Note that

some constructors require a flag argument even when they have no

“accepted” flags listed in the documentation. This allows future expansion

without modifying the interface.

Eliminating redundant code
Before going on, notice that there are certain things you do for every SWT

application, just like there were duplicate actions for Swing programs. For

SWT, you always create a Display, make a Shell from the Display, create a

readAndDispatch() loop, etc. Of course, in some special cases, you may

not do this, but it’s common enough that it’s worth trying to eliminate the

duplicate code as we did with net.mindview.util.SwingConsole.

We’ll need to force each application to conform to an interface:

//: swt/util/SWTApplication.java

package swt.util;

import org.eclipse.swt.widgets.*;

public interface SWTApplication {

 void createContents(Composite parent);

} ///:~

1416 Thinking in Java Bruce Eckel

The application is handed a Composite object (Shell is a subclass) and

must use this to create all of its contents inside createContents().

SWTConsole.run() calls createContents() at the appropriate point,

sets the size of the shell according to what the user passes to run(), opens

the shell and then runs the event loop, and finally disposes of the shell at

program exit:

//: swt/util/SWTConsole.java

package swt.util;

import org.eclipse.swt.widgets.*;

public class SWTConsole {

 public static void

 run(SWTApplication swtApp, int width, int height) {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText(swtApp.getClass().getSimpleName());

 swtApp.createContents(shell);

 shell.setSize(width, height);

 shell.open();

 while(!shell.isDisposed()) {

 if(!display.readAndDispatch())

 display.sleep();

 }

 display.dispose();

 }

} ///:~

This also sets the title bar to the name of the SWTApplication class, and

sets the width and height of the Shell.

We can create a variation of DisplayProperties.java that displays the

machine environment, using SWTConsole:

//: swt/DisplayEnvironment.java

import swt.util.*;

import org.eclipse.swt.*;

import org.eclipse.swt.widgets.*;

import org.eclipse.swt.layout.*;

import java.util.*;

public class DisplayEnvironment implements SWTApplication {

 public void createContents(Composite parent) {

 parent.setLayout(new FillLayout());

Graphical User Interfaces 1417

 Text text = new Text(parent, SWT.WRAP | SWT.V_SCROLL);

 for(Map.Entry entry: System.getenv().entrySet()) {

 text.append(entry.getKey() + ": " +

 entry.getValue() + "\n");

 }

 }

 public static void main(String [] args) {

 SWTConsole.run(new DisplayEnvironment(), 800, 600);

 }

} ///:~

SWTConsole allows us to focus on the interesting aspects of an application

rather than the repetitive code.

Exercise 38: (4) Modify DisplayProperties.java so that it uses
SWTConsole.

Exercise 39: (4) Modify DisplayEnvironment.java so that it does not
use SWTConsole.

Menus
To demonstrate basic menus, this example reads its own source code and

breaks it into words, then populates the menus with these words:

//: swt/Menus.java

// Fun with menus.

import swt.util.*;

import org.eclipse.swt.*;

import org.eclipse.swt.widgets.*;

import java.util.*;

import net.mindview.util.*;

public class Menus implements SWTApplication {

 private static Shell shell;

 public void createContents(Composite parent) {

 shell = parent.getShell();

 Menu bar = new Menu(shell, SWT.BAR);

 shell.setMenuBar(bar);

 Set<String> words = new TreeSet<String>(

 new TextFile("Menus.java", "\\W+"));

 Iterator<String> it = words.iterator();

 while(it.next().matches("[0-9]+"))

 ; // Move past the numbers.

 MenuItem[] mItem = new MenuItem[7];

1418 Thinking in Java Bruce Eckel

 for(int i = 0; i < mItem.length; i++) {

 mItem[i] = new MenuItem(bar, SWT.CASCADE);

 mItem[i].setText(it.next());

 Menu submenu = new Menu(shell, SWT.DROP_DOWN);

 mItem[i].setMenu(submenu);

 }

 int i = 0;

 while(it.hasNext()) {

 addItem(bar, it, mItem[i]);

 i = (i + 1) % mItem.length;

 }

 }

 static Listener listener = new Listener() {

 public void handleEvent(Event e) {

 System.out.println(e.toString());

 }

 };

 void

 addItem(Menu bar, Iterator<String> it, MenuItem mItem) {

 MenuItem item = new MenuItem(mItem.getMenu(),SWT.PUSH);

 item.addListener(SWT.Selection, listener);

 item.setText(it.next());

 }

 public static void main(String[] args) {

 SWTConsole.run(new Menus(), 600, 200);

 }

} ///:~

A Menu must be placed on a Shell, and Composite allows you to fetch its

shell with getShell(). TextFile is from net.mindview.util and has been

described earlier in the book; here a TreeSet is filled with words so they will

appear in sorted order. The initial elements are numbers, which are

discarded. Using the stream of words, the top-level menus on the menu bar

are named, then the submenus are created and filled with words until there

are no more words.

In response to selecting one of the menu items, the Listener simply prints

the event so you can see what kind of information it contains. When you run

the program, you’ll see that part of the information includes the label on the

menu, so you can base the menu response on that—or you can provide a

different listener for each menu (which is the safer approach, for

internationalization).

Graphical User Interfaces 1419

Tabbed panes, buttons, and events
SWT has a rich set of controls, which they call widgets. Look at the

documentation for org.eclipse.swt.widgets to see the basic ones, and

org.eclipse.swt.custom to see fancier ones.

To demonstrate a few of the basic widgets, this example places a number of

sub-examples inside tabbed panes. You’ll also see how to create Composites

(roughly the same as Swing JPanels) in order to put items within items.

//: swt/TabbedPane.java

// Placing SWT components in tabbed panes.

import swt.util.*;

import org.eclipse.swt.*;

import org.eclipse.swt.widgets.*;

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.layout.*;

import org.eclipse.swt.browser.*;

public class TabbedPane implements SWTApplication {

 private static TabFolder folder;

 private static Shell shell;

 public void createContents(Composite parent) {

 shell = parent.getShell();

 parent.setLayout(new FillLayout());

 folder = new TabFolder(shell, SWT.BORDER);

 labelTab();

 directoryDialogTab();

 buttonTab();

 sliderTab();

 scribbleTab();

 browserTab();

 }

 public static void labelTab() {

 TabItem tab = new TabItem(folder, SWT.CLOSE);

 tab.setText("A Label"); // Text on the tab

 tab.setToolTipText("A simple label");

 Label label = new Label(folder, SWT.CENTER);

 label.setText("Label text");

 tab.setControl(label);

 }

 public static void directoryDialogTab() {

 TabItem tab = new TabItem(folder, SWT.CLOSE);

1420 Thinking in Java Bruce Eckel

 tab.setText("Directory Dialog");

 tab.setToolTipText("Select a directory");

 final Button b = new Button(folder, SWT.PUSH);

 b.setText("Select a Directory");

 b.addListener(SWT.MouseDown, new Listener() {

 public void handleEvent(Event e) {

 DirectoryDialog dd = new DirectoryDialog(shell);

 String path = dd.open();

 if(path != null)

 b.setText(path);

 }

 });

 tab.setControl(b);

 }

 public static void buttonTab() {

 TabItem tab = new TabItem(folder, SWT.CLOSE);

 tab.setText("Buttons");

 tab.setToolTipText("Different kinds of Buttons");

 Composite composite = new Composite(folder, SWT.NONE);

 composite.setLayout(new GridLayout(4, true));

 for(int dir : new int[]{

 SWT.UP, SWT.RIGHT, SWT.LEFT, SWT.DOWN

 }) {

 Button b = new Button(composite, SWT.ARROW | dir);

 b.addListener(SWT.MouseDown, listener);

 }

 newButton(composite, SWT.CHECK, "Check button");

 newButton(composite, SWT.PUSH, "Push button");

 newButton(composite, SWT.RADIO, "Radio button");

 newButton(composite, SWT.TOGGLE, "Toggle button");

 newButton(composite, SWT.FLAT, "Flat button");

 tab.setControl(composite);

 }

 private static Listener listener = new Listener() {

 public void handleEvent(Event e) {

 MessageBox m = new MessageBox(shell, SWT.OK);

 m.setMessage(e.toString());

 m.open();

 }

 };

 private static void newButton(Composite composite,

 int type, String label) {

 Button b = new Button(composite, type);

 b.setText(label);

Graphical User Interfaces 1421

 b.addListener(SWT.MouseDown, listener);

 }

 public static void sliderTab() {

 TabItem tab = new TabItem(folder, SWT.CLOSE);

 tab.setText("Sliders and Progress bars");

 tab.setToolTipText("Tied Slider to ProgressBar");

 Composite composite = new Composite(folder, SWT.NONE);

 composite.setLayout(new GridLayout(2, true));

 final Slider slider =

 new Slider(composite, SWT.HORIZONTAL);

 final ProgressBar progress =

 new ProgressBar(composite, SWT.HORIZONTAL);

 slider.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 progress.setSelection(slider.getSelection());

 }

 });

 tab.setControl(composite);

 }

 public static void scribbleTab() {

 TabItem tab = new TabItem(folder, SWT.CLOSE);

 tab.setText("Scribble");

 tab.setToolTipText("Simple graphics: drawing");

 final Canvas canvas = new Canvas(folder, SWT.NONE);

 ScribbleMouseListener sml= new ScribbleMouseListener();

 canvas.addMouseListener(sml);

 canvas.addMouseMoveListener(sml);

 tab.setControl(canvas);

 }

 private static class ScribbleMouseListener

 extends MouseAdapter implements MouseMoveListener {

 private Point p = new Point(0, 0);

 public void mouseMove(MouseEvent e) {

 if((e.stateMask & SWT.BUTTON1) == 0)

 return;

 GC gc = new GC((Canvas)e.widget);

 gc.drawLine(p.x, p.y, e.x, e.y);

 gc.dispose();

 updatePoint(e);

 }

 public void mouseDown(MouseEvent e) { updatePoint(e); }

 private void updatePoint(MouseEvent e) {

 p.x = e.x;

 p.y = e.y;

1422 Thinking in Java Bruce Eckel

 }

 }

 public static void browserTab() {

 TabItem tab = new TabItem(folder, SWT.CLOSE);

 tab.setText("A Browser");

 tab.setToolTipText("A Web browser");

 Browser browser = null;

 try {

 browser = new Browser(folder, SWT.NONE);

 } catch(SWTError e) {

 Label label = new Label(folder, SWT.BORDER);

 label.setText("Could not initialize browser");

 tab.setControl(label);

 }

 if(browser != null) {

 browser.setUrl("http://www.MindViewLLC.com");

 tab.setControl(browser);

 }

 }

 public static void main(String[] args) {

 SWTConsole.run(new TabbedPane(), 800, 600);

 }

} ///:~

Here, createContents() sets the layout and then calls the methods that

each create a different tab. The text on each tab is set with setText() (you

can also create buttons and graphics on a tab), and each one also sets its tool

tip text. At the end of each method, you’ll see a call to setControl(), which

places the control that the method created into the dialog space of that

particular tab.

labelTab() demonstrates a simple text label. directoryDialogTab()

holds a button which opens a standard DirectoryDialog object so the user

can select a directory. The result is set as the button’s text.

buttonTab() shows the different basic buttons. sliderTab() repeats the

Swing example from earlier in the chapter of tying a slider to a progress bar.

scribbleTab() is a fun example of graphics. A drawing program is produced

from only a few lines of code.

Finally, browserTab() shows the power of the SWT Browser

component—a full-featured Web browser in a single component.

Graphical User Interfaces 1423

Graphics
Here’s the Swing SineWave.java program translated to SWT:

//: swt/SineWave.java

// SWT translation of Swing SineWave.java.

import swt.util.*;

import org.eclipse.swt.*;

import org.eclipse.swt.widgets.*;

import org.eclipse.swt.events.*;

import org.eclipse.swt.layout.*;

class SineDraw extends Canvas {

 private static final int SCALEFACTOR = 200;

 private int cycles;

 private int points;

 private double[] sines;

 private int[] pts;

 public SineDraw(Composite parent, int style) {

 super(parent, style);

 addPaintListener(new PaintListener() {

 public void paintControl(PaintEvent e) {

 int maxWidth = getSize().x;

 double hstep = (double)maxWidth / (double)points;

 int maxHeight = getSize().y;

 pts = new int[points];

 for(int i = 0; i < points; i++)

 pts[i] = (int)((sines[i] * maxHeight / 2 * .95)

 + (maxHeight / 2));

 e.gc.setForeground(

 e.display.getSystemColor(SWT.COLOR_RED));

 for(int i = 1; i < points; i++) {

 int x1 = (int)((i - 1) * hstep);

 int x2 = (int)(i * hstep);

 int y1 = pts[i - 1];

 int y2 = pts[i];

 e.gc.drawLine(x1, y1, x2, y2);

 }

 }

 });

 setCycles(5);

 }

 public void setCycles(int newCycles) {

 cycles = newCycles;

1424 Thinking in Java Bruce Eckel

 points = SCALEFACTOR * cycles * 2;

 sines = new double[points];

 for(int i = 0; i < points; i++) {

 double radians = (Math.PI / SCALEFACTOR) * i;

 sines[i] = Math.sin(radians);

 }

 redraw();

 }

}

public class SineWave implements SWTApplication {

 private SineDraw sines;

 private Slider slider;

 public void createContents(Composite parent) {

 parent.setLayout(new GridLayout(1, true));

 sines = new SineDraw(parent, SWT.NONE);

 sines.setLayoutData(

 new GridData(SWT.FILL, SWT.FILL, true, true));

 sines.setFocus();

 slider = new Slider(parent, SWT.HORIZONTAL);

 slider.setValues(5, 1, 30, 1, 1, 1);

 slider.setLayoutData(

 new GridData(SWT.FILL, SWT.DEFAULT, true, false));

 slider.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 sines.setCycles(slider.getSelection());

 }

 });

 }

 public static void main(String[] args) {

 SWTConsole.run(new SineWave(), 700, 400);

 }

} ///:~

Instead of JPanel, the basic drawing surface in SWT is Canvas.

If you compare this version of the program with the Swing version, you’ll see

that SineDraw is virtually identical. In SWT, you get the graphics context gc

from the event object that’s handed to the PaintListener, and in Swing the

Graphics object is handed directly to the paintComponent() method. But

the activities performed with the graphics object are the same, and

setCycles() is identical.

Graphical User Interfaces 1425

createContents() requires a bit more code than the Swing version, to lay

things out and set up the slider and its listener, but again, the basic activities

are roughly the same.

Concurrency in SWT
Although AWT/Swing is single-threaded, it’s easily possible to violate that

single-threadedness in a way that produces a non-deterministic program.

Basically, you don’t want to have multiple threads writing to the display

because they will write over each other in surprising ways.

SWT doesn’t allow this—it throws an exception if you try to write to the

display using more than one thread. This will prevent a novice programmer

from accidentally making this mistake and introducing hard-to-find bugs into

a program.

Here is the translation of the Swing ColorBoxes.java program in SWT:

//: swt/ColorBoxes.java

// SWT translation of Swing ColorBoxes.java.

import swt.util.*;

import org.eclipse.swt.*;

import org.eclipse.swt.widgets.*;

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.layout.*;

import java.util.concurrent.*;

import java.util.*;

import net.mindview.util.*;

class CBox extends Canvas implements Runnable {

 class CBoxPaintListener implements PaintListener {

 public void paintControl(PaintEvent e) {

 Color color = new Color(e.display, cColor);

 e.gc.setBackground(color);

 Point size = getSize();

 e.gc.fillRectangle(0, 0, size.x, size.y);

 color.dispose();

 }

 }

 private static Random rand = new Random();

 private static RGB newColor() {

 return new RGB(rand.nextInt(255),

 rand.nextInt(255), rand.nextInt(255));

1426 Thinking in Java Bruce Eckel

 }

 private int pause;

 private RGB cColor = newColor();

 public CBox(Composite parent, int pause) {

 super(parent, SWT.NONE);

 this.pause = pause;

 addPaintListener(new CBoxPaintListener());

 }

 public void run() {

 try {

 while(!Thread.interrupted()) {

 cColor = newColor();

 getDisplay().asyncExec(new Runnable() {

 public void run() {

 try { redraw(); } catch(SWTException e) {}

 // SWTException is OK when the parent

 // is terminated from under us.

 }

 });

 TimeUnit.MILLISECONDS.sleep(pause);

 }

 } catch(InterruptedException e) {

 // Acceptable way to exit

 } catch(SWTException e) {

 // Acceptable way to exit: our parent

 // was terminated from under us.

 }

 }

}

public class ColorBoxes implements SWTApplication {

 private int grid = 12;

 private int pause = 50;

 public void createContents(Composite parent) {

 GridLayout gridLayout = new GridLayout(grid, true);

 gridLayout.horizontalSpacing = 0;

 gridLayout.verticalSpacing = 0;

 parent.setLayout(gridLayout);

 ExecutorService exec = new DaemonThreadPoolExecutor();

 for(int i = 0; i < (grid * grid); i++) {

 final CBox cb = new CBox(parent, pause);

 cb.setLayoutData(new GridData(GridData.FILL_BOTH));

 exec.execute(cb);

 }

Graphical User Interfaces 1427

 }

 public static void main(String[] args) {

 ColorBoxes boxes = new ColorBoxes();

 if(args.length > 0)

 boxes.grid = new Integer(args[0]);

 if(args.length > 1)

 boxes.pause = new Integer(args[1]);

 SWTConsole.run(boxes, 500, 400);

 }

} ///:~

As in the previous example, painting is controlled by creating a

PaintListener with a paintControl() method that is called when the SWT

thread is ready to paint your component. The PaintListener is registered in

the CBox constructor.

What’s notably different in this version of CBox is the run() method, which

cannot just call redraw() directly but must submit the redraw() to the

asyncExec() method on the Display object, which is roughly the same as

SwingUtilities.invokeLater(). If you replace this with a direct call to

redraw(), you’ll see that the program just stops.

When running the program, you will see little visual artifacts—horizontal

lines occasionally running through a box. This is because SWT is not double-

buffered by default, while Swing is. Try running the Swing version side by

side with the SWT version and you’ll see it more clearly. You can write code to

double-buffer SWT; you’ll find examples on the www.eclipse.org Web site.

Exercise 40: (4) Modify swt/ColorBoxes.java so that it begins by
sprinkling points (“stars”) across the canvas, then randomly changes the
colors of those “stars.”

SWT vs. Swing?
It’s hard to get a complete picture from such a short introduction, but you

should at least start to see that SWT, in many situations, can be a more

straightforward way to write code than Swing. However, GUI programming

in SWT can still be complex, so your motivation for using SWT should

probably be, first, to give the user a more transparent experience when using

your application (because the application looks/feels like the other

applications on that platform), and second, if the responsiveness provided by

SWT is important. Otherwise, Swing may be an appropriate choice.

1428 Thinking in Java Bruce Eckel

Exercise 41: (6) Choose any one of the Swing examples that wasn’t
translated in this section, and translate it to SWT. (Note: This makes a good
homework exercise for a class, since the solutions are not in the solution
guide.)

Summary
The Java GUI libraries have seen some dramatic changes during the lifetime

of the language. The Java 1.0 AWT was roundly criticized as being a poor

design, and while it allowed you to create portable programs, the resulting

GUI was “equally mediocre on all platforms.” It was also limiting, awkward,

and unpleasant to use compared with the native application development

tools available for various platforms.

When Java 1.1 introduced the new event model and JavaBeans, the stage was

set—now it was possible to create GUI components that could easily be

dragged and dropped inside a visual IDE. In addition, the design of the event

model and JavaBeans clearly shows strong consideration for ease of

programming and maintainable code (something that was not evident in the

1.0 AWT). But it wasn’t until the JFC/Swing classes appeared that the

transition was complete. With the Swing components, cross-platform GUI

programming can be a civilized experience.

IDEs are where the real revolution lies. If you want a commercial IDE for a

proprietary language to get better, you must cross your fingers and hope that

the vendor will give you what you want. But Java is an open environment, so

not only does it allow for competing IDEs, it encourages them. And for these

tools to be taken seriously, they must support JavaBeans. This means a

leveled playing field; if a better IDE comes along, you’re not tied to the one

you’ve been using. You can pick up and move to the new one and increase

your productivity. This kind of competitive environment for GUI IDEs has

not been seen before, and the resulting marketplace can generate very

positive results for programmer productivity.

This chapter was only meant to give you an introduction to the power of GUI

programming and to get you started so that you can see how relatively simple

it is to feel your way through the libraries. What you’ve seen so far will

probably suffice for a good portion of your UI design needs. However, there’s

a lot more to Swing and SWT; these are meant to be fully powered UI design

toolkits. There’s probably a way to accomplish just about everything you can

imagine.

Graphical User Interfaces 1429

Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for sale from www.MindViewLLC.com.

 1431

A: Supplements
There are a number of supplements to this book,
including the items, seminars, and services available
through the MindView Web site.

Thinking in C: Foundations for
Java

At www.MindViewLLC.com, you will find the Thinking in C seminar as a free

download. This presentation, created by Chuck Allison and developed by

MindView, is a multimedia Flash course which gives you an introduction to

the C syntax, operators and functions that Java syntax is based upon.

Note that you must have the Flash Player from www.Macromedia.com

installed on your system in order to play Thinking in C.

Hands-On Java eSeminar
Hands-On Java contains an extended version of the material from the

Thinking in Java seminar and is based on the 2nd edition of this book. It

provides at least some of the experience of the live seminar without the travel

and expense. There is an audio lecture and slides corresponding to every

chapter in the 2nd edition. I created the seminar and I narrate the material.

The material runs on any modern HTML5 web browser. Hands-On Java is

for sale at www.MindViewLLC.com, where you can find trial demos of the

product.

On Java 8
Thinking in Java, 4th edition covers Java 5/6, which is the version used for

Android programming. If you want a more recent version of the language, my

book On Java 8, published in 2017, is available at www.OnJava8.com.

http://www.mindviewllc.com/
http://www.onjava8.com/

 1433

B: Resources

Software
The JDK from http://java.oracle.com. Even if you choose to use a third-

party development environment, it’s always a good idea to have the JDK on

hand in case you come up against what might be a compiler error. The JDK is

the touchstone, and if there is a bug in it, chances are it will be well known.

The JDK documentation from http://java.oracle.com, in HTML. I have

never found a reference book on the standard Java libraries that wasn’t out of

date or missing information. Although the JDK documentation from Sun is

shot through with small bugs and is sometimes unusably terse, all the classes

and methods are at least there. Sometimes people are initially uncomfortable

using an online resource rather than a printed book, but it’s worth your while

to get over this and open the HTML docs so you can at least get the big

picture. If you can’t figure it out at that point, then reach for the printed

books.

Books
Effective JavaTM by Joshua Bloch (Addison-Wesley 2001). A must-have

book by the man who fixed the Java collections library, modeled after Scott

Meyer’s classic Effective C++.

Design Patterns, by Gamma, Helm, Johnson and Vlissides (Addison-

Wesley, 1995). The seminal book that started the patterns movement in

programming, mentioned numerous places in this book.

Refactoring to Patterns, by Joshua Kerievsky (Addison-Wesley, 2005).

Marries refactoring and design patterns. The most valuable thing about this

book is that it shows you how to evolve a design by folding in patterns as they

are needed.

The Art of UNIX Programming, by Eric Raymond (Addison-Wesley,

2004). Although Java is a cross-platform language, the prevalence of Java on

the server has made knowledge of Unix/Linux important. Eric’s book is an

excellent introduction to the history and philosophy of this operating system,

1434 Thinking in Java Bruce Eckel

and is a fascinating read if you just want to understand some of the roots of

computing.

Analysis & design
Extreme Programming Explained, 2nd Edition, by Kent Beck with

Cynthia Andres. (Addison-Wesley, 2005). I’ve always felt that there might be

a much different, much better program development process, and I think XP

comes pretty darn close. The only book that has had a similar impact on me

was Peopleware (described later), which talks primarily about the

environment and dealing with corporate culture. Extreme Programming

Explained talks about programming and turns most things, even recent

“findings,” on their ear. They even go so far as to say that pictures are OK as

long as you don’t spend too much time on them and are willing to throw them

away. (You’ll notice that the book does not have the “UML stamp of approval”

on its cover.) I could see deciding to work for a company based solely on

whether they used XP. Small book, small chapters, effortless to read, exciting

to think about. You start imagining yourself working in such an atmosphere,

and it brings visions of a whole new world.

UML Distilled, 2nd Edition, by Martin Fowler (Addison-Wesley, 2000).

When you first encounter UML, it is daunting because there are so many

diagrams and details. According to Fowler, most of this stuff is unnecessary,

so he cuts through to the essentials. For most projects, you only need to know

a few diagramming tools, and Fowler’s goal is to come up with a good design

rather than worry about all the artifacts of getting there. In fact, the first half

of the book is all that most people will need. A nice, thin, readable book; the

first one you should get if you need to understand UML.

Domain-Driven Design, by Eric Evans (Addison-Wesley, 2004). This

book focuses on the domain model as the primary artifact of the design

process. I have found this to be an important shift in emphasis that helps

keep designers at the right level of abstraction.

Software Creativity, by Robert L. Glass (Prentice Hall, 1995). This is the

best book I’ve seen that discusses perspective on the whole methodology

issue. It’s a collection of short essays and papers that Glass has written and

sometimes acquired (P.J. Plauger is one contributor), reflecting his many

years of thinking and study on the subject. They’re entertaining and only long

enough to say what’s necessary; he doesn’t ramble and bore you. He’s not just

blowing smoke, either; there are hundreds of references to other papers and

Appendix B: Resources 1435

studies. All programmers and managers should read this book before wading

into the methodology mire.

Software Runaways: Monumental Software Disasters, by Robert L.

Glass (Prentice Hall, 1998). The great thing about this book is that it brings to

the forefront what we don’t talk about: the number of projects that not only

fail, but fail spectacularly. I find that most of us still think, “That can’t happen

to me” (or “That can’t happen again”), and I think this puts us at a

disadvantage. By keeping in mind that things can always go wrong, you’re in

a much better position to make them go right.

Peopleware, 2nd Edition, by Tom DeMarco and Timothy Lister (Dorset

House, 1999). You must read this book. It’s not only fun, it rocks your world

and destroys your assumptions. Although DeMarco and Lister have

backgrounds in software development, this book is about projects and teams

in general. But the focus is on the people and their needs, rather than the

technology and its needs. They talk about creating an environment where

people will be happy and productive, rather than deciding what rules those

people should follow to be adequate components of a machine. This latter

attitude, I think, is the biggest contributor to programmers smiling and

nodding when XYZ method is adopted, and then quietly doing whatever

they’ve always done.

Secrets of Consulting: A Guide to Giving & Getting Advice

Successfully, by Gerald M. Weinberg (Dorset House, 1985). A superb book,

one of my all-time favorites. It’s perfect if you are trying to be a consultant or

if you’re using consultants and trying to do a better job. Short chapters, filled

with stories and anecdotes that teach you how to get to the core of the issue

with minimal struggle. Also see More Secrets of Consulting, published in

2002, or most any other Weinberg book.

Complexity, by M. Mitchell Waldrop (Simon & Schuster, 1992). This

chronicles the coming together in Santa Fe, New Mexico, of a group of

scientists from different disciplines to discuss real problems that their

individual disciplines couldn’t solve (the stock market in economics, the

initial formation of life in biology, why people do what they do in sociology,

etc.). By crossing physics, economics, chemistry, math, computer science,

sociology, and others, a multidisciplinary approach to these problems is

developing. But more important, a different way of thinking about these

ultra-complex problems is emerging: away from mathematical determinism

and the illusion that you can write an equation that predicts all behavior, and

1436 Thinking in Java Bruce Eckel

toward first observing and looking for a pattern and trying to emulate that

pattern by any means possible. (The book chronicles, for example, the

emergence of genetic algorithms.) This kind of thinking, I believe, is useful as

we observe ways to manage more and more complex software projects.

My own list of books
Not all of these are currently available, but some can be found through used-

book outlets.

Computer Interfacing with Pascal & C (self-published under the Eisys

imprint, 1988. Available for sale only from www.MindViewLLC.com). An

introduction to electronics from back when CP/M was still king and DOS was

an upstart. I used high-level languages and often the parallel port of the

computer to drive various electronic projects. Adapted from my columns in

the first and best magazine I wrote for, Micro Cornucopia. Alas, Micro C was

lost long before the Internet appeared. Creating this book was an extremely

satisfying publishing experience.

Using C++ (Osborne/McGraw-Hill, 1989). One of the first books out on

C++. This is out of print and replaced by its 2nd edition, the renamed C++

Inside & Out.

C++ Inside & Out (Osborne/McGraw-Hill, 1993). As noted, actually the 2nd

edition of Using C++. The C++ in this book is reasonably accurate, but it’s

circa 1992 and Thinking in C++ is intended to replace it.

Thinking in C++, 1st Edition (Prentice Hall, 1995). This won the Software

Development Magazine Jolt Award for best book of the year.

Thinking in C++, 2nd Edition, Volume 1 (Prentice Hall, 2000).

Downloadable from www.MindViewLLC.com. Updated to follow the

finalized language standard.

Thinking in C++, 2nd Edition, Volume 2, coauthored with Chuck Allison

(Prentice Hall, 2003). Downloadable from www.MindViewLLC.com.

Black Belt C++: The Master’s Collection, Bruce Eckel, editor (M&T

Books, 1994). Out of print. A collection of chapters by various C++ luminaries

based on their presentations in the C++ track at the Software Development

Conference, which I chaired. The cover on this book stimulated me to gain

control over all future cover designs.

Appendix B: Resources 1437

Thinking in Java, 1st Edition (Prentice Hall, 1998). The 1st edition of this

book won the Software Development Magazine Productivity Award, the

Java Developer’s Journal Editor’s Choice Award, and the JavaWorld

Reader’s Choice Award for best book.

Thinking in Java, 2nd Edition (Prentice Hall, 2000). This edition won

the JavaWorld Editor’s Choice Award for best book.

Thinking in Java, 3rd Edition, (Prentice Hall, 2003). This edition won

the Software Development Magazine Jolt Award for best book of the year,

along with other awards listed on the back cover.

 1439

Index
Please note that some names will be duplicated in
capitalized form. Following Java style, the capitalized
names refer to Java classes, while lowercase names refer
to a general concept.

!

! · 101
!= · 99

&

& · 107
&& · 101
&= · 107

.

.NET · 55

.new syntax · 346

.this syntax · 346

@

@ symbol, for annotations · 1055
@author · 83
@Deprecated, annotation · 1056
@deprecated, Javadoc tag · 85
@docRoot · 83
@inheritDoc · 83
@interface, and extends keyword · 1066
@link · 83
@Override · 1055
@param · 84
@Retention · 1057
@return · 84
@see · 83
@since · 84

@SuppressWarnings · 1056
@Target · 1057
@Test · 1056
@Test, for @Unit · 1080
@TestObjectCleanup, @Unit tag · 1088
@TestObjectCreate, for @Unit · 1085
@throws · 84
@Unit · 1080; using · 1080
@version · 83

[

[], indexing operator · 189

^

^ · 107
^= · 107

|

| · 107
|| · 101
|= · 107

+

+ · 97; String conversion with operator + ·
91, 114, 500

1440 Thinking in Java Bruce Eckel

<

< · 99
<< · 108
<<= · 108
<= · 99

=

== · 99

>

> · 99
>= · 99
>> · 108
>>= · 108

A

abstract: class · 307; inheriting from
abstract classes · 308; keyword · 308;
vs. interface · 324

Abstract Window Toolkit (AWT) · 1299
AbstractButton · 1328
abstraction · 22
AbstractSequentialList · 855
AbstractSet · 789
access: class · 225; control · 206, 230;

control, violating with reflection · 602;
inner classes & access rights · 344;
package access and friendly · 217;
specifiers · 29, 206, 217; within a
directory, via the default package · 219

action command · 1354
ActionEvent · 1354, 1401
ActionListener · 1312
active objects, in concurrency · 1291
Adapter design pattern · 321, 330, 430,

626, 729, 733, 791
Adapter Method idiom · 430
adapters, listener · 1323
add(), ArrayList · 386
addActionListener() · 1399, 1406
addChangeListener · 1359
addition · 94
addListener · 1317

Adler32 · 971
agent-based programming · 1295
aggregate array initialization · 189
aggregation · 30
aliasing · 93; and String · 500; arrays · 190
Allison, Chuck · 6, 18, 1431, 1436
allocate() · 944
allocateDirect() · 944
alphabetic sorting · 414
alphabetic vs. lexicographic sorting · 779
AND: bitwise · 116; logical (&&) · 101
annotation · 1055; apt processing tool ·

1070; default element values · 1058,
1059, 1061; default value · 1065;
elements · 1057; elements, allowed types
for · 1061; marker annotation · 1057;
processor · 1060; processor based on
reflection · 1067

anonymous inner class · 352, 900, 1309;
and table-driven code · 855; generic ·
641

application: builder · 1390; framework ·
371

applying a method to a sequence · 724
apt, annotation processing tool · 1070
argument: constructor · 152; covariant

argument types · 702; final · 262, 900;
generic type argument inference · 628;
variable argument lists (unknown
quantity and type of arguments) · 194

Arnold, Ken · 1301
array: array of generic objects · 846;

associative array · 390; bounds checking
· 190; comparing arrays · 773;
comparison with container · 744;
copying an array · 771; covariance · 673;
dynamic aggregate initialization syntax ·
748; element comparisons · 774; first-
class objects · 745; initialization · 189;
length · 190, 745; multidimensional ·
750; not Iterable · 429; of objects · 745;
of primitives · 745; ragged · 751;
returning an array · 749

ArrayBlockingQueue · 1211
ArrayList · 397, 813; add() · 386; get() ·

386; size() · 386
Arrays: asList() · 392, 432, 812;

binarySearch() · 780; class, container
utility · 771

asCharBuffer() · 946
aspect-oriented programming (AOP) · 710
assert, and @Unit · 1083

Index 1441

assigning objects · 92
assignment · 91
associative array · 386, 390; another name

for map · 827
atomic operation · 1156
AtomicInteger · 1163
atomicity, in concurrent programming ·

1147
AtomicLong · 1163
AtomicReference · 1163
autoboxing · 415, 626; and generics · 628,

690
auto-decrement operator · 97
auto-increment operator · 97
automatic type conversion · 235
available() · 926

B

backwards compatibility · 651
bag · 390
bank teller simulation · 1249
base 16 · 105
base 8 · 105
base class · 222, 237, 277; abstract base

class · 307; base-class interface · 282;
constructor · 290; initialization · 240

base types · 32
basic concepts of object-oriented

programming (OOP) · 21
BASIC, Microsoft Visual BASIC · 1389
BasicArrowButton · 1329
BeanInfo, custom · 1410
Beans: and Borland’s Delphi · 1389; and

Microsoft’s Visual BASIC · 1389;
application builder · 1390; bound
properties · 1410; component · 1390;
constrained properties · 1410; custom
BeanInfo · 1410; custom property editor
· 1410; custom property sheet · 1410;
events · 1390; EventSetDescriptors ·
1396; FeatureDescriptor · 1410;
getBeanInfo() · 1393;
getEventSetDescriptors() · 1396;
getMethodDescriptors() · 1396;
getName() · 1396;
getPropertyDescriptors() · 1396;
getPropertyType() · 1396;
getReadMethod() · 1396;
getWriteMethod() · 1396; indexed
property · 1410; Introspector · 1393;

JAR files for packaging · 1407; manifest
file · 1407; Method · 1396;
MethodDescriptors · 1396; naming
convention · 1391; properties · 1390;
PropertyChangeEvent · 1410;
PropertyDescriptors · 1396;
PropertyVetoException · 1410;
reflection · 1390, 1393; Serializable ·
1401; visual programming · 1389

Beck, Kent · 1434
benchmarking · 1268
binary: numbers · 105; numbers, printing ·

112; operators · 107
binarySearch() · 780, 881
binding: dynamic binding · 278; dynamic,

late, or runtime binding · 273; early · 38;
late · 38; late binding · 277; method call
binding · 277; runtime binding · 278

BitSet · 893
bitwise: AND · 116; AND operator (&) ·

107; EXCLUSIVE OR XOR (^) · 107;
NOT ~ · 107; operators · 107; OR · 116;
OR operator (|) · 107

blank final · 261
Bloch, Joshua · 171, 1007, 1142, 1160
blocking: and available() · 926; in

concurrent programs · 1108
BlockingQueue · 1211, 1231
Boolean · 128; algebra · 107; and casting ·

117; operators that won’t work with
boolean · 99; vs. C and C++ · 102

Borland Delphi · 1389
bound properties · 1410
bounds: and Class references · 562; in

generics · 649, 669; self-bounded
generic types · 697; superclass and Class
references · 564

bounds checking, array · 190
boxing · 415, 626; and generics · 628, 690
BoxLayout · 1316
branching, unconditional · 139
break keyword · 140
Brian’s Rule of Synchronization · 1152
browser, class · 225
Budd, Timothy · 23
buffer, nio · 942
BufferedInputStream · 916
BufferedOutputStream · 917
BufferedReader · 479, 920, 923
BufferedWriter · 920, 926
busy wait, concurrency · 1194

1442 Thinking in Java Bruce Eckel

button: creating your own · 1325; radio
button · 1340; Swing · 1306, 1328

ButtonGroup · 1330, 1340
ByteArrayInputStream · 912
ByteArrayOutputStream · 913
ByteBuffer · 942
bytecode engineering · 1097; Javassist ·

1100

C

C#: programming language · 55
C++ · 99; exception handling · 488;

Standard Template Library (STL) · 896;
templates · 614, 648

CachedThreadPool · 1117
Callable, concurrency · 1120
callback · 899, 1308; and inner classes ·

368
camel-casing · 86
capacity, of a HashMap or HashSet · 874
capitalization of package names · 73
case statement · 147
CASE_INSENSITIVE_ORDER String

Comparator · 880, 898
cast · 40; and generic types · 693; and

primitive types · 129; asSubclass() ·
565; operators · 116; via a generic class ·
695

cast() · 564
catch: catching an exception · 443;

catching any exception · 454; keyword ·
444

Chain of Responsibility design pattern ·
1032

chained exceptions · 460, 493
change, vector of · 373
channel, nio · 942
CharArrayReader · 919
CharArrayWriter · 919
CharBuffer · 946
CharSequence · 526
Charset · 948
check box · 1338
checked exceptions · 452, 487; converting

to unchecked exceptions · 493
checkedCollection() · 706
CheckedInputStream · 969
checkedList() · 706
checkedMap() · 706
CheckedOutputStream · 969

checkedSet() · 706
checkedSortedMap() · 706
checkedSortedSet() · 706
Checksum class · 971
Chiba, Shigeru, Dr. · 1100, 1102
class · 25; abstract class · 307; access · 225;

anonymous inner class · 352, 900, 1309;
base class · 222, 237, 277; browser · 225;
class hierarchies and exception handling
· 485; class literal · 558, 572; creators ·
28; data · 74; derived class · 277;
equivalence, and
instanceof/isInstance() · 582; final
classes · 266; inheritance diagrams ·
257; inheriting from abstract classes ·
308; inheriting from inner classes · 378;
initialization · 559; initialization & class
loading · 268; initialization of fields ·
178; initializing the base class · 240;
initializing the derived class · 240; inner
class · 341; inner class, and access rights
· 344; inner class, and overriding · 379;
inner class, and super · 379; inner class,
and Swing · 1317; inner class, and
upcasting · 348; inner class, identifiers
and .class files · 383; inner class, in
methods and scopes · 350; inner class,
nesting within any arbitrary scope · 351;
instance of · 23; keyword · 31; linking ·
559; loading · 269, 559; member
initialization · 235; methods · 74;
multiply nested · 364; nested class
(static inner class) · 360; nesting inside
an interface · 362; order of initialization
· 181; private inner classes · 373; public
class, and compilation units · 207;
referring to the outer-class object in an
inner class · 346; static inner classes ·
360; style of creating classes · 224;
subobject · 240

Class · 1331; Class object · 552, 994, 1152;
forName() · 554, 1321;
getCanonicalName() · 556; getClass() ·
455; getConstructors() · 587;
getInterfaces() · 556; getMethods() ·
587; getSimpleName() · 556;
getSuperclass() · 557;
isAssignableFrom() · 576; isInstance() ·
574; isInterface() · 556; newInstance()
· 557; object creation process · 185;
references, and bounds · 562;
references, and generics · 561;

Index 1443

references, and wildcards · 562; RTTI
using the Class object · 552

class files, analyzing · 1097
class loader · 552
class name, discovering from class file ·

1097
ClassCastException · 305, 566
ClassNotFoundException · 570
classpath · 210
cleanup: and garbage collector · 247;

performing · 171; verifying the
termination condition with finalize() ·
172; with finally · 469

clear(), nio · 945
client programmer · 28; vs. library creator

· 205
close() · 924
closure, and inner classes · 368
code: coding standards · 19; coding style ·

86; organization · 217; reuse · 233;
source code · 18

collecting parameter · 709, 738
collection · 42, 390, 423, 880; classes ·

385; filling with a Generator · 632; list
of methods for · 805; utilities · 875

Collections: addAll() · 392;
enumeration() · 890; fill() · 789;
unmodifiableList() · 811

collision: during hashing · 844; name · 213
combo box · 1341
comma operator · 136
Command design pattern · 377, 598, 1027,

1117
comments, and embedded documentation

· 79
Commitment, Theory of Escalating · 1142
common interface · 307
Communicating Sequential Processes

(CSP) · 1295
Comparable · 775, 818, 824
Comparator · 776, 818
compareTo(), in java.lang.Comparable ·

774, 820
comparing arrays · 773
compatibility: backwards · 651; migration ·

651
compilation unit · 207
compile-time constant · 258
compiling a Java program · 78
component, and JavaBeans · 1390
composition · 30, 233; and design · 300;

and dynamic behavior change · 302;

combining composition & inheritance ·
245; vs. inheritance · 252, 258, 826, 891

compression, library · 969
concurrency: active objects · 1291; and

containers · 883; and exceptions · 1154;
and Swing · 1377; ArrayBlockingQueue ·
1211; atomicity · 1147; BlockingQueue ·
1211, 1231; Brian’s Rule of
Synchronization · 1152; Callable · 1120;
Condition class · 1208; constructors ·
1133; contention, lock · 1268;
CountDownLatch · 1226; CyclicBarrier ·
1228; daemon threads · 1126;
DelayQueue · 1231; Exchanger · 1246;
Executor · 1116; I/O between tasks using
pipes · 1217; LinkedBlockingQueue ·
1211; lock, explicit · 1153; lock-free code
· 1157; long and double non-atomicity ·
1157; missed signals · 1199; performance
tuning · 1266; priority · 1123;
PriorityBlockingQueue · 1235;
producer-consumer · 1204; race
condition · 1148; ReadWriteLock · 1288;
ScheduledExecutor · 1238; semaphore ·
1242; sleep() · 1122; SynchronousQueue
· 1255; task interference · 1146;
terminating tasks · 1175; the Goetz Test
for avoiding synchronization · 1156;
thread local storage · 1173; thread vs.
task, terminology · 1138;
UncaughtExceptionHandler · 1144;
word tearing · 1157

ConcurrentHashMap · 830, 1278, 1283
ConcurrentLinkedQueue · 1278
ConcurrentModificationException · 884;

using CopyOnWriteArrayList to
eliminate · 1277, 1294

Condition class, concurrency · 1208
conditional compilation · 216
conditional operator · 112
conference, Software Development

Conference · 14
console: sending exceptions to · 492;

Swing display framework in
net.mindview.util.SwingConsole · 1306

constant: compile-time constant · 258;
constant folding · 258; groups of
constant values · 331; implicit constants,
and String · 500

constrained properties · 1410
constructor · 151; and anonymous inner

classes · 352; and concurrency · 1133;

1444 Thinking in Java Bruce Eckel

and exception handling · 477, 479; and
finally · 479; and overloading · 154; and
polymorphism · 289; arguments · 152;
base-class constructor · 290; behavior of
polymorphic methods inside
constructors · 297; calling base-class
constructors with arguments · 241;
calling from other constructors · 166;
Constructor class for reflection · 585;
default · 162; initialization during
inheritance and composition · 245;
instance initialization · 355; name · 152;
no-arg · 152, 162; order of constructor
calls with inheritance · 289; return value
· 153; static construction clause · 186;
static method · 185; synthesized default
constructor access · 588

container · 42; class · 385; classes · 385;
comparison with array · 744;
performance test · 855

containers: basic behavior · 394; lock-free ·
1277; type-safe and generics · 386

contention, lock, in concurrency · 1268
context switch · 1108
continue keyword · 140
contravariance, and generics · 678
control framework, and inner classes · 371
control, access · 29, 230
conversion: automatic · 235; narrowing

conversion · 116; widening conversion ·
117

Coplien, Jim: curiously recurring template
pattern · 698

copying an array · 771
CopyOnWriteArrayList · 1248, 1277
CopyOnWriteArraySet · 1278
CountDownLatch, for concurrency · 1226
covariant · 561; argument types · 702;

arrays · 673; return types · 299, 579, 702
CRC32 · 971
critical section, and synchronized block ·

1165
curiously recurring: generics · 698;

template pattern in C++ · 698
CyclicBarrier, for concurrency · 1228

D

daemon threads · 1126

data: final · 258; primitive data types and
use with operators · 119; static
initialization · 182

Data Transfer Object · 617, 793
Data Transfer Object (Messenger idiom) ·

856
data type, equivalence to class · 25
database table, SQL generated via

annotations · 1062
DatagramChannel · 967
DataInput · 922
DataInputStream · 916, 920, 925
DataOutput · 922
DataOutputStream · 917, 921
deadlock, in concurrency · 1219
decode(), character set · 949
decompiler, javap · 501, 605, 656
Decorator design pattern · 713
decoupling, via polymorphism · 39, 273
decrement operator · 97
default constructor · 162; access the same

as the class · 588; synthesizing a default
constructor · 241

default keyword, in a switch statement ·
147

default package · 207, 219
defaultReadObject() · 991
defaultWriteObject() · 990
DeflaterOutputStream · 969
Delayed · 1234
DelayQueue, for concurrency · 1231
delegation · 242, 712
Delphi, from Borland · 1389
DeMarco, Tom · 1435
deque, double-ended queue · 406, 825
derived: derived class · 277; derived class,

initializing · 240; types · 32
design · 303; adding more methods to a

design · 230; and composition · 300;
and inheritance · 300; and mistakes ·
230; library design · 206

design pattern: Adapter · 321, 330, 626,
729, 733, 791; Adapter method · 430;
Chain of Responsibility · 1032;
Command · 377, 598, 1027, 1117; Data
Transfer Object (Messenger idiom) ·
617, 793, 856; Decorator · 713; Façade ·
573; Factory Method · 335, 578, 623,
924; Factory Method, and anonymous
classes · 357; Flyweight · 796, 1297;
Iterator · 345, 402; Null Iterator · 594;
Null Object · 594; Proxy · 589; Singleton

Index 1445

· 228; State · 302; Strategy · 318, 328,
733, 760, 774, 776, 899, 906, 1032,
1234; Template Method · 371, 569, 662,
855, 965, 1169, 1274, 1280; Visitor ·
1075

destructor · 169, 171, 468; Java doesn’t
have one · 247

diagram: class inheritance diagrams · 257;
inheritance · 40

dialog: box · 1360; file · 1364; tabbed ·
1344

dictionary · 390
Dijkstra, Edsger · 1219
dining philosophers, example of deadlock

in concurrency · 1219
directory: and packages · 216; creating

directories and paths · 908; lister · 898
dispatching: double dispatching · 1044;

multiple, and enum · 1043
display framework, for Swing · 1306
dispose() · 1361
division · 94
documentation · 17; comments &

embedded documentation · 79
double: and threading · 1157; literal value

marker (d or D) · 105
double dispatching · 1044; with EnumMap

· 1051
double-ended queue (deque) · 406
do-while · 134
downcast · 257, 304; type-safe downcast ·

565
drawing lines in Swing · 1356
drop-down list · 1341
duck typing · 717, 729
dynamic: aggregate initialization syntax

for arrays · 748; behavior change with
composition · 302; binding · 273, 278;
proxy · 590; type checking in Java · 810;
type safety and containers · 706

E

early binding · 38, 277
East, BorderLayout · 1313
editor, creating one using the Swing

JTextPane · 1337
efficiency: and arrays · 743; and final · 267
else keyword · 131
encapsulation · 224; using reflection to

break · 602

encode(), character set · 949
end sentinel · 622
endian: big endian · 954; little endian · 954
entrySet(), in Map · 841
enum: adding methods · 1010; and Chain

of Responsibility design pattern · 1032;
and inheritance · 1016; and interface ·
1019; and multiple dispatching · 1043;
and random selection · 1017; and state
machines · 1037; and static imports ·
1009; and switch · 1012; constant-
specific methods · 1028, 1049; groups of
constant values in C & C++ · 331;
keyword · 200, 1007; values() · 1007,
1013

enumerated types · 200
Enumeration · 890
EnumMap · 1026
EnumSet · 638, 895; instead of flags · 1024
equals() · 100; and hashCode() · 818, 849;

and hashed data structures · 839;
conditions for defining properly · 838;
overriding for HashMap · 838

equivalence: == · 99; object equivalence ·
99

erasure · 692; in generics · 646
Erlang language · 1109
error: handling with exceptions · 439;

recovery · 439; reporting · 488;
standard error stream · 446

Escalating Commitment, Theory of · 1142
event: event-driven programming · 1307;

event-driven system · 371; events and
listeners · 1318; JavaBeans · 1390;
listener · 1317; model, Swing · 1317;
multicast, and JavaBeans · 1403;
responding to a Swing event · 1307

EventSetDescriptors · 1396
exception: and concurrency · 1154; and

constructors · 477; and inheritance ·
475, 485; and the console · 492;
catching an exception · 443; catching
any exception · 454; chained exceptions
· 493; chaining · 460; changing the
point of origin of the exception · 459;
checked · 452, 487; class hierarchies ·
485; constructors · 479; converting
checked to unchecked · 493; creating
your own · 445; design issues · 481;
Error class · 464; Exception class · 464;
exception handler · 444; exception
handling · 439; exception matching ·

1446 Thinking in Java Bruce Eckel

485; exceptional condition · 441;
FileNotFoundException · 480;
fillInStackTrace() · 457; finally · 467;
generics · 707; guarded region · 443;
handler · 441; handling · 47; logging ·
448; losing an exception, pitfall · 473;
NullPointerException · 465;
printStackTrace() · 457; reporting
exceptions via a logger · 450;
restrictions · 475; re-throwing an
exception · 457; RuntimeException ·
465; specification · 452, 489;
termination vs. resumption · 445;
Throwable · 454; throwing an exception
· 441, 442; try · 469; try block · 443;
typical uses of exceptions · 496;
unchecked · 465

Exchanger, concurrency class · 1246
executing operating system programs from

within Java · 940
Executor, concurrency · 1116
ExecutorService · 1117
explicit type argument specification for

generic methods · 394, 631
exponential notation · 105
extending a class during inheritance · 33
extends · 222, 239, 303; and @interface ·

1066; and interface · 326; keyword · 237
extensible program · 282
extension: sign · 108; zero · 108
extension, vs. pure inheritance · 302
Externalizable · 982; alternative approach

to using · 988
Extreme Programming (XP) · 1434

F

Façade · 573
Factory Method design pattern · 335, 578,

623, 924; and anonymous classes · 357
factory object · 281, 660
fail fast containers · 884
false · 101
FeatureDescriptor · 1410
Fibonacci · 625
Field, for reflection · 585
fields, initializing fields in interfaces · 331
FIFO (first-in, first out) · 419
file: characteristics of files · 908; dialogs ·

1364; File class · 897, 912, 921;
File.list() · 897; incomplete output files,

errors and flushing · 927; JAR file · 208;
locking · 966; memory-mapped files ·
962

FileChannel · 943
FileDescriptor · 912
FileInputStream · 912
FileLock · 967
FilenameFilter · 897
FileNotFoundException · 480
FileOutputStream · 913
FileReader · 479, 919, 923
FileWriter · 919, 926
fillInStackTrace() · 457
FilterInputStream · 912
FilterOutputStream · 913
FilterReader · 920
FilterWriter · 920
final · 312, 618; and efficiency · 267; and

private · 264; and static · 259; argument
· 262, 900; blank finals · 261; classes ·
266; data · 258; keyword · 258; method ·
278; methods · 263, 299; static
primitives · 260; with object references ·
259

finalize() · 169, 250, 481; and inheritance ·
291; calling directly · 171

finally · 247, 250; and constructors · 479;
and return · 472; keyword · 467; not run
with daemon threads · 1131; pitfall · 473

finding .class files during loading · 210
FixedThreadPool · 1118
flag, using EnumSet instead of · 1024
flip(), nio · 944
float: floating point true and false · 102;

literal value marker (F) · 105
FlowLayout · 1314
flushing output files · 927
Flyweight design pattern · 796, 1297
focus traversal · 1301
folding, constant · 258
for keyword · 134
foreach · 137, 141, 195, 196, 215, 372, 389,

418, 425, 541, 625, 627, 690, 1007,
1032; and Adapter Method · 430; and
Iterable · 427

format: precision · 513; specifiers · 512;
string · 510; width · 512

format() · 510
Formatter · 511
forName() · 554, 1321
FORTRAN programming language · 106
forward referencing · 180

Index 1447

Fowler, Martin · 205, 491, 1434
framework, control framework and inner

classes · 371
function: member function · 27; overriding

· 34
function object · 733
functional languages · 1109
Future · 1121

G

garbage collection · 169, 171; and cleanup ·
247; how the collector works · 174; order
of object reclamation · 250; reachable
objects · 885

Generator · 281, 623, 632, 641, 691, 728,
759, 776, 790, 1017, 1038; filling a
Collection · 632; general purpose · 633

generics: @Unit testing · 1090; and type-
safe containers · 386; anonymous inner
classes · 641; array of generic objects ·
846; basic introduction · 386; bounds ·
649, 669; cast via a generic class · 695;
casting · 693; Class references · 561;
contravariance · 678; curiously
recurring · 698; erasure · 646, 692;
example of a framework · 1278;
exceptions · 707; explicit type argument
specification for generic methods · 394,
631; inner classes · 641; instanceof · 659,
693; isInstance() · 659; methods · 627,
791; overloading · 695; reification · 651;
self-bounded types · 697; simplest class
definition · 409; supertype wildcards ·
678; type tag · 659; unbounded wildcard
· 682; varargs and generic methods ·
631; wildcards · 673

get(): ArrayList · 386; HashMap · 416; no
get() for Collection · 807

getBeanInfo() · 1393
getBytes() · 925
getCanonicalName() · 556
getChannel() · 944
getClass() · 455, 554
getConstructor() · 1331
getConstructors() · 587
getenv() · 429
getEventSetDescriptors() · 1396
getInterfaces() · 556
getMethodDescriptors() · 1396
getMethods() · 587

getName() · 1396
getPropertyDescriptors() · 1396
getPropertyType() · 1396
getReadMethod() · 1396
getSelectedValues() · 1342
getSimpleName() · 556
getState() · 1353
getSuperclass() · 557
getWriteMethod() · 1396
Glass, Robert · 1434
glue, in BoxLayout · 1316
Goetz Test, for avoiding synchronization ·

1156
Goetz, Brian · 1152, 1156, 1268, 1298
goto, lack of in Java · 142
graphical user interface (GUI) · 371, 1299
graphics · 1363; Graphics class · 1356
greater than (>) · 99
greater than or equal to (>=) · 99
greedy quantifiers · 525
GridBagLayout · 1315
GridLayout · 1315, 1388
Grindstaff, Chris · 1411
group, thread · 1142
groups, regular expression · 530
guarded region, in exception handling ·

443
GUI: graphical user interface · 371, 1299;

GUI builders · 1300
GZIPInputStream · 969
GZIPOutputStream · 969

H

handler, exception · 444
Harold, Elliotte Rusty · 1410; XOM XML

library · 999
has-a · 30; relationship, composition · 254
hash function · 843
hashCode() · 829, 835, 843; and hashed

data structures · 839; equals() · 818;
issues when writing · 847; recipe for
generating decent · 849

hashing · 840, 843; and hash codes · 835;
external chaining · 844; perfect hashing
function · 844

HashMap · 830, 873, 1283, 1327
HashSet · 411, 817, 868
Hashtable · 873, 891
hasNext(), Iterator · 403
Hexadecimal · 105

1448 Thinking in Java Bruce Eckel

hiding, implementation · 224
Holub, Allen · 1291
HTML on Swing components · 1366

I

I/O: available() · 926; basic usage,
examples · 923; between tasks using
pipes · 1217; blocking, and available() ·
926; BufferedInputStream · 916;
BufferedOutputStream · 917;
BufferedReader · 479, 920, 923;
BufferedWriter · 920, 926;
ByteArrayInputStream · 912;
ByteArrayOutputStream · 913;
characteristics of files · 908;
CharArrayReader · 919;
CharArrayWriter · 919;
CheckedInputStream · 969;
CheckedOutputStream · 969; close() ·
924; compression library · 969;
controlling the process of serialization ·
982; DataInput · 922; DataInputStream
· 916, 920, 925; DataOutput · 922;
DataOutputStream · 917, 921;
DeflaterOutputStream · 969; directory
lister · 898; directory, creating
directories and paths · 908;
Externalizable · 982; File · 912, 921; File
class · 897; File.list() · 897;
FileDescriptor · 912; FileInputStream ·
912; FilenameFilter · 897;
FileOutputStream · 913; FileReader ·
479, 919, 923; FileWriter · 919, 926;
FilterInputStream · 912;
FilterOutputStream · 913; FilterReader ·
920; FilterWriter · 920; from standard
input · 937; GZIPInputStream · 969;
GZIPOutputStream · 969;
InflaterInputStream · 969; input · 910;
InputStream · 910; InputStreamReader
· 918, 919; internationalization · 919;
interruptible · 1185; library · 897;
lightweight persistence · 976;
LineNumberInputStream · 916;
LineNumberReader · 920; mark() ·
922; mkdirs() · 910; network I/O · 942;
new nio · 942; ObjectOutputStream ·
977; output · 910; OutputStream · 910,
913; OutputStreamWriter · 918, 919;
pipe · 911; piped streams · 932;

PipedInputStream · 912;
PipedOutputStream · 912, 913;
PipedReader · 919; PipedWriter · 919;
PrintStream · 917; PrintWriter · 920,
926, 928; PushbackInputStream · 916;
PushbackReader · 920;
RandomAccessFile · 921, 922, 930;
read() · 910; readDouble() · 930;
Reader · 910, 918, 919; readExternal() ·
982; readLine() · 481, 920, 927, 938;
readObject() · 977; redirecting standard
I/O · 938; renameTo() · 910; reset() ·
922; seek() · 922, 930;
SequenceInputStream · 912, 921;
Serializable · 982; setErr(PrintStream) ·
939; setIn(InputStream) · 939;
setOut(PrintStream) · 939;
StreamTokenizer · 920; StringBuffer ·
912; StringBufferInputStream · 912;
StringReader · 919, 924; StringWriter ·
919; System.err · 937; System.in · 937;
System.out · 937; transient · 987; typical
I/O configurations · 923; Unicode · 919;
write() · 910; writeBytes() · 929;
writeChars() · 929; writeDouble() ·
930; writeExternal() · 982;
writeObject() · 977; Writer · 910, 918,
919; ZipEntry · 973; ZipInputStream ·
969; ZipOutputStream · 969

Icon · 1331
IdentityHashMap · 830, 873
if-else statement · 112, 131
IllegalAccessException · 569
IllegalMonitorStateException · 1195
ImageIcon · 1331
immutable · 596
implementation · 26; and interface · 253,

312; and interface, separating · 29; and
interface, separation · 224; hiding · 205,
224, 348; separation of interface and
implementation · 1317

implements keyword · 312
import keyword · 207
increment operator · 97; and concurrency ·

1149
indexed property · 1410
indexing operator [] · 189
indexOf(), String · 588
inference, generic type argument inference

· 628
InflaterInputStream · 969

Index 1449

inheritance · 31, 222, 233, 237, 273; and
enum · 1016; and final · 266; and
finalize() · 291; and generic code · 613;
and synchronized · 1406; class
inheritance diagrams · 257; combining
composition & inheritance · 245;
designing with inheritance · 300;
diagram · 40; extending a class during ·
33; extending interfaces with
inheritance · 325; from abstract classes ·
308; from inner classes · 378;
initialization with inheritance · 268;
method overloading vs. overriding · 251;
multiple inheritance in C++ and Java ·
322; pure inheritance vs. extension ·
302; specialization · 254; vs.
composition · 252, 258, 826, 891

initial capacity, of a HashMap or HashSet ·
874

initialization: and class loading · 268;
array initialization · 189; base class ·
240; class · 559; class member · 235;
constructor initialization during
inheritance and composition · 245;
initializing with the constructor · 151;
instance initialization · 187, 355; lazy ·
235; member initializers · 290; non-
static instance initialization · 187; of
class fields · 178; of method variables ·
177; order of initialization · 181, 298;
static · 270; with inheritance · 268

inline method calls · 263
inner class · 341; access rights · 344; and

overriding · 379; and control
frameworks · 371; and super · 379; and
Swing · 1317; and threads · 1133; and
upcasting · 348; anonymous inner class
· 900, 1309; and table-driven code · 855;
callback · 368; closure · 368; generic ·
641; hidden reference to the object of
the enclosing class · 345; identifiers and
.class files · 383; in methods & scopes ·
350; inheriting from inner classes · 378;
local · 351; motivation · 365; nesting
within any arbitrary scope · 351; private
inner classes · 373; referring to the
outer-class object · 346; static inner
classes · 360

InputStream · 910
InputStreamReader · 918, 919

instance: instance initialization · 355; non-
static instance initialization · 187; of a
class · 23

instanceof · 572; and generic types · 693;
dynamic instanceof with isInstance() ·
574; keyword · 565

Integer: parseInt() · 1364; wrapper class ·
192

interface: and enum · 1019; and generic
code · 613; and implementation,
separation of · 29, 224, 1317; and
inheritance · 325; base-class interface ·
282; classes nested inside · 362;
common interface · 307; for an object ·
24; initializing fields in interfaces · 331;
keyword · 312; name collisions when
combining interfaces · 326; nesting
interfaces within classes and other
interfaces · 332; private, as nested
interfaces · 335; upcasting to an
interface · 315; vs. abstract · 324; vs.
implementation · 253

internationalization, in I/O library · 919
interrupt(): concurrency · 1181; threading

· 1139
interruptible io · 1185
Introspector · 1393
invocation handler, for dynamic proxy ·

590
is-a · 302; relationship, inheritance · 254;

and upcasting · 256; vs. is-like-a
relationships · 35

isAssignableFrom(), Class method · 576
isDaemon() · 1129
isInstance() · 574; and generics · 659
isInterface() · 556
is-like-a · 303
Iterable · 625, 793; and array · 429; and

foreach · 427
Iterator · 402, 405, 423; hasNext() · 403;

next() · 403
Iterator design pattern · 345

J

JApplet · 1313; menus · 1348
JAR · 1407; file · 208; jar files and

classpath · 212; utility · 974
Java: and set-top boxes · 107; AWT · 1299;

bytecodes · 502; compiling and running
a program · 78; Java Foundation Classes

1450 Thinking in Java Bruce Eckel

(JFC/Swing) · 1299; Java Virtual
Machine (JVM) · 552; Java Web Start ·
1371

Java standard library, and thread-safety ·
1228

JavaBeans, see Beans · 1389
javac · 78
javadoc · 80
javap decompiler · 501, 605, 656
Javassist · 1100
JButton · 1331; Swing · 1306
JCheckBox · 1331, 1338
JCheckBoxMenuItem · 1349, 1353
JComboBox · 1341
JComponent · 1333, 1356
JDialog · 1360; menus · 1348
JDK 1.1 I/O streams · 918
JDK, downloading and installing · 78
JFC, Java Foundation Classes (Swing) ·

1299
JFileChooser · 1364
JFrame · 1313; menus · 1348
JIT, just-in-time compilers · 177
JLabel · 1336
JList · 1342
JMenu · 1348, 1353
JMenuBar · 1348, 1354
JMenuItem · 1331, 1348, 1353, 1354, 1356
JNLP, Java Network Launch Protocol ·

1372
join(), threading · 1139
JOptionPane · 1346
Joy, Bill · 99
JPanel · 1330, 1356, 1388
JPopupMenu · 1354
JProgressBar · 1368
JRadioButton · 1331, 1340
JScrollPane · 1312, 1344
JSlider · 1368
JTabbedPane · 1344
JTextArea · 1310
JTextField · 1308, 1333
JTextPane · 1337
JToggleButton · 1329
JUnit, problems with · 1079
JVM (Java Virtual Machine) · 552

K

keyboard: navigation, and Swing · 1301;
shortcuts · 1353

keySet() · 873

L

label · 142
labeled: break · 143; continue · 143
late binding · 38, 273, 277
latent typing · 717, 729
layout, controlling layout with layout

managers · 1312
lazy initialization · 235
least-recently-used (LRU) · 834
left-shift operator (<<) · 108
length: array member · 190; for arrays ·

745
less than (<) · 99
less than or equal to (<=) · 99
lexicographic: sorting · 414; vs. alphabetic

sorting · 779
library: creator, vs. client programmer ·

205; design · 206; use · 206
LIFO (last-in, first-out) · 408
lightweight: object · 402; persistence · 976
LineNumberInputStream · 916
LineNumberReader · 920
LinkedBlockingQueue · 1211
LinkedHashMap · 830, 834, 873
LinkedHashSet · 412, 817, 868, 870
LinkedList · 397, 406, 419, 813
linking, class · 559
list: boxes · 1342; drop-down list · 1341
List · 385, 390, 397, 813, 1342;

performance comparison · 859; sorting
and searching · 880

listener: adapters · 1323; and events · 1318;
interfaces · 1322

Lister, Timothy · 1435
ListIterator · 813
literal: class literal · 558, 572; double · 105;

float · 105; long · 105; values · 104
little endian · 954
livelock · 1297
load factor, of a HashMap or HashSet · 874
loader, class · 552
loading: .class files · 210; class · 269, 559;

initialization & class loading · 268
local: inner class · 351; variable · 69
lock: contention, in concurrency · 1268;

explicit, in concurrency · 1153; in
concurrency · 1151; optimistic locking ·
1286

Index 1451

lock-free code, in concurrent
programming · 1157

locking, file · 966, 967
logarithms, natural · 106
logging, building logging into exceptions ·

448
logical: AND · 116; operator and short-

circuiting · 102; operators · 101; OR · 116
long: and threading · 1157; literal value

marker (L) · 105
look & feel, pluggable · 1369
LRU, least-recently-used · 834
lvalue · 91

M

machines, state, and enum · 1037
main() · 238
manifest file, for JAR files · 974, 1407
Map · 385, 390, 415; EnumMap · 1026; in-

depth exploration of · 827; performance
comparison · 871

Map.Entry · 841
MappedByteBuffer · 962
mark() · 922
marker annotation · 1057
matcher, regular expression · 527
matches(), String · 521
Math.random() · 415; range of results ·

867
mathematical operators · 94, 967
member: initializers · 290; member

function · 27; object · 30
memory exhaustion, solution via

References · 885
memory-mapped files · 962
menu: JDialog, JApplet, JFrame · 1348;

JPopupMenu · 1354
message box, in Swing · 1345
message, sending · 25
Messenger idiom · 617, 793, 856
meta-annotations · 1059
Metadata · 1055
method: adding more methods to a design

· 230; aliasing during method calls · 93;
applying a method to a sequence · 724;
behavior of polymorphic methods inside
constructors · 297; distinguishing
overloaded methods · 156; final · 263,
278, 299; generic · 627; initialization of
method variables · 177; inline method

calls · 263; inner classes in methods &
scopes · 350; lookup tool · 1319; method
call binding · 277; overloading · 154;
overriding private · 286; polymorphic
method call · 273; private · 299;
protected methods · 255; recursive ·
506; static · 168, 278

Method · 1396; for reflection · 585
MethodDescriptors · 1396
Meyer, Jeremy · 1055, 1096, 1372
Meyers, Scott · 28
microbenchmarks · 867
Microsoft Visual BASIC · 1389
migration compatibility · 651
missed signals, concurrency · 1199
mistakes, and design · 230
mixin · 709
mkdirs() · 910
mnemonics (keyboard shortcuts) · 1353
Mock Object · 602
modulus · 94
monitor, for concurrency · 1151
Mono · 55
multicast · 1401; event, and JavaBeans ·

1403
multidimensional arrays · 750
multiparadigm programming · 23
multiple dispatching: and enum · 1043;

with EnumMap · 1051
multiple implementation inheritance · 367
multiple inheritance, in C++ and Java ·

322
multiplication · 94
multiply nested class · 364
multitasking · 1108
mutual exclusion (mutex), concurrency ·

1150

N

name: clash · 207; collisions · 213;
collisions when combining interfaces ·
326; creating unique package names ·
210; qualified · 556

namespaces · 207
narrowing conversion · 116
natural logarithms · 106
nested class (static inner class) · 360
nesting interfaces · 332
net.mindview.util.SwingConsole · 1306
network I/O · 942

1452 Thinking in Java Bruce Eckel

new I/O · 942
new operator · 169; and primitives, array ·

191
newInstance() · 1331; reflection · 557
next(), Iterator · 403
nio · 942; and interruption · 1185; buffer ·

942; channel · 942; performance · 963
no-arg constructor · 152, 162
North, BorderLayout · 1313
not equivalent (!=) · 99
NOT, logical (!) · 101
notifyAll() · 1194
notifyListeners() · 1406
null · 65
Null Iterator design pattern · 594
Null Object design pattern · 594
NullPointerException · 465
numbers, binary · 105

O

object · 23; aliasing · 93; arrays are first-
class objects · 745; assigning objects by
copying references · 92; Class object ·
552, 994, 1152; creation · 152; equals() ·
100; equivalence · 99; equivalence vs.
reference equivalence · 100; final · 259;
getClass() · 554; hashCode() · 829;
interface to · 24; lock, for concurrency ·
1151; member · 30; object-oriented
programming · 549; process of creation
· 185; serialization · 976; standard root
class, default inheritance from · 237;
wait() and notifyAll() · 1195; web of
objects · 977

object pool · 1242
object-oriented, basic concepts of object-

oriented programming (OOP) · 21
ObjectOutputStream · 977
Octal · 105
ones complement operator · 107
OOP: basic characteristics · 23; basic

concepts of object-oriented
programming · 21; protocol · 312;
Simula-67 programming language · 24;
substitutability · 23

operating system, executing programs
from within Java · 940

operation, atomic · 1156
operator · 90; + and += overloading for

String · 238; +, for String · 500; binary ·

107; bitwise · 107; casting · 116; comma
operator · 136; common pitfalls · 115;
indexing operator [] · 189; logical · 101;
logical operators and short-circuiting ·
102; ones-complement · 107; operator
overloading for String · 500;
overloading · 114; precedence · 91;
relational · 99; shift · 108; String
conversion with operator + · 91, 114;
ternary · 112; unary · 97, 107

optional methods, in the Java containers ·
809

OR · 116; (||) · 101
order: of constructor calls with inheritance

· 289; of initialization · 181, 268, 298
ordinal(), for enum · 1008
organization, code · 217
OSExecute · 940
OutputStream · 910, 913
OutputStreamWriter · 918, 919
overflow, and primitive types · 129
overloading: and constructors · 154;

distinguishing overloaded methods ·
156; generics · 695; lack of name hiding
during inheritance · 251; method
overloading · 154; on return values · 161;
operator + and += overloading for
String · 238, 500; operator overloading ·
114; vs. overriding · 251

overriding: and inner classes · 379;
function · 34; private methods · 286; vs.
overloading · 251

P

package · 206; access, and friendly · 217;
and directory structure · 216; creating
unique package names · 210; default ·
207, 219; names, capitalization · 73;
package access, and protected · 254

paintComponent() · 1356, 1363
painting on a JPanel in Swing · 1356
parameter, collecting · 709, 738
parameterized types · 613
parseInt() · 1364
pattern, regular expression · 523
perfect hashing function · 844
performance: and final · 267; nio · 963;

test, containers · 855; tuning, for
concurrency · 1266

Index 1453

persistence · 992; lightweight persistence ·
976

PhantomReference · 885
philosophers, dining, example of deadlock

in concurrency · 1219
pipe · 911
piped streams · 932
PipedInputStream · 912
PipedOutputStream · 912, 913
PipedReader · 919, 1217
PipedWriter · 919, 1217
pipes, and I/O · 1217
Plauger, P.J. · 1434
pluggable look & feel · 1369
pointer, Java exclusion of pointers · 368
polymorphism · 36, 273, 306, 550, 609;

and constructors · 289; and multiple
dispatching · 1044; behavior of
polymorphic methods inside
constructors · 297

pool, object · 1242
portability in C, C++ and Java · 119
position, absolute, when laying out Swing

components · 1316
possessive quantifiers · 525
post-decrement · 98
postfix · 98
post-increment · 98
pre-decrement · 98
preferences API · 1002
prefix · 98
pre-increment · 98
prerequisites, for this book · 21
primitive: comparison · 100; data types,

and use with operators · 119; final · 259;
final static primitives · 260;
initialization of class fields · 178; types ·
63

primordial class loader · 552
printf() · 510
printStackTrace() · 454, 457
PrintStream · 917
PrintWriter · 920, 926, 928; convenience

constructor in Java SE5 · 933
priority, concurrency · 1123
PriorityBlockingQueue, for concurrency ·

1235
PriorityQueue · 421, 823
private · 29, 206, 217, 220, 254, 1151;

illusion of overriding private methods ·
264; inner classes · 373; interfaces,

when nested · 335; method overriding ·
286; methods · 299

problem space · 22
process control · 940
process, concurrent · 1108
ProcessBuilder · 940
ProcessFiles · 1096
producer-consumer, concurrency · 1204
programmer, client · 28
programming: basic concepts of object-

oriented programming (OOP) · 21;
event-driven programming · 1307;
Extreme Programming (XP) · 1434;
multiparadigm · 23; object-oriented ·
549

progress bar · 1367
promotion, to int · 118, 128
property · 1390; bound properties · 1410;

constrained properties · 1410; custom
property editor · 1410; custom property
sheet · 1410; indexed property · 1410

PropertyChangeEvent · 1410
PropertyDescriptors · 1396
PropertyVetoException · 1410
protected · 29, 206, 217, 221, 254; and

package access · 254; is also package
access · 223

protocol · 312
proxy: and java.lang.ref.Reference · 886;

for unmodifiable methods in the
Collections class · 813

Proxy design pattern · 589
public · 29, 206, 217, 218; and interface ·

312; class, and compilation units · 207
pure substitution · 35, 302
PushbackInputStream · 916
PushbackReader · 920
pushdown stack · 408; generic · 621
Python · 3, 7, 10, 51, 58, 718, 783, 1109

Q

qualified name · 556
quantifier: greedy · 525; possessive · 525;

regular expression · 525; reluctant · 525
queue · 385, 406, 419, 823; performance ·

859; synchronized, concurrency · 1211
queuing discipline · 421

1454 Thinking in Java Bruce Eckel

R

race condition, in concurrency · 1148
RAD (Rapid Application Development) ·

584
radio button · 1340
ragged array · 751
random selection, and enum · 1017
random() · 415
RandomAccess, tagging interface for

containers · 437
RandomAccessFile · 921, 922, 930, 944
raw type · 647
reachable objects and garbage collection ·

885
read() · 910; nio · 944
readDouble() · 930
Reader · 910, 918, 919
readExternal() · 982
reading from standard input · 937
readLine() · 481, 920, 927, 938
readObject() · 977; with Serializable · 988
ReadWriteLock · 1288
recursion, unintended via toString() · 505
redirecting standard I/O · 938
ReentrantLock · 1156, 1188
refactoring · 205
reference: assigning objects by copying

references · 92; final · 259; finding exact
type of a base reference · 551; null · 65;
reference equivalence vs. object
equivalence · 100

reference counting, garbage collection ·
174

Reference, from java.lang.ref · 885
referencing, forward · 180
reflection · 584, 1319, 1393; and Beans ·

1390; and weak typing · 491; annotation
processor · 1060, 1067; breaking
encapsulation with · 602; difference
between RTTI and reflection · 585;
example · 1330; latent typing and
generics · 722

regex · 523
Registered Factories, variation of Factory

Method design pattern · 578
regular expressions · 519
rehashing · 874
reification, and generics · 651
relational operators · 99
reluctant quantifiers · 525

removeActionListener() · 1399, 1406
removeXXXListener() · 1318
renameTo() · 910
request, in OOP · 25
reset() · 922
responsive user interfaces · 1141
resume(), and deadlocks · 1180
resumption, termination vs. resumption,

exception handling · 445
re-throwing an exception · 457
return: an array · 749; and finally · 472;

constructor return value · 153; covariant
return types · 299, 702; overloading on
return value · 161; returning multiple
objects · 617

reusability · 30
reuse: code reuse · 233; reusable code ·

1389
rewind() · 949
right-shift operator (>>) · 108
rollover · 1333
RoShamBo · 1044
running a Java program · 78
runtime binding · 278; polymorphism ·

273
runtime type information (RTTI) · 304;

Class object · 552, 1331;
ClassCastException · 566; Constructor
class for reflection · 585; Field · 585;
getConstructor() · 1331; instanceof
keyword · 565; isInstance() · 574;
Method · 585; misuse · 609;
newInstance() · 1331; reflection · 584;
reflection, difference between · 585;
shape example · 549; type-safe
downcast · 565

RuntimeException · 465, 493
rvalue · 91

S

ScheduledExecutor, for concurrency · 1238
scheduler, thread · 1113
scope: inner class nesting within any

arbitrary scope · 351; inner classes in
methods & scopes · 350

scrolling in Swing · 1312
searching: an array · 780; sorting and

searching Lists · 880
section, critical section and synchronized

block · 1165

Index 1455

seek() · 922, 930
self-bounded types, in generics · 697
semaphore, counting · 1242
sending a message · 25
sentinel, end · 622
separation of interface and

implementation · 29, 224, 1317
sequence, applying a method to a sequence

· 724
SequenceInputStream · 912, 921
Serializable · 976, 982, 987, 997, 1401;

readObject() · 988; writeObject() · 988
serialization: and object storage · 992; and

transient · 987; controlling the process
of serialization · 982;
defaultReadObject() · 991;
defaultWriteObject() · 990; Versioning ·
991

Set · 385, 390, 411, 817; mathematical
relationships · 637; performance
comparison · 868

setActionCommand() · 1354
setBorder() · 1336
setErr(PrintStream) · 939
setIcon() · 1333
setIn(InputStream) · 939
setLayout() · 1313
setMnemonic() · 1353
setOut(PrintStream) · 939
setToolTipText() · 1333
shape: example · 32, 278; example, and

runtime type information · 549
shift operators · 108
short-circuit, and logical operators · 102
shortcut, keyboard · 1353
shuffle() · 881
side effect · 90, 99, 162
sign extension · 108
signals, missed, in concurrency · 1199
signature, method · 70
signed twos complement · 112
Simula-67 programming language · 24
simulation · 1249
sine wave · 1356
single dispatching · 1043
SingleThreadExecutor · 1119
Singleton design pattern · 228
size(), ArrayList · 386
size, of a HashMap or HashSet · 874
sizeof(), lack of in Java · 118
sleep(), in concurrency · 1122
slider · 1367

Smalltalk · 23
SocketChannel · 967
SoftReference · 885
Software Development Conference · 14
solution space · 22
SortedMap · 833
SortedSet · 821
sorting · 774; alphabetic · 414; and

searching Lists · 880; lexicographic ·
414

source code · 18
South, BorderLayout · 1313
space: namespaces · 207; problem space ·

22; solution space · 22
specialization · 254
specification, exception specification · 452,

489
specifier, access · 29, 206, 217
split(), String · 318, 521
sprintf() · 517
SQL generated via annotations · 1062
stack · 406, 408, 891; generic pushdown ·

621
standard input, reading from · 937
standards, coding · 19
State design pattern · 302
state machines, and enum · 1037
stateChanged() · 1359
static · 312; and final · 259; block · 186;

construction clause · 186; data
initialization · 182; final static primitives
· 260; import, and enum · 1009;
initialization · 270, 554; initializer · 578;
inner classes · 360; keyword · 74, 168;
method · 168, 278; strong type checking
· 487; synchronized static · 1152; type
checking · 610; vs. dynamic type
checking · 810

STL, C++ · 896
stop(), and deadlocks · 1180
Strategy design pattern · 318, 328, 733,

760, 774, 776, 899, 906, 1032, 1234
stream, I/O · 910
StreamTokenizer · 920
String: CASE_INSENSITIVE_ORDER

Comparator · 880; class methods · 499;
concatenation with operator += · 114;
conversion with operator + · 91, 114;
format() · 517; immutability · 499;
indexOf() · 588; lexicographic vs.
alphabetic sorting · 779; methods · 507;
operator + and += overloading · 238;

1456 Thinking in Java Bruce Eckel

regular expression support in · 520;
sorting, CASE_INSENSITIVE_ORDER
· 898; split() method · 318; toString() ·
234

StringBuffer · 912
StringBufferInputStream · 912
StringBuilder, vs. String, and toString() ·

502
StringReader · 919, 924
StringWriter · 919
strong static type checking · 487
Stroustrup, Bjarne · 203
structural typing · 717, 729
struts, in BoxLayout · 1316
Stub · 602
style: coding style · 86; of creating classes ·

224
subobject · 240, 252
substitutability, in OOP · 23
substitution: inheritance vs. extension ·

302; principle · 35
subtraction · 94
suites, @Unit vs. JUnit · 1091
super · 241; and inner classes · 379;

keyword · 239
superclass · 239; bounds · 564
supertype wildcards · 678
suspend(), and deadlocks · 1180
Swing · 1299; and concurrency · 1377;

component examples · 1328;
components, using HTML with · 1366;
event model · 1317

switch: and enum · 1012; keyword · 147
switch, context switching in concurrency ·

1108
synchronized · 1151; and inheritance ·

1406; and wait() & notifyAll() · 1194;
block, and critical section · 1165; Brian’s
Rule of Synchronization · 1152;
containers · 883; deciding what
methods to synchronize · 1406; queue ·
1211; static · 1152

SynchronousQueue, for concurrency · 1255
System.arraycopy() · 771
System.err · 446, 937
System.in · 937
System.out · 937
System.out, changing to a PrintWriter ·

938
systemNodeForPackage(), preferences

API · 1003

T

tabbed dialog · 1344
table-driven code · 1029; and anonymous

inner classes · 855
task vs. thread, terminology · 1138
tearing, word tearing · 1157
Template Method design pattern · 371,

569, 662, 855, 965, 1169, 1274, 1280
templates, C++ · 614, 648
termination condition, and finalize() · 172
termination vs. resumption, exception

handling · 445
ternary operator · 112
testing: annotation-based unit testing with

@Unit · 1079; techniques · 363; unit
testing · 238

Theory of Escalating Commitment · 1142
this keyword · 163
thread: group · 1142; interrupt() · 1181;

isDaemon() · 1129; notifyAll() · 1194;
priority · 1123; resume(), and deadlocks
· 1180; safety, Java standard library ·
1228; scheduler · 1113; states · 1179;
stop(), and deadlocks · 1180;
suspend(), and deadlocks · 1180; thread
local storage · 1173; vs. task,
terminology · 1138; wait() · 1194

ThreadFactory, custom · 1127
throw keyword · 443
Throwable base class for Exception · 454
throwing an exception · 442
time conversion · 1234
Timer, repeating · 1203
TimeUnit · 1123, 1234
toArray() · 873
tool tips · 1333
TooManyListenersException · 1401
toString() · 234; guidelines for using

StringBuilder · 504
transferFrom() · 945
transferTo() · 945
transient keyword · 987
translation unit · 207
TreeMap · 830, 833, 873
TreeSet · 412, 817, 821, 868
true · 101
try · 250, 469; try block in exceptions · 443
tryLock(), file locking · 967
tuple · 617, 635, 643
twos complement, signed · 112

Index 1457

type: argument inference, generic · 628;
base · 32; checking, static · 487, 610;
data type equivalence to class · 25;
derived · 32; duck typing · 717, 729;
dynamic type safety and containers ·
706; finding exact type of a base
reference · 551; generics and type-safe
containers · 386; latent typing · 717,
729; parameterized · 613; primitive · 63;
primitive data types and use with
operators · 119; structural typing · 717,
729; tag, in generics · 659; type checking
and arrays · 743; type safety in Java ·
115; type-safe downcast · 565

TYPE field, for primitive class literals · 558

U

UML: indicating composition · 30; Unified
Modeling Language · 27, 1434

unary: minus (-) · 97; operator · 107;
operators · 97; plus (+) · 97

unbounded wildcard in generics · 682
UncaughtExceptionHandler, Thread class ·

1144
unchecked exception · 465; converting

from checked · 493
unconditional branching · 139
unicast · 1401
Unicode · 919
Unified Modeling Language (UML) · 27,

1434
unit testing · 238; annotation-based with

@Unit · 1079
unmodifiable, making a Collection or Map

unmodifiable · 881
unmodifiableList(), Collections · 811
unsupported methods, in the Java

containers · 809
UnsupportedOperationException · 811
upcasting · 40, 256, 274; and interface ·

315; and runtime type information · 551;
inner classes and upcasting · 348

user interface: graphical user interface
(GUI) · 371, 1299; responsive, with
threading · 1141

userNodeForPackage(), preferences API ·
1003

Utilities, java.util.Collections · 875

V

value, preventing change at run time · 258
values(), for enum · 1007, 1013
varargs · 194, 724; and generic methods ·

631
Varga, Ervin · 9, 1187
variable: defining a variable · 135;

initialization of method variables · 177;
local · 69; variable argument lists
(unknown quantity and type of
arguments) · 194

Vector · 866, 890
vector of change · 373
Venners, Bill · 172
versioning, serialization · 991
Visitor design pattern, and annotations,

mirror API · 1075
Visual BASIC, Microsoft · 1389
visual programming · 1389; environments

· 1300
volatile · 1147, 1156, 1161

W

wait() · 1194
waiting, busy · 1194
Waldrop, M. Mitchell · 1435
WeakHashMap · 830, 888
WeakReference · 885
web of objects · 977
Web Start, Java · 1371
West, BorderLayout · 1313
while · 133
widening conversion · 117
wildcards: and Class references · 562; in

generics · 673; supertype · 678;
unbounded · 682

windowClosing() · 1361
word tearing, in concurrent programming ·

1157
write() · 910; nio · 945
writeBytes() · 929
writeChars() · 929
writeDouble() · 930
writeExternal() · 982
writeObject() · 977; with Serializable · 988
Writer · 910, 918, 919

1458 Thinking in Java Bruce Eckel

X

XDoclet · 1056
XML · 999
XOM XML library · 999
XOR (Exclusive-OR) · 107

Y

You Aren’t Going to Need It (YAGNI) · 597

Z

zero extension · 108
ZipEntry · 973
ZipInputStream · 969
ZipOutputStream · 969

